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INTEGRAL CALCULUS
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THE second mean-value theorem in the two forms, one of which is
due to Bonnet, and the other to Du Bois-Reymond and Weierstrass, is
a very valuable instrument in analysis as affording a means of estimating
the values of definite integrals. The theorem relates to the integral
of the product of two functions f(x), <f>{x) defined for an interval {a, b);
the first of these functions being limited and monotone in the interval.
A considerable number of proofs of the theorem have been given,*
of varying degrees of generality as regards the nature of the function

In the first part of the present communication a simple proof of the
theorem is given, in which the only restriction imposed upon the function
<p{x) is that it possesses a Lebesgue integral in the interval (a, b).

The only other case which remains for consideration is that in which
<l> (x) possesses only a non-absolutely convergent improper integral in (a, b).
The definition usually employed, of late years, for such integrals is that
of Harnack, which is applicable to both absolutely and non-absolutely
convergent integrals. It has been regarded as doubtful by various writers
whether the existence of such a non-absolutely convergent integral in the
interval (a, b) necessarily entails the existence of the integral of the same
function in a sub-interval (a', b') contained in (a,b). For example, it was
denied by Stolz that this is the case.t All doubt upon the matter was how-

[b

ever removed by E. H. Moore, + who proved that, if I <p{x)dx exists in

accordance with Harnack's definition, then also \ <p(x)dx also exists, where

a < a' < b' < b.

* For references, see my work Tlieory of Functions of a Real Variable, pp. 359, 360.
t See Grundzilge, Vol. i n . p. 277.
X Trans. Ainer. Math. Soc., Vol. n . , p. 296 and p. 459.



1 9 0 8 . ] THE SECOND MEAN-VALUE THEOREM OF THE INTEGRAL CALCULUS. 1 5

He also proved that the second integral is uniformly convergent for all
values of a', b'; and that the relation

Cb rb

<p(x)dx-\-\ (f>(x)dx = <f>{x)dx
Jr. Ja

is valid. I have, in a former paper, introduced an extension of Harnack's
definition, in which the improper integral is defined as the limit of a
sequence of Lebesgue integrals, instead of that of a sequence of Riemann
integrals. I have elsewhere* pointed out that E. H. Moore's results are
applicable when this extension is taken instead of Harnack's original
definition ; and I have shewn that, in accordance with this extended

definition, \ <p{x) is a continuous function of x.
Ja

In the second part of the present paper it is shewn that the existence
(>>

of 1 <f>{x)dx as a non-absolutely convergent integral, in accordance with
Ja

either Harnack's definition or its extension, entails as a necessary con-
f6

sequence the existence of 1 f(x)<f>{x)dx, where /Or) is limited and
Ja

monotone in (a, b) ; or more generally when f(x) is of limited total
fluctuation (a variation bornee). This general result I believe to be
new.t Lastly, it is shewn that the second mean-value theorem holds
for the case of such a function <f>(x) as possesses only a non-absolutely
convergent improper integral in the interval (a, b).

1. Let (j>(x) be a function which,.whether it be limited or unlimited
in the interval (a, b), possesses a Lebesgue integral in that interval. Let
f(x) be limited and monotone in (a, b), and let it never increase as x
increases from a to b ; and suppose it to have no negative values in the
interval.

Let €r be an arbitrarily chosen positive number < / ( a+0 ) —f(b — 0),
and let the function fr {x) be defined for the interval (a, b) as follows :—

An interval (a, xx) can be determined such that /(a+0)—f(x) < er,
for a ^ x < xv and such that /(a+0)—/(x^ ^ er. In case xx is a point
of continuity of f(x), we shall have /(a+0)—/(ar^ = er ; but, if xx is
point of discontinuity, we may have /(a+0)—f(xx) > er. Next determine
an interval (xlt x2) such that f(x1 + 0) —f{x) < e,., for xx ^ x < x2, and
that /(&X+0)—f(x2) ^ e,.. Proceed in this manner to determine intervals

* See " Functions of a Real Variable," p. 558.
f The special case in which the set of points of infinite discontinuity is finite is given by

Dini ; see Grundlagen, p. 424. He employs the older definition of Cauchy.
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(x2, £3), (xa, £4), ... ; then for some finite value of n not exceeding

^ ^ , the point xn must coincide with b.

Let fr(x) = f(a+0) for a < x < xx ; let /r(a;) = 7 ( ^ + 0 ) for
Zi < x < rc2; and, in general /r(a;) = f{xs+0) for xs < x < xs+\. The
function fr(x) has only a finite number of values in the interval (a, b);
it is monotone, never increases as x increases, and is never negative.
Moreover, we have 0 ^.fr{x)—f(x) < e,. for every value of x except
for the values a, xlt x2, ..., xn-i, b.

