TAPSim How-to

Version 1.0
Christian Oberdorfer*

February 2014

Institute of Materials Physics
University of Miinster

Wilhelm-Klemm-Str. 10
48149 Minster, Germany

Atom Probe Tomography (APT) is an amazing analysis technique in ma-
terials science, which enables the analysis of local chemistry and atomic posi-
tioning in nanostructured materials. It offers outstanding spatial resolution
in combination with sufficient mass resolving power for the determination of
chemical species. The basic principle of this method is founded on the effect
of controlled evaporation of single atoms from a field emitter. Due to the
presence of extraordinary high field strengths in direct vicinity of the apex,
single surface atoms can desorb and become ions. The needle shaped emitter
represents at the same time the analysed sample and it acts as the most
important part of the projective system for produced ions since it decisively
effects the trajectories.

TAPSIM is a simulation package which has been developed to better un-
derstand the effects which arise in APT measurements of samples with het-
erogenous evaporation properties. It allows the theoretical analysis of tips
with arbitrary shape, with arbitrary atomic structure and well-defined chem-
ical composition. In this regard, practically no limitations exist. Each tip
atom is represented by a Wigner-Seitz cell.

The produced output by the simulation can be analysed with standard
APT analysis techniques as they are applied to real experimental data, too.
For this reason TAPSIM enables a one on one comparison with a theoretical
model of a sample and with direct measurements. From a theoretical point of
view it offers the possibility for testing new concepts and procedures for APT

*oberdorc@uni-muenster.de

mailto:oberdorc@uni-muenster.de

data treatment in a reliable and controlled way. Hopefully, this approach
helps to improve the quality of the 3D reconstruction procedures as well as it
will readily help to reveal and understand artifacts in present reconstructions
of the measurement data.

The TAPSiM package is available as open source software. Within the
constraints of the GNU Public License (GPL) it may be freely distributed
and modified.

1 Prerequisites

The TAPSIM code is written in standard C++. It is entirely open source. Besides the
C++ Standard Template Library (STL), external dependancies on Hang Si’s TetGen
package [Si06] and Shewchuck’s “Fast and Robust Geometric Predicates” [She97] exist.
Both packages are freely available. In order to avoid conflicts originating in different
library versions at this point, appropriate versions of these packages — with some minor
modifications — are included in the TAPSiM distribution. Nevertheless, if the use of
more recent versions as the included ones is needed, it remains an opportunity.

For multithreading the POSIX Threads API (implemented by the “thread” c-library)
is used, which is the only hard prerequisite for compiling TAPSiM. Parallelization is
not essentially mandatory, but in order to ease the effort for maintenance currently
compilation of TAPSIM to a native single threaded version is offered.

The code should compile and run on any x86 based system, either 32 bit or 64 bit.
However, the development was carried out on a x86-64 linux system using the GNU
C++ compiler and nothing else has been tested so far. Usage of the mentioned or a
similar 64 bit unix based platform is recommended.

2 Download and compilation

The distributed package comes in the form of a bzip2 compressed archive. For the most
recent version please visit the TAPSIM homepage'.

After download follow the instructions below for compilation. It is assumed that you are
working within a unix environment and execute the commands from a terminal console:

e Decompress the obtained archive with tar. Switch to the directory in which the
downloaded package has been placed and enter: tar.xfj._tapsim v*.tar.bz2.
Here the asterix is a placeholder for the actual name of the distributed version.
Despite the file suffices, this name may incorporate additonal labels which mark
the version in detail.

e When finished, the decompressed content should have been placed in a newly

"http://www.uni-muenster.de/physik.mp/schmitz/tapsim

created directory which has the same name as the archive but without the suffices.
Switch to this directory (cd....).

e In the TAPSiM-directory you find at least a licence file (“license.txt”) containing
the GNU GPL licence agreement and a makefile. A properly configured build sys-
tem provided, the code may now be compiled, just by invoking the make command
which by default processes the file “makefile”: enter make. Hopefully no errors oc-
cur. Now, the final binaries of the compiled package should have been placed into
“./bin” subdirectory.

Any documentation, as far as it is provided, will be available in the “./doc” subdirectory
of the decompressed package.

3 Usage

The compiled package consists of two programs: one is a utility, simply called MeshGen.
It uses the mesh generation abilities of TetGen in order to construct an adaptive mesh
covering the mesoscale between a user provided sample structure and a preset simula-
tion environment. The other program is the TAPSIM binary itself, which executes the
simulation. It computes the potential distribution for an input mesh and carries out the
consecutive evaporation of atoms from a field emitter.

3.1 User provided files

In order to conduct a simulation, you need at least to provide the atomic structure of
the field emitter in a separate file (called a “node file”) with special format. This file
basically consists of the coordinates of the atoms and supporting points. A full-scale
mesh suitable for atom probe simulation can be constructed from this input with the
support of the MeshGen tool. This approach will be described in section 3.2.

In addition to the structural node file information, a second “configuration” file must
be provided. It contains information about distinguished nodal properties of the mesh.
Both files are required to launch a simulation run. The respective file formats will be
described in the following sections.

3.1.1 Node file format description

The first line of the nodefile is a text header. The header is delimited from a subsequent
data part by a single newline character (\n). The format of the data content can be either
text based or binary-coded. The header begins with a keyword, BINARY or ASCII, which
defines the actual file mode. This is followed by a space separated list of parameters: one
for the number of datasets expected to be present and two boolean flags (valid values
are 0 for “false” or 1 for “true”). The flags control the presence of optional data fields.

The datapart itself has tabular structure. Each row represents a single dataset and is
grouped into columns. The minimum number of columns is four — representing the
three coordinates (z, vy, z) and one id value which is used in order to distinguish different
type of atoms with different properties. In text mode, the delimiter for each column is a
tabstop and the rows are separated by a newline character from each other. In the case
of binary data no delimiters are present.

