HBL variability at high energies Clues on jet structure and driving engine

Luigi Costamante HEPL/KIPAC Stanford University Blazars have always a combination of at least 2 types/engines of variability:

Disk & BH power the jet: variability modulated by accretion

Blazars cod la

Acceleration & cooling in the jet : large flares and outbursts

- Disk-BH interaction
- 'long term' variations
- low energy electrons ($\gamma \sim 1-100$)

- sensible to jet structure
- ambient fields
- emission mechanisms
- high energy electrons
- 'short term' variability

Note 2:Variability depends on the position of the observed band relative to the SED peaks

Variability depends on the position of the observed band relative to the SED peaks

Do not compare apples with oranges...

X-ray (or Gamma-ray) variability means very different electron energies for different SED types

Behavior of the electron distribution: typically it varies much more above the 'peak' e.g. Mkn 421 in 2006

Tramacere et al 2009

Fermi band: little/no variability (as in the optical...)

Abdo et al. 2010 see talk by S. Ciprini, G. Tosti

Fermi band: excess variance

HBL

We focus now on HBLs, and the high-energy branch of the electron distribution

X-ray — TeV connection: same-energy electrons emitting by Sync & IC

What have we learned so far? and recently ?

X-ray & TeV are typically highly correlated during flares

Classic cases: Mkn 501 in 1997

Pian et al 1998, Krawczynski et al 2002

But during the two years later...

Low

Fractional variability in X-ray:

Fractional variability in X-ray:

Aharonian et al. 2010

Other classic case: IES 1959+650 in 2002

Krawczynski et al. 2004

Possible ways to obtain orphan flare

Krawczynski et al. 2004

Mkn 421

2 important active periods & mwl campaigns:

- March 2001 (dense Xray/TeV coverage, Fossati et al 2008)
- Apr-July 2006 (highest fluxes, Mkn501-style flare, Tramacere et al 2009)

Mkn 421 in 2006

Changes from log-parabola to pure power-law spectra over 4 decades in energy

Hint of different acceleration processes at work, in low/high state

Mkn 421 in 2001

HEGRA WHIPPLE

RXTE

Fossati et al 2008

Quadratic relation also in decaying phase !

Fossati et al. 2008

Difficult to obtain even in strict Thomson condition

Most surprising case: PKS 2155-304 in summer 2006

Ultra-fast variability ! 2x flux in ~2-3 min. 10x in less than 1 hr

 $\Gamma \ge 50-100$ Needle in jet ? Jets in a jet ? magneto-centrifugal acceleration ? ... (Ghisellini & Tavecchio 2008) (Giannios et al 2009) (Ghisellini et al 2008)

<u>Full night</u> of simultaneous HESS-Chandra-Optical observations

B

First time in HBL: high Compton Dominance !

Costamante et al. 2007, 2008 Aharonian et al. (HESS coll.) 2009

Strong and strict correlation: X-ray and TeV emissions respond to the same flaring event

Costamante, Buehler et al. 2007, 2008 Aharonian et al. (HESS coll.) 2009

Cubic relation X-ray / TeV flux !

Difficult to explain with one-zone model. Thomson alone ($\delta >> 100$) not enough to explain cubic decay

"One zone" => high energy electrons have not cooled

Adiabatic expansion: could work ! but cubic decay requires B to increase as $B \propto R^{+0.4}$ (i.e. energy density $W_B \sim R^{3.8}$), and on same timescales of X-ray/TeV variations.

This would imply a 15% decrease in Optical synchrotron emission: not observed !

Comparison with Mkn 501, IES 1959: 'same' flare, but here it does not break through the pre-flare synchrotron SED

Emerging of new components, also on long timescales: evidence in PKS 2005-489

Conclusions

- Indications that variability clock of the jet is Disk-driven, on long timescales.
- Acceleration mechanism during low/quiescent states seems different from flaring events.
- Jet is structured ! Two+ zones can determine the SED even at high energies, *around and above the peak*. They can have or not radiative feedback between them.

back-up slides

PKS 2005-489, zoom in Opt-X-ray range

How HBL vary on long timescales ?

Example from ASM: duty cycle and characteristic levels

Maximum Likelihood Blocks

Resconi, LC et al. 2009

Duty cycle

Chandra+RXTE, simultaneous HESS

