

GeV-TeV blazars: how and where

F. Tavecchio INAE-OAB

Thanks to: G. Ghisellini, L. Foschini, G. Bonnoli, G. Ghirlanda

Outline

Blazars:

the "standard" view; the blazar sequence jet-disk connection; the location of the emitting region.

A benchmark case: 3C454.3

Blazars

SED dominated by the <u>relativistically boosted</u> non-thermal continuum emission of the jet.

Two broad bumps:

Synchrotron and Inverse Compton in <u>leptonic</u> models.

Also <u>hadronic</u> scenarios have been considered (e.g. Mannheim, Boettcher, Reimer).

The "blazar sequence"

The "blazar sequence"

Fossati et al. 1998; Donato et al. 2001

Accretion disk

DUSTY TORUS

FSRQs: the "canonical" scenario

Dermer et al. 2009 Ghisellini, FT 2009 Sikora et al. 2009

FSRQs: the "canonical" scenario

FSRQs: the "canonical" scenario

BL Lacs: "clean" jets

Inefficient accretion flow

*but see Raiteri et al. 2009 Capetti et al. 2010 for BL Lac itself

Modeling: from data to physics

The physical sequence

The "cooling" paradigm

Total en. density \approx cooling rate

The "cooling" paradigm

FSRQs: strong cooling

Total en. density \approx cooling rate

The "cooling" paradigm

FSRQs: strong cooling **low el. energy**

BL Lacs: weak cooling

Total en. density \approx cooling rate

Accretion power!

Log V [Hz]

domenica 18 luglio 2010

Ghisellini, FT et al. 2010

Jet power vs accretion

Jet power vs accretion

Ghisellini, FT et al. 2010

Jet power vs accretion

Acceleration/collimation mechanism? B&Z able to produce enough power?

Ghisellini, FT et al. 2010

Localizing the emission region

Previous results assume distances < 0.1–0.3 pc

Localizing the emission region

Previous results assume distances < 0.1-0.3 pc

Marscher et al. 2010

But: Sikora et al. 2009 Marscher et al. 2009, 2010 Lat Coll. 2010

~10-20 pc!

Localizing the emission region

Previous results assume distances < 0.1–0.3 pc

Marscher et al. 2010

But: Sketch of PKS 1510-089 Sikora et al. 2009 Marscher et al. 2009, 2010 Lat Coll. 2010 Acceleration Accretion disk

~10-20 pc!

LAT lightcurve

$$R < c t_{\rm var} \frac{\delta}{1+z} \simeq \frac{6.5 \times 10^{15}}{1+z} \left(\frac{t_{\rm var}}{6\,{\rm h}} \right) \, \left(\frac{\delta}{10} \right) \ {\rm cm} \label{eq:R}$$

IF
$$d \simeq \frac{R}{\theta_i}$$
 Conical geometry

$$d < ct_{\rm var} \frac{\delta}{1+z} \theta_{\rm j}^{-1} \simeq \frac{6.5 \times 10^{16}}{1+z} \left(\frac{t_{\rm var}}{6\,\rm h}\right) \left(\frac{\delta}{10}\right) \left(\frac{\theta_{\rm j}}{0.1}\right)^{-1} \,\rm cm \quad i.e. \ inside \ the \ BLR$$

Doppler factor is not expected to be >> 30 (e.g. Abdo et al. 2010)

$$R < c t_{\rm var} \frac{\delta}{1+z} \simeq \frac{6.5 \times 10^{15}}{1+z} \left(\frac{t_{\rm var}}{6\,{\rm h}} \right) \, \left(\frac{\delta}{10} \right) \ {\rm cm} \label{eq:R_var}$$

IF
$$d \simeq \frac{R}{\theta_i}$$
 Conical geometry

$$d < ct_{\rm var} \frac{\delta}{1+z} \theta_{\rm j}^{-1} \simeq \frac{6.5 \times 10^{16}}{1+z} \left(\frac{t_{\rm var}}{6\,{\rm h}}\right) \left(\frac{\delta}{10}\right) \left(\frac{\theta_{\rm j}}{0.1}\right)^{-1} {\rm \ cm} \quad \text{i.e. inside the BLR}$$

Doppler factor is not expected to be >> 30 (e.g. Abdo et al. 2010)

Very small collimation angle? If d=20 pc

$$heta_{\mathrm{j}} \simeq rac{10^{-4}}{1+z} \left(rac{t_{\mathrm{var}}}{6\,\mathrm{h}}
ight) \, \left(rac{\delta}{10}
ight)$$

A similar problem: too rapid TeV variability in HBLs

BL Lac Detected in TeV BL Lac not detected in TeV

FT et al. 2010

A similar problem: too rapid TeV variability in HBLs

PKS 2155-304 - HESS

Ultrafast (~200 s) variability (Aharonian et al. 2007, Albert et al. 2007) needs major changes (e.g. Ghisellini et al. 2008, 2009, Giannios et al 2009, Neronov et al. 2008)

Possibilities to reconcile large d and rapid variability in BL Lacs (and FSRQs?)

Strong recollimation

e.g. Nalewajko & Sikora 2009 Bromberg & Levinson 2009

"Needles"

e.g. Ghisellini et al. 2008, 2009 Giannios et al 2009 Marscher & Jorstad 2010

VHE emission from FSRQs

also : Wagner 2010 for 1510-089 (HESS) Mariotti 2010 for 1222+216 (MAGIC)

3C279 Albert et al. 2008

VHE emission from FSRQs? Difficult inside BLR!

Strong absorption (E>30 GeV within BLR, E>1 TeV outside) (e.g. Liu et al. 2008, Reimer 2007, FT & Mazin 2009)

Decline of the scattering efficiency

(e.g. Albert et al. 2008, FT & Ghisellini 2008)

VHE emission from FSRQs? Difficult inside BLR!

Strong absorption (E>30 GeV within BLR, E>1 TeV outside) (e.g. Liu et al. 2008, Reimer 2007, FT & Mazin 2009)

Decline of the scattering efficiency

(e.g. Albert et al. 2008, FT & Ghisellini 2008)

Both problems alleviated outside BLR (IR torus)

More than one region?

Different variability time-scales at different energies (GeV: fast -TeV: slow)

No fast TeV variability (unless "needles")

3C454.3: a benchmark case

Fgamma more than linear in Fopt and Fx Also in PKS 1502+106 (Abdo et al. 2010) See also Abdo et al. 2010, arXiv:1007.0483

Large flux variations, spectrum rather stable:

electron spectrum stable similar physical conditions

Modeling of the SED with the "canonical" model

Bonnoli et al. 2010

In syncro + EC frame :

- B must vary inversely to bolometric

power

- Γ , R_{diss} correlate positively with L_{γ}

- $B \propto (\Gamma \cdot R_{diss})^{-1}$

- $P_B \propto (R_{diss} \cdot \Gamma \cdot B)^2$ (Poynting flux

approx. constant at R_{diss})

In higher states, the emission originates at <u>larger</u> <u>distance</u> from the BH, with <u>lower B</u> and <u>higher Γ </u>

Summary

"Standard" model: gamma-rays through EC inside BLR in FSRQ

Rapid variability: gamma-rays produced <u>inside BLR</u> or <u>very small emission regions at large distances</u>

TeV emission and GeV-TeV connection as a test

3C454.3: tracing the evolution of the emission zone