Two optional columns may occur as declared in the header: one column to associate a
unique number with each atom and another one for the potential. If any of the optional
columns is not provided, the flag must be set to false. In this case, a unique number will
be generated at each node. The potential will be initialized with the default value from
the configuration file.

If text mode is chosen as the data format, comments can be inserted everywhere after
the header. A comment consists of a single line and is introduced by the hash symbol (#)
as first character.

An exemplary file looks like this:

ASCII_1447181.0.0\n
2.25e-08— 0.00e+00— 0.00e+00— 5\n

1.5e-09— 1.00e-09— 1.00e-09— 1\n

This file is in text format and does not contain the data column for unique numbers and
the potential. — Anolog to the text based structure of the data part is the binary-coded
representation. For the single data columns the following data types must be used:

column data type size

X float 32 bit
y float 32 bit
z float 32 bit
id short 16 bit
number unsigned int | 32 bit
potential float 32 bit

According to the data types listed in the table, the maximum binary size of a row will
amount to 4 - sizeof(float) + sizeof(short) + sizeof (unsigned int) = 22 Byte. Be
cautious: the total number of bytes present between the header and the end-of-file must
match the number of expected datasets times the size of a single data row — taking
regard to the optional content, respectively!

3.1.2 Configuration file format description

Similar to the node file format, the first line in the configuration file is again a header
which consists of the ASCII keyword and a separating newline character at finish. Al-

though a binary coded structure of the configuration file exists, this description will
focus on the text based version only. For normal usage the plain text format is suffi-
cient. In this context the use is generally preferred because it is human readable, almost
self-explaining and therefore easy to edit.

Subsequent to the header, definitions of properties grouped into packages follow. Each
data package consists in a consecutive sequence of key value pairs, one per line, which
define the properties for a distinct node type of the simulation mesh. The link between
the mesh and the configuration entry is established by the value of the ID key. Separator
for each data package is at least one empty line at the end. This last empty line is also
needed subsequent to the last entry at the end of file! Comment lines are allowed and
may appear everywhere after the introducing header.

Definition of a default temperature value to be used in the simulation is special. The
respective definition consists of one key value pair plus the delimiting empty line. This
information is optional. If it is ommitted, a default value of 0.0 K will be preset. However,
it is possible to override the respective setting via a command-line parameter at runtime
of the simulation.

Part of an exemplary configuration file is listed below. It includes the temperature
data package and defines one node type which is labeled with the respective ID value.
Delimiter for the key value pairs is a sequence of three characters (“_=_"), respectively:

ASCII\n

TEMPERATURE._=_30.0\n

\n

ID.=.0\n

NAME_=_Vacuum\n
CHARGE_DENSITY.=_0.0\n
DIELECTRICITY.=.1.0\n
REMOVABLE.~_0\n
NEUMANN_BOUNDARY._=_0\n
DIRICHLET_BUUNDARYu=u0\n
POTENTIAL.=.500.0\n

MASS_=_0.0\n
EVAPORATION_CHARGE_STATE.=.0\n
EVAPORATION_FIELD_STRENGTH_ =_0.0\n
EVAPORATION_ACTIVATION_ENERGY.=_0.0\n

\n

Since the distinct properties of the nodes in the simulation mesh essentially control the
simulation, it is important to fully understand them. The following list gives a detailed
description for each value of the keys:

ID is an integer value in the range from “0” to “31”. It is used to establish an unam-
biguous link between the definition of nodal properties and respective nodes in an
associated mesh.

NAME is a character string. It denotes a speaking name for the set of properties defined
by an ID value. This string may also be used as a substitute for the ID itself. For
this reason, it is demanded to be unique within a configuration. Whitespace at
the beginning and end of the string will be removed on input, intermediate spaces
or special characters remain.

CHARGE_DENSITY is a floating point value and defines a local charge density, which

is attributed to a nodal cell. The measurement unit is in C/m3. — The actual
local charge is computed by the product of the cell volume and the charge density,
respectively.

DIELECTRICITY denotes a certain value of dielectricity attributed to the domain of
the associated node. The expected representation is floating point.

REMOVABLE is a flag and may be either 1 (“true”) or 0 (“false”). All the nodes which
constitute the field emitter must have this property set. Other nodes don’t.

NEUMANN_BOUNDARY is another flag which designates the Neumann Boundary
condition beeing set. Generally it defines a fixed value for the derivative of the
unknown in normal direction to the boundary. In this context the special Neumann
Boundary condition is applied. The derivative of the potential — the electric
field, respectively — is forced to zero. This means that incident field lines align
normal to the boundary plane. The presence of internal Neumann boundaries is
not implemented. Therefore this property is only important for nodes at the mesh
boundary in contradiction to the Dirichlet type.

DIRICHLET_BOUNDARY is a flag which designates the Dirichlet Boundary condition.
Its usage is competitive to the Neumann type. The Dirichlet Boundary condition
defines a fixed potential value. Despite boundary nodes, this property is also
applicable for nodes which are part of the field emitter in order to set a distinct
emitter voltage.

POTENTIAL is a floating point value. At initialization the potential values at each
node are preset to the value defined by this property and may change when the
mesh is relaxed — except the Dirichlet Boundary condition is applied; then the
potential will remain constant at this preset. The measurement unit is V.

MASS describes the mass which is used for computing ion trajectories of evaporated
species. The expected data format is floating point. The measurement unit is in
atomic mass units (u).

EVAPORATION_CHARGE_STATE is an integer value. It denotes the charge of evap-
orated ions which is measured in multiples of the unit charge.

EVAPORATION_FIELD_STRENGTH defines the value of the specific evaporation field

strength which is taken into account, for determining the next atom in the evap-

oration sequence. The format is floating point. Appropriate measurement unit is
V/m.