We have now
1Mx)i

Denote <f>{x)dx by JF'(a;), then

f
J

f
Jz.i-1

<p(x)dx.

fr(x)</>(x)dx

;n-i-f 0) F{b).

Since / (a .+0) - / (z l +0) , /(*1+0)-/(a!a+0)> .... /(as.-1+O)

are all positive, the expression on the right hand will be unaltered if
Fix^, F(x^), ..., F(b) be all replaced by some number N which lies
between the greatest and the least of these n numbers. The expression
then becomes Nf{a-\-0). Moreover, it is known that F(x) is continuous
in the interval (a, b), and it therefore follows that some value £r of x exists
such that N = F(gr). It has, therefore, been proved that

f fr(x) <p(x)dx = / ( a + 0 ) [ r<t>(x)dx,
Ju Ja

where $r is some point in the interval (a, b).

Also fr(x) <j>(x)dx— f{x) <f>{x)dx < er I <p(x) I dx ;
IJa J« Ja

the integral on the right-hand side being existent, because every Lebesgue
integral is absolutely convergent. It follows that

i f(x)<}>(x)dx—f{a+0) 1 <p{x)dx
I Ja Ja

where rjr = er\ \ <f>(x) \ dx.
Ja

tjr,
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Let r = 1, 2, 3, ..., where ev e2, e3, ..., er, ... is a sequence which
converges to zero; also rjv ^2, tj9, ...,.tjr, ... is a sequence which con-
verges to zero. The points £t, f2, •••» £•> ••• form a sequence which has
at least one limiting point, and it is clear that the sequence 'e,} may be
so chosen by neglecting, if necessary, a part, that the sequence {(r\ has
a single limiting point f.

We have then

fix) <p ix) dx —f (a+0) <t> ix) dx
Ja ' J{r

If £ be an arbitrarily chosen positive number, as small as we please,
a value rx of r may be so chosen that ijr < ££, and such that

If*
fia+0) \\ <j>ix)dx < K.

provided r ^ rv Then we have

\ f i x ) <pix)dx—fia-\-0) \ <f>ix)dx < ^ ;
Ja Ja

and therefore, since £ is arbitrarily small, we must have

\ fix)d>ix)dx=fia-{-0)\ <f>ix)dx. (1)
Ji» Ja

In a precisely similar manner, when fix) never diminishes as £ in-
creases from a to 6, and is never negative, it may be shewn that

I fix) <pix)dx =fib-O)\ <f>ix)dx, (2)

where y is some point in the interval (a, b).
In case

fia) = /(a+0), fib) = fib-O),

these results are equivalent to Bonnet's form of the second mean-value
theorem.

Next let fix) be only restricted to be limited and monotone in (a, b),
but unrestricted as regards sign. In case fix) diminishes as x increases,
we may apply the theorem (1) to the function f(x)—f{b—O), and we
thus have

\ fix) cj>ix)dx = fia+0) I <p(x)dx+fib—0) f <j>{x)dx.
Ja Ja J |

SBR. 2. VOL. 7. NO. 1006.
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In case fix) increases as x increases, we may apply the theorem (2) to
the function fix)—/(a+0), and we thus have

[fix) <f>(x)dx = /(o+0) [ t<p)dx+f{b-0) \[<pix)dx.
Ja Ja Ji)

The following theorem has now been established:—

If f(x) be limited and monotone in the interval (a, b), and if <j>{x) be
any function, limited or unlimited, which has a Lebesgue integral in the
interval (a, b), then

[f(x) <f>ix)dx = fia+0) f <j>ix)dx+fib-O) [
Ja' * Ja J.V

where X is some point in the interval (a, 6).

In order to obtain the more general form of this theorem, let A and B
be numbers such that 4 > / ( a + 0 ) , B^fib—0, when /(a?) diminishes
as x increases from a to b ; or else, let A < / ( a + 0 ) , B >/(&—0), when
fix) increases as x increases from a to b.

Consider an interval (a—X, b-\-X) which contains (a, b) in its interior,
and let fix) = A, for a—X < x < a, and fix) = B, for b < x <; b+\,
the function/(z) being already denned for a < x < b. Let </>(cc) = 0, for
a—X ^ x < a and for b < x ^ 6+X, where 0(«) has already been
defined for a ^ a; ^ b. Now apply the theorem established above to the
interval (a-X, 6+X), for which / ( a - X + 0 ) = A, / ( 6+X-0 ) = 5 . We
then have ,b , v ,6

fix)<f>ix)dx — A </>ix)dx-\-B <pix)dx,
Ja Jo JA'

where X is some point in the interval