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What can we see at very small spatial 
scales that help constrain the theories 
of coronal heating 
 
 
Temperature range of Corona 
Temperature of AIA 
How far the sun is from earth 
What wavelength AIA we are looking at 
(HiC is same) 
Radius of the sun 
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Coronal Heating

 500,000 - 3 million K

 1000 times hotter than 

surface of sun

 Power required =         

~ 1kilowatt/ m2

http://apod.nasa.gov/apod/ap090726.html  

Surface area of the sun 6.09*10^12 
km^2 
Corona, transition, chromosphere, 
photosphere…. 
where energy is coming from how it is 
being deposited (understandable 
because corona is lower density) 
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Coronal Loops

 Magnetic flux tube filled 

with hot plasma 

 Connects regions of 

opposite polarity

 Potential location of 

coronal heating 

mechanisms

AIA 193 A 2012/07/11 18:53:44 (top)

http://www.daviddarling.info (bottom)  
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Coronal Heating -Solutions

 Small scale

 Small consecutive bursts 
of energy that 
contributes to heating

 Magnetic reconnection 
induced by stresses from 
footpoint motions 
causing braids in flux 
tubes

 Large scale

 Alfven waves dissipate 

energy into plasma 

through turbulence 

 Waves propagate 

along flux tubes

Nanoflares Alfven Waves

 

two types small scale v. large scale 
Nanoflares – small compared to across 
the loop 
Alvfen Waves- long compared to the 
length of the loop 
-propogate from center, but can be 
reflected back 
- Not all energy caused by turbulance 
- AW 0.08 m 
footpoint= where loop enters 
chromosphere 
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Goal

By identifying the substructure of coronal 

loops, we determine dominant spatial scales 

and constrain theories of coronal heating.
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0.6 arc sec 193 Å

Increased Spatial Resolution

193 Å0.1 arc sec

Atmospheric Imaging Assembly 

(AIA)

High-resolution Coronal Imager 

(Hi-C)

18:53:44 18:53:44

 

Model smooth variations of image 
Beyesian multiscale method that uses 
MCMC 
AIA on SDO since 2010 
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Increased Spatial Resolution

Low-Count Image Reconstruction and Analysis (LIRA)
 Bayes / Markov Chain Monte Carlo

 Two components

 1 smooth underlying baseline

 Inferred multi-scale component
Esch et al. 2004

Connors & van Dyk 2007

Atmospheric Imaging Assembly 

(AIA)

0.6 arc sec 193 Å

High-resolution Coronal Imager 

(Hi-C)

193 Å0.1 arc sec

LIRA

 

Model smooth variations of image 
Arc second resolution of each  
AIA is 1.3 arc min (77 arc sec) across 
Beyesian multiscale method that uses 
MCMC 
----- Meeting Notes (8/13/14 12:06) ----- 
Forward modeling process (start with 
source, push through instrument to 
compare to data) 
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LIRA

‘Sharpness’ Value

 Quantify the prominence of the substructure

Wee & Paramesran 2008

Sharpness

 

 
----- Meeting Notes (8/13/14 12:06) ----- 
retitle LIRA on… --> sharpness 
qualitatively explain sharpness value 
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Gradient Correction

Linear Regression in

log-log space

Apply transformation 

to sharpness

 

Detecting too many edges 
Pivot data about horizontal using 
function of gradient & linear regression 
fit of sharpness v gradient in log-log 
space 
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Significance of Substructure

 Null hypothesis = no substructure in coronal loop

 Null image = convolve observed image with PSF

LIRA on Observed 

Corrected Sharpness

LIRA on Null Image 

Corrected Sharpness
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p-Value Upper Bound

 5 Poisson realizations of double convolved image

 Compare sharpness for the observed image (ψo) 

and the simulated images (ψn) 

Stein et al. 2014 (draft)

g
(ψ

)

ψ

p-value upper bound

 

QUESTION 
Adjacent sharpness are correlated 
P-value test is independent? 
Draw gamma_o curve 
what we chose for gamma_n (=0.05) 
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p-Value Upper Bound

 Significant sharpness:       < 0.06

AIA p-value

Upper Bound
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Hi-C Comparison

Hi-C p-value

Upper Bound
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Hi-C Comparison

Hi-C

p-value

Upper Bound

Trial 1

Hi-C

p-value

Upper Bound

Trial 6
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Regions of Interest

 

For each of the loops, we are able to 
see if there is substructure 
If all loops come up with substructure –
strands everywhere (low lying, upper 
corona etc.) 
 
Apply to different regions of the sun to 
determine where along the loops 
substructure exists and therefore 
where we expect to see these coronal 
heating phenomena. 
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Detected Loops

areaA1

areaB1

areaB3

areaF1

 

Those that don't may have not been 
detected 
those that do have strong indication of 
substrands 
More likely to be heated by nanoflares 
in future 
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Summary

 Developed method to search for substructure in solar images

 Found evidence for substructure in AIA images that we 

observe in Hi-C

 Similar evidence of substructure in AIA loops outside of Hi-C 

region: 

 Loops with strands appear to be ubiquitous 

 Supports nanoflare model

 Not all loops found to have substructure – unclear if 

statistical or physical explanation

 Isolated points possibly result of Poisson artifacts
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Future Work

 Results are preliminary

 Quantify false positives and non-detections

 Increasing power could expand detection regions

 Understand implications of results

 Relation between bright points and detections –

compare significant pixel light curves

 Why some loop complexes show no detections

 

quantify= poisson artifacts 
Power = simulations 
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Extra Slides
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Baseline Model

1. Begin with max

2. Correct using 

min curvature 

surface through 

convex hull

3. Iterate until 

surface lies 

below data

 

Correction never more than 5%  
----- Meeting Notes (8/13/14 12:06) ----- 
BYE BYE SLIDE 
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LIRA Operations

 Point Spread Function 

(PSF)

 Observed Image 

(2nx2n)

 Baseline Model

 Prior & Starting Image

 MCMC iterations of 

Multi-scale Counts

 Posterior distribution of 

departures from 

baseline

 De-convolution

INPUT OUTPUT
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Multi-scale Representation
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‘Sharpness’ Value

Image matrix

Normalization

Subtract mean

Covariance matrix

Sum of squared eigenvalues 

(diagonal of D)

Singular Value Decomposition

 

 
----- Meeting Notes (8/13/14 12:06) ----- 
EXTRA SLIDE 
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Sharpness & Structure Dependence

 

Random, X and randomized  
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Edge Detection

 Gradient steepest along edges  edge detection

p-value

Upper Bound

AIA
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Gradient Correction

 

 

 