EVAPORATION_ACTIVATION_ENERGY denotes the energy barrier which must be
overcome according to the image hump model for field evaporation. This prop-
erty is only important if distinguished evaporation properties are computed in the
context of a Monte Carlo scheme for field evaporation. Expected fomat is floating
point. The measurement unit is eV.

3.2 Assisted mesh generation

This section describes the use of the MeshGen support application. This tool is able to
create an adaptive mesh covering the mesoscale between a user provided tip structure
and a full-scale simulation environment.

MeshGen relies on TetGen, an open source quality tetrahedral mesh generator written
by Han Si [Si06]. The adaptive mesh can be constructed starting from an input of
arbitrary shape. Only minor limitations apply:

e the input tip structure is demanded to be of convex shape,

e all coordinates are expected to be located inside a cylinder with restricted radius
and height? — the cylinder is placed symmetric to the origin in the half space with
z > 0.0m; especially the input bottom nodes must be aligned in the plane with
z=0.0m.

For reasons that are not described here, the output is assembled from a cascading set of
submeshes. These are depicted by roman numbers in figure la. The patterned domain in
the figure indicates the tip part provided by the user. The shape of the first surrounding
submesh (I) is adaptive to the input, while in contradiction, the remaining submeshes
(II-IV) are simple cylinders with prefixed size. All the submeshes fit into each other
nicely and are stacked into each other.

In addition to mesh construction MeshGen takes care for correctly assigning standard
values for the id information at each node. As depicted in figure 1a the following default
values are used at the boundary nodes:

e “ome” at the top,
e “two” at the bottom, and
o “three” at the sides.
The respective value for internal (vacuum) nodes is zero.

It might be a problem if the assigned node ids in the generated mesh get in conflict with
the ones in the provided input. In order to avoid this situtation, it is recommended to use

2The exact dimensions depend on the defined settings. Although these may be changed, the use of the
preset defaults is strongly recommended. Defaults provided, the maximum input radius will amount
to about 2.66 pm and the respective height to about 90.90 nm.

ids with the numbering beginning at ten within the input mesh. Be aware: MeshGen
will not modify the input mesh at alll! On output, the provided data is just merged
with the suitably generated mesh. For this reason the user is especially responsible for
correctly assigning any ids to boundary nodes within the provided input! The placement
is demonstrated in figure 1b: the encircled domains depict the bottom nodes with z =
0.0m. Numbers (1) and (3) denote assignment of the Neumann Boundary Condition
and (2) denotes assignment of the Dirichlet type boundary, respectively.

The syntax for running MeshGen is: ./meshgen_input-file_output-file. The format
for input and output files is of the node file type. If the program is started without
any parameters, a listing with possible parameters will be output (enter: ./meshgen).
MeshGen asks to write an initialization file at first execution. The initialization file
parameters allow detailed control of the program operation. The preset parameter values
should be appropiate for almost all standard cases.

If in addtion to the created mesh file a configuration file template should be created, the
respective command-line parameter must be added. The calling convention becomes

./meshgen.--create-config-template=config-file_input-file_output-file.

in this case. A more detailed description of the comand-line and initialization file pa-
rameters is left out at this point.

At last, it should be mentioned that in some circumstances the mesh generation with
MeshGen does not succeed. This occurs if the invoked TetGen subprocess fails and
crashs the program. Unfortunately, as the reason for this is somewhere inside the
TetGen part (at least the program should not crash due to TetGen), there is not
much what one can do in this situation: If it occurs, look at which stage of program
execution the crash happens (optionally with adding the verbose command-line pa-
rameter). Subsequently, try to modify the respective *_INNER_CYLINDER RESOLUTION
and/ or *_OUTWARD_CYLINDER_RESOLUTION entries in the initialization file — this effec-
tively changes the number of inital boundary points in the respective sub-mesh and
turned out to solve the problem in some cases.

3.3 Running TAPSim

For running TAPSIM it is sufficient to enter “./tapsim”. The printed output will give
instructions on how to go on. — This is basically intended to remind the (experienced)
user which opportunities exist; so there would be no need to refer to any manual.

However, the basic syntax, in order to do something useful with the program, is:
./tapsim.mode_[file(s)]_[parameter(s)].

The arguments are a keyword, denoted by mode, possibly required files and optional
command-line parameters, respectively. According to the applied keyword four program
modes exist:

top \

sides
sapIs

bottom 1 2 3
(a) Cascading mesh sheme (b) Typical setup of the
input tip structure

Figure 1

e make-ini,

e relaxation,

e evaporation and
e resumption.

The chosen mode effectively determines the files and filetypes which need to be sup-
plied. Also, the possible command-line parameters depend on the mode. In general
the command-line parameters are useful to force operation different from the default be-
haviour. Most settings are controlled via the internal/ external initialization mechanism,
which will be described in the next subsection describing the “make-ini”. However, de-
fault initialization settings may be ultimately overridden by respective parameters from
the command-line when the program is called. Additionally, some settings have effect,
whatever mode TAPSIM is operating, and are exclusive to the command-line.

In the next subsections the distinct syntax for each mode and the intended usage is
explained. But before, the general command-line parameters are described:

—--help Prints out the basic usage information of
TAPSIM as described at the beginning of
this section. In combination with a mode ar-
gument the usage information for that mode
is printed.

--about Prints information about the program — es-
pecially the license information.

--no-file-output Prohibits writing of any files to the disk at
output. This may be useful for testing.

--write-ascii Forces all output files to be written in an
user-readable text based format.

--write-binary Sets the output mode for all files to the bi-
nary coded fromat.

--threads=7 Determines the number of computing
threads for the potential relaxation. The re-
spective argument is an integer value. The
default behaviour is to use as many threads
as processor cores are present. Besides the
computing threads additional threads ex-
ist. They process the asyncronous output
of data to disk and are not effected by this
setting.

--ini-file="7 Sets the path to an initialization file, which
is the expected argument. This will prevent
the use of the internal initialization settings
and the reading of the default file from disk
— if it would be present.

3.3.1 Make-ini mode
The calling convention is one of these two variants:

./tapsim_make-ini
./tapsim_make-ini.filename

As its name suggests, the purpose of this mode is to generate an initialization file for
TAPSIM. In the first version an initialization file with a default name (tapsim.ini) is
written in the current working directory. The second version allows to direct the output
to a user defined path and filename.

In normal operation without any initialization file present, TAPSIM relies on internal
default settings for its parameters. If you want to revisit or change these parameters
you can use the make-ini mode.

Then in adddition, if you run TAPSIM and an initialization file with the default name is
present in the current working directory, the contents of this file is used instead of the
internal settings. The standard behaviour is to look for the default file in the current
working directory first and then, if it does not exist or is not readable, to fall back on the

10

internal settings. Otherwise you can also force TAPSIM to use a different initialization
file with the “--ini-file=7?” command-line parameter.

The structure of the initialization file is the key-value format. Purpose of the keys is
described in the following. More details of the mentioned output file formats will be
topic of section 4. Subsequently only the neccessary about the file formats is pointed
out:

RESULTS_FILENAME is a character sequence. This sets the default file prefix for
output of the main simulation results. The recorded data is analog to data you
would obtain from a real atom probe measurement. The full filename is constructed
from the given prefix and the running index of the first evaporation event which is
written to it; e.g. “evaporation_data.000001” contains all events beginning with the
first one, “evaporation_data.0000500” all the events beginning with the 500th, and
so on. The maximum number of events is determined by the chunk size parameter
(see below). If this filename is empty, any output is prohibited.

RESULTS_BINARY_OUTPUT is a boolean flag which determines the file format of the
results file (“1” = binary coded output, “0” = text output).

RESULTS_CHUNK_SIZE is an integer. The chunk size determines the maximum num-
ber of evaporation events recorded per single results file. If the stated size is zero,
output is written to a single file only.

TRAJECTORY _FILENAME is a character sequence. Analog to the results file, this
entry holds the file prefix for the output of the full ion trajectory data. If it is an
empty value, the respective output is prohibited.

TRAJECTORY _BINARY_OUTPUT is a boolean flag and determines the file format
for trajectory data.

TRAJECTORY_CHUNK_SIZE is an integer. Sets the threshold for the maximum num-
ber of ion trajectories per file. If the value is zero, output will be constrained to a
single file.

GRID_FILENAME is also a character sequence. A grid file contains a snapshot of the
complete computing mesh including the potential and field values at each node.
This entry determines the prefix for the grid output files. An empty entry prohibits
any output.

GRID_BINARY_OUTPUT is a boolean flag, which sets the respective output format.
Because of the possibly huge amount of data, binary output should be preffered
at this point.

GRID_INTERVAL is an integer. It determines the period at which the grid snapshots
are written to disk, e.g. every 100 or every 1000 evaporation events.

SURFACE_FILENAME is a character sequence. It holds the file prefix for surface data,
which is the actual shape of the field emitter. In order to prohibit this kind of
output set an empty string here.

11

SURFACE_BINARY_OUTPUT is boolean flag for the respective surface output format.

SURFACE_INTERVAL is an integer. Analog to the grid file output this is the snaphot
interval for the shape of the field emitter.

GEOMETRY_FILENAME is a character sequence which denotes a full filename for the
geometry data. Owing to the fact that the basic mesh geometry does not change at
all during a simulation run, the geometry is recorded only once at the beginning of
a simulation and is then saved to disk. This kind of data is needed in combination
with the surface and grid data to reconstruct the full state afterwards.

GEOMETRY_BINARY_OUTPUT is a boolean flag. It determines the output format
for geometry data.

GEOMETRY_CONTENTS is a hexadecimal coded bit sequence. Output of the full
available geometry is reached by a value of "0xff’.

DUMP_FILENAME is a character sequence. Periodically the complete state of simula-
tion is written to disk and backed up in a so called dump file. The respective file
name is set via this entry. Output of a dump file is prohibited in the case of an
empty string.

DUMP_INTERVAL is an integer and denotes the interval at which the state information
is written to disk. Any previous file contents will get lost.

OUTPUT_DELAY_TIME is an integer. The value denotes the time in seconds at which
buffered output information is written to disk. In fact this is the wake-up time
for the internal disk-writer-threads which will do the work. Intermediately, data
will be collected in memory. If the time is set to zero all data will be written
immediately and without any buffering.

METHOD_EVAPORATION_PROBABILITY is an integer value. It determines the
method which is used to calculate the field evaporation probability for each surface
atom of the field emitter (0 = “linear approach”, 1 = “exponential (Boltzmann)
approach”).

METHOD_EVAPORATION_CHOICE is an integer value. This denotes the method
which is applied to select an atom for field evaporation from the emitter surface
(0 = “maximum probability”, 1 = “probability weighted randomization”).

VACUUM_CELL_IDENTIFIER is a character sequence. This string depicts the vacuum
nodes within the mesh (the unique name which is given in the respective config-
uration file). This information is needed in order to obtain the nodes which are
part of the emitter surface. The string defaults to “Vacuum”.

TRAJECTORY_INTEGRATOR_TYPE is an integer value. It sets the type of inte-
gration method which is used to compute the ion trajectory (0= O(1)-integrator,
1=0O(5)-integrator).

TRAJECTORY_STEPPER_TYPE is an integer value. This value controls the condi-
tions under which a proposed integration step of the trajectory becomes successful

12

(0 = every step succeeds, 1 = restriction by preset numerical error threshold, 2 =
step is restricted by local mesh geometry, 3 = restriction by local mesh geometry
an predefined error threshold applies).

TRAJECTORY_INITIAL_TIME_STEP is a floating point. It denotes the initial value
of time discretization for integration (e.g. 1 x 10~!*s).

TRAJECTORY_MINIMUM _TIME_STEP is a floating point and sets a lower threshold
for time discretization (the value defaults to 1 x 107165).

TRAJECTORY_ERROR_THRESHOLD is a floating point. This depicts the numerical
error threshold for computed trajectories.

TRAJECTORY_NON_RANDOM_START_POSITION is a boolean flag. If set to “false”,
a blurred starting position in order to mimic the Brownian motion of the emitter
atoms is enabled. Otherwise, if set to “true”, the lattice position is used.

TRAJECTORY_NOL_INITIAL_VELOCITY is a boolean flag. An initial random velocity
for evaporated atoms is applied if this key equals “false”. In the opposite case the
velocity defaults to zero.

VOLTAGE_QUEUE_SIZE is an integer value. For each event a representative tip voltage
is computed taking into account the preset evaporation field, the local potential,
and previously computed voltage values of the preceeding events for averaging.
The queue size denotes the number of events over which is actually averaged.

LOCAL_RELAXATION_ERROR_THRESHOLD is a floating point value. It defines the
error threshold which applies to the maximum computed potential changes in local
relaxation mode.

LOCAL_RELAXATION_SHELL SIZE is an integer value. It determines the order of
next neighbour nodes which are taken into account for local relaxation, e.g. the
default is three, which means that the environment is constrained by the third
order next neighbours.

LOCAL_RELAXATION_CYCLE_SIZE is an integer value. It sets the number of subse-
quent local relaxation cycles which are processed without testing whether the error
threshold has been reached.

LOCAL_RELAXATION_QUEUE_SIZE is an integer value. If the preset error threshold
for the local relaxation of potentials cannot be reached due to the presence of
numerical inaccurracies, relaxation will stop anyway. The number of preceeding
cycles which are taken into account for detection of this situation, is defined by
this setting.

GLOBAL_RELAXATION_STEPS is an integer value. This sets the number of global
relaxation cycles subsequently processed to any local relaxation. The default is
one.

REFRESH_RELAXATION_INTERVAL is an integer value. This value defines the num-
ber of evaporation events after which an error controlled relaxation of the potentials

13

will be conducted. In the case this value is set to zero any error controlled relax-
ation is skipped. (The described procedure takes part in addition to the global
relaxation subsequent to any localized one).

REFRESH_RELAXATION_ERROR_THRESHOLD is a floating point value. It denotes
the error threshold which is applied to the global potential relaxation step (the
initial one before the evaporation sequence starts and any subsequent intermediate
steps).

REFRESH_RELAXATION_CYCLE_SIZE is an integer value used for global relaxation
processing. The meaning is analog to the description given for the “LOCAL_RELAXATION_CYCLE_
entry.

REFRESH_RELAXATION_QUEUE_SIZE is an integer value. It applies to the global
relaxation of the potentials. Again the meaning is analog to the given at the
“LOCAL_RELAXATION_QUEUE_SIZE” entry.

3.3.2 Evaporation mode
The evaporation mode is the main operation mode of TAPSiM. The calling syntax is:

./tapsim_evaporation._iconfig. inode.[results]
or
./tapsim_evaporation_--input-dump=7_iconfig. [results]

In the first form a configuration filename followed by a node filename and optionally a
results filename for output is expected. Calling TAPSIM this way implies the following
list of tasks which will get processed:

e At beginning, the input files for the configuration and node data are read.

e Then the Delaunay tetrahedralization from the nodal coordinates is obtained and
the computing mesh is constructed.

e Subsequently, needed coupling factors for the iterative finding of the potential
solution are computed. This process is called synchronizing due to the linking of
geometric properties with electrostatic ones.

e The initial potential distribution is obtained and,

e finally, the consecutive evaporation of atoms from the field emitter is simulated. In
the cyclic procedure the potential is continously recomputated and the respective
trajectory and event data are recorded for each event. Within preset intervals,
additional data is saved in order to track the evolution of the emitter shape and
the state of the computation grid. A dump file is written to disk repeatedly, which
will allow resumption of the simulation if the program execution is interrupted for
some reason.

The second form of the prescribed syntax is used in the case a dump file with an relaxed
mesh (see section 3.3.4) is initially present. The provided information from the dump is

14

then combined with the input data from the configuration file and processing starts
with the syncronization task. The optional results argument in both syntaxes is a
filename prefix for the output of results data. If it is present, the default setting by
the initialization data will be overridden.

Finally, one remark to the process of finding the potential: computation can be executed
globally including all nodes in the mesh or it may be restricted to a local environment
of some order of next neighbour shells in vicinity to an arbitrary center node. The
second variant is applied in the case the potential needs to be recomputed subsequent
to an evaporation event. Whatever variant is conducted, controlling parameters remain
basically the same:

e The potential relaxation is stopped if a preset threshold value has been reached.
Therefore the maximum potential difference at any processed node before and after
one relaxation step is obtained and compared with this user-defined preset.

e In order to avoid the overhead to compute the actual value for comparison in each
relaxation cycle, this value is determined periodically. The respective number of
pure relaxation steps without comparison is controlled by the cycle-size parameter
type.

e A third parameter affects the detection of a deadlock-situation when the preset
threshold is not reachable for some reason: The queue-size controls the length
of a fifo-queue. This queue is filled with the reference values which have been
computed for threshold comparison. The deadlock-sitation is detected if the slope
of the linefit for the values in the queue becomes zero. The relaxation is stopped
in this case — however the threshold has been reached or not.

In evaporation mode the following command-line parameters may be invoked.

--skip-relaxation Skips the initial relaxation step for the po-
tential.

--init-potentials Forces initialization of potentials prior to

--reset-potentials any relaxation. Vacuum nodes are set to a

random potential, while all other nodes be-
come initialized according to the respective
configuration data.

—--threshold="7 Set the parameters for global relaxation.
--cycle-size="7
--queue-size=7

--no-trajectories Disable the output of trajectory data.
--write-trajectories="7 Set the filename prefix for trajectory data.
--no-grids Disable the output of grid data.
--write-grids="7 Set the filename prefix for grid data.
--no-surfaces Disable the output of surface data.

15

—--write-surfaces="7

—-no—-chunks

——-chunk-size=7

--snapshot-interval="7

--no-dump
--write-dump=7
-—dump-interval="?

—--vacuum-identifier="?

--trajectory-error-threshold="7

—-shrink-1limit="?

-—event-limit="?

--voltage-queue-size="?

-—-evap-threshold="?

--evap-cycle-size="7
--evap-shell-size=7
--evap-queue-size=7

--evap-global-cycles="?

--refresh-interval="7
--refresh-threshold="?
--refresh-cycle-size="7
--refresh-queue-size="7

Set the filename prefix for surface data.

Disable splitting of the output into several
files (applies to results, trajectory data, re-
spectively).

Set the maximum number of event data per
results or trajectory file at output.

Set the period of evaporation events for writ-
ing the grid and surface data.

Disable writing of a dump file.

Set the filename for the dump file.

Set the period of evaporation events after
which a dump file is written.

Set the unique name for identifying vacuum
nodes.

Set the numerical error threshold which is
applied for the trajectory computation.

Set the maximum shrink size of the
field emitter after which the simulation is
stopped. Zero is equivalent to infinite size,
e.g. complete removal of all atoms from the
emitter.

Set the maximum number of atoms which
should be removed by the simulation. Zero
is equivalent to infinite number.

Set the length of the voltage queue which
is used for smoothing of calculated evapora-
tion voltages.

Override the parameters which are used for
the local relaxation step which applied af-
ter each removal of an atom from the field
emitter.

Set the number of global relaxation cycles
after each evaporation step.

Set the parameters which are used for inter-
mediate relaxation of the potential during
the evaporation cycle. The refresh interval
defines the number of events after which re-
freshing takes place. If it is set to zero, the
procedure is skipped at all.

16

3.3.3 Resumption mode

If you have got a dump file which was previously generated by TAPSIM the resumption
mode allows to resume the simulation from the information in this file. The syntax is:

./tapsim_resumption_idump.[--last-event=7]_[results]

The first parameter is the input dump file. Optional parameters are an initialization
value for the event index, denoted by last-event and a user specific filename for the results
data, respectively. If the event index parameter is omitted, the value from within the
dump information will be used by default. As the simulation is resumed from a dump,
all needed information is directly available and the action immediately starts with the
processing of the evaporation cycle.

Additional parameters as they have been explained in the preceeding for the evaporation
mode may be supplied. Except the ones which force the initialization/ reset of the
potential since this would make no sense in this mode.

3.3.4 Relaxation mode

This mode is basically useful to only computing the potential distribution in a mesh.
The syntax which applies to the relaxation mode is as follows:

./tapsim._relaxation —-read-dump=7_oconfig. onode
or
./tapsim_relaxation_iconfig._inode.[onode]

The parameters with config/ node denote a configuration and a node file at input or
output. Argument for the --read-dump parameter is a dump filename, respectively.

If TAPS1M is called in the way it is stated in the first line, a dump file will be read, the
included mesh with the potential values will be relaxed and on output a configuration
file and a node file will be written.

The version presented in the second line is very similar. But instead of a dump file a
configuration and a node file is read. After the relaxation the output is eiter saved in the
input node file, which gets overridden or it is written to an optionally provided output
node file.

In addition the following command-line parameters are available in this mode:

17

--init-potentials Forces initialization of potentials prior to

--reset-potentials any relaxation. Vacuum nodes are set to a
random potential, while all other nodes be-
come initialized according to the respective
configuration data.

-—threshold="7 Overwrite the default parameters for global
--cycle-size="7 relaxation.
--queue-size="7

--write-dump="? Forces output of a dump file with the given
name after relaxation.

3.4 Example: Simulated evaporation of a tungsten field emitter

In this section a step by step instruction for the simulated evaporation of a bee (110)
specimen is given. The sample shape is a cylinder with half-spherical apex. The diameter
amounts ~ 30nm and the height to ~ 60nm. A node file containing the respective
geometry is provided in the “./examples” subdirectory of the TAPSIM package. The
file is called “bce_110.5.00e-10.bin”. In the following it is assumed that the binaries
have already been compiled as described in section 2 and reside in the “. /bin” directory
below the root of the package.

The first step is the setup of the full-scale simulation mesh. For this MeshGen is used.
Switch to the directory with the provided sample and enter:

../bin/meshgen.bcc_110_5.00e-10.bin_sampleMesh.bin.
--create-config-template=sampleMesh.cfg

If no initialization file exists in the current directory, MeshGen asks to create a default
one. Proceed writing the file and continue program execution. The mesh generation
process takes place. It completes within seven stages and will probably consume a few
minutes. Maybe you will get a message that some points have been removed from the
generated mesh due to limitations of the floating point arithmetic. You can ignore this
warning and go on. — At finish, the supplied create-config-template parameter lets
MeshGen write an extra configuration file, named sampleMesh.cfg in this case.

This file is now to be edited in the next step. Use your preferred text editor (e.g. vi)
and change the subsequent entries in the description for which the ID is set equal to 10
(this information should have been placed somewhere near at the end of the file):

e NAME =_Tungsten

e MASS_=.183.85

o EVAPORATION_CHARGE_STATE_=.3

e EVAPORATION_FIELD_STRENGTH_=_57.1e-9

18

Afterwards TAPSIM is started, enter:
../bin/tapsim_evaporation_sampleMesh.cfg. sampleMesh.bin

The first steps of the simulation will need a lot of time before the evaporation of single
atomes is really computed. The generated output files are explained in the next section
and must be analysed with custom made tools. — However, if not interrupted, the
program will continue execution until all atoms have been removed from the emitter.
Have a lot of fun!

4 Output data and file formats

As it is the case for the node file and configuration file formats, output of TAPSIM is
basically recorded in a plain text format or binary coded. The encoding is marked by a
respective keyword at the beginning of the files, maybe subsequent to some lines which
are introduced with the hash symbol.

The data, which is in direct relationship to a single evaporation event, is written to the
results type file and a trajectory file. The results file is at most analog to an atom probe
measurement file. Both files are streaming formats. They can hold an arbitrary number
of event data within one file or split it over multiple files of that types.

Contrary, information about the computing mesh as a whole is accessible by grid type
data files. In the case you are only interested in the information in direct vicinity of
the tip surface, you may refer to the surface data type file. Because these file formats
decisively rely on the distinct mesh geometry, which will not change at all during a
simulation run, the detailed geometric information is saved in a separate but common
geometry type file. This allows to save a huge amount of disk space and in addition pro-
cessing time for the destillation of the geometric data (typical size of the geometry data
amounts to some gigabytes, while the grid data needs only about some tenth megabytes
or a few megabytes for the surfce information of space, respectively).

4.1 Results data

As already mentioned, results data is the main output format of TAPSIM. It contains
information analog to the measurement files in atom probe and additional data which is
only accessible due to the simulation approach. The basic format is a tabular structure
with the data of each evaporation event in one row. The complete dataset looks like
this; the data types stated in the second column are valid for the binary-coded format
only:

index int running index of the evaporation event
id int identifier value of the atom type
number unsigned int | unique number of the original atom node

19

voltage float computed measurement voltage in volts
(this value is computed by rescaling the local
potential with the evaporation field strength
of the atoms at the field emitter; do not get
confused: it is not the potential in the com-
puting mesh!)

startX float starting position of the ion trajecto-

startY ry/ position at the emitter surface in meters

startZ

stopX float stopping position of the computed ion tra-

stopY jectory in meters.

stopZ

tof float time-of-flight in seconds (this value is com-
puted according to the measurement volt-
age)

probability float the evaporation probability for the event
(evaporation probabilities of all surface
atoms of the field emitter are always nor-
malized)

potentialBefore float the potential at the atom position prior
evaporation in volts

field BeforeX float electric field vector at the atom position

fieldBeforeY prior evaporation in volts per meter

fieldBeforeZ

potential After float potential at the atom position subsequent to
its removal and local relaxation in volts

field AfterX float electric field vector at the atom position sub-

field AfterY sequent to the evaporation and local relax-

fieldAfterZ ation in volts per meter

normalX float unit normal vector of the local emitter sur-

normalY face at the atom position (prior removal)

normalZ

apexX float coordinates of the emitter apex in meters

apexY (The apex atom is defined by the position

apexZ at the emitter surface with the maximum z

coordinate.)

20

4.2 Trajectory data

The trajectory data is used to store the complete information accompanied with the
computation of ion trajectories. The data in the file is grouped into buckets. Each
bucket contains the information attributed to a single trajectory plus additional content
which is embedded in comment lines before and subsequent to the main data part.
Basically, a trajectory is described as a sequence of points in the (t,7, %) phase space;
t denoting time, 7 the location and @ the velocity, respectively. In addition to this
neccessary information an index to the associated tetrahedron of the Delaunay mesh, in
which the respective position is located, is also recorded.

Part of a trajectory file presenting the information within a single bucket is listed below:

index = 14\n

unique number = O\n

time scale = 3.5e-01\n

integrator status = 5 => SYSTEM_LIMIT_PASSED\n
charge [C] / mass [kg] = 1.6e-19 / 8.3e-26\n

ASCII 61\n
0.0e+00— -8.5e-09— 0.0+00— 2.1e-08— 0.0e+00— 0.0e+00— 0.0e+00— 562\n

1.6e-12— -3.6e-08— 0.0e+00— 6.8e-08— -2.8e+04— 0.0e+00— 4.5e+04— 908\n
1.9e-12— -4.4e-08— 0.0e+00— 8.1e-08— -2.8e+04— 0.0e+00— 4.5e+04— -1\n
final error estimate (position) (1.2e-14/0.0e+00/1.8e-14)\n
final error estimate (velocity) (4.3e-02/0.0e+00/6.5e-02) \n

\n

The keyword introducing the main data part is followed by an integer. The value denotes
the number of expected rows. The meaning of additional information in the comment
lines is as follows:

Index is the index of the evaporation event. This entry provides a link to results data
file.

Unique number is the number which was assigned to nodal cell at the origin of the ion.

Time scale denotes the scaling factor which was used to compute realistic time-of-flight
values if a certain measurement voltage was taken into account.

Integrator status indicates the status at which integration was stopped.
Charge/ mass denotes the respective ion charge and its mass.

Final error estimates denote the total numerical error estimates from the integration,
for the position and velocity, respectively.

In the binary coded version all data types are floating points, except the index for the
tetrahedra which is an integer.

21

4.3 Geometry data

The geometry data is quite complex. For this reason only a rough overview will be

presented here and for detailed information a reference to the TAPSIM source code is
: 3

given.

The first line of the header is the keyword for format encoding. Then a series of different

keywords follows. Each of these keywords mark a different kind of data with a distinct

structure of the subsequent information:

e The first data to be present is introduced with NODES. This is for the coordinates
of the vertices in the mesh and an additional boundary marker. The boundary
marker indicates if a vertex is on the boundary or not, respectively.

e Then the information about the Delaunay tetrahedralization follows, marked with
the TETRAHEDRA keyword. For each tetrahedron the indices of the four consti-
tuting vertices are written and in addition, another four indices its neighbouring
tetrahedra.

e Subsequent information about the VORONOI_CELLS follows. This basically consists
in the definition of VORONOI_FACETS. The union of all facets incident to a common
node forms the closed domain of the respective Vornoi cell. Each Voronoi facet is a
convex polygon. The list with the coordinates of all appearing VORONOI_VERTICES
completes the geometry data.

The coordinates of a Voronoi vertex are computed via the circumcenters of the tetra-
hedra. Here, use is made of the geometric duality of the Delaunay tetrahadralization
and the partition of space into Voronoi cells. Each vertex of a tetrahedron is linked to
a distinct Voronoi cell. Vice versa each tetrahedron is linked to a a distinct Voronoi
vertex.

4.4 Grid data

The grid data format is one big table. For each node of the mesh
e the id value (short, 16 bit),
e unique number (unsigned int),
e local charge (float),
e potential (float) and
e the electric field vector (three floats)
are recorded at certain a state of the simulation. Like a snaphot.

First line in the file is the header with the keyword for signaling the encoding and
the number of nodes, equal to the number of datarows, of the respective mesh. For
coordinate information of the nodes et cetera it is referrred to the geometry data file

3The respective source file is file_io.cpp and the function File_Io: :writeGeometry() therein.

22

which is provided in there. If binary encoding is used, the respective datatypes are as
stated in parenthesis above.

4.5 Surface data

The contents of the surface data file are comparable to a grid file. But in contradiction,
the surface file only contains a subset of the data provided in the grid file: only infor-
mation which depends on the surface of the field emitter (the single atoms of the field
emitter, and their neighbouring nodes, e.g. local vacuum nodes) are recorded. As it is
the case for the grid format, the according data is basically organized in tabular form.
Subsequent to the header line with the identifier for the data format, two tabular data
parts follow.

The first datapart is introduced by a single line with the CELLS keyword and a number
value. It contains the neccessary data of the surface cells of the field emitter. Each
dataset in a row describes a single surface site. It consists of four columns (data types
for binary coding are in parenthesis):

a node index (int),

the type/id (short, 16 bit),

the unique number (unsigned int) and

the computed evaporation probability (float).

In addition a fifth column with a variable number of indices to neighbouring nodes in
the mesh is appended. In order to be able to reconstruct the surface shape and draw
the respective Voronoi cell this additional information of the neighbouring nodes at each
surface site is needed. The first value in the fifth column is an integer with the number of
neighbours, followed by the index values for the neighbours, respectively (all ints). Since
some surface nodes are neighbours to each other, part of this information is redundant.
Nevertheless it is completely recorded. Also be aware that some of these neighbour nodes
may not be part of the field emitter. Instead they are “vacuum” nodes.

The second data part is introduced by a separate line with the NODES keyword. After the
keyword the number of the expected node data that follows is printed. There is one row
for each occurring node index in the CELLS part above — the indices of neighbouring
nodes included. The first column in this data part contains

the respective node index (int),
the local potential (float),
the electric field vector (three floats) and

the unit normal vector (three floats)

at the local emitter surface. In the case the respective node is not a surface node, either
outside the surface in the vacuum or within the bulk of the emitter, the surface normal
vector is zero.

23

References

[Obel4]

[OES13]

[She97]

[Si06]

Christian Oberdorfer. “Numeric Simulation of Atom Probe Tomography”.
PhD thesis. Institute of Materials Physics, University of Miinster, 2014. URL:
nbn-resolving.de /urn:nbn:de:hbz:6-72369452077.

Christian Oberdorfer, Sebastian Manuel Eich, and Guido Schmitz. “A full-
scale simulation approach for atom probe tomography”. In: Ultramicroscopy
128 (2013), pp. 55-67. por: 10.1016 /j.ultramic.2013.01.005. URL: www .
sciencedirect.com /science/article/pii/S0304399113000144.

Jonathan Richard Shewchuck. “Adaptive Precision Floating-Point Arithmetic
and Fast Robust Geometric Predicates”. In: Discrete € Computational Ge-
ometry 18.3 (Oct. 1997), pp. 305-363. URL: www.cs.cmu.edu/~quake /robust.
html.

Hang Si. TetGen — A Quality Tetrahedral Mesh Generator and Three-
Dimensional Delaunay Triangulator. Version 1.4. Weierstrass Institute for
Applied Analysis and Stochastics (WIAS). Mohrenstr. 39, 10117 Berlin, Ger-
many, Jan. 2006. URL: www.wias-berlin.de/software/tetgen.

24

nbn-resolving.de/urn:nbn:de:hbz:6-72369452077
http://dx.doi.org/10.1016/j.ultramic.2013.01.005
www.sciencedirect.com/science/article/pii/S0304399113000144
www.sciencedirect.com/science/article/pii/S0304399113000144
www.cs.cmu.edu/~quake/robust.html
www.cs.cmu.edu/~quake/robust.html
www.wias-berlin.de/software/tetgen

	Prerequisites
	Download and compilation
	Usage
	User provided files
	Node file format description
	Configuration file format description

	Assisted mesh generation
	Running TAPSim
	Make-ini mode
	Evaporation mode
	Resumption mode
	Relaxation mode

	Example: Simulated evaporation of a tungsten field emitter

	Output data and file formats
	Results data
	Trajectory data
	Geometry data
	Grid data
	Surface data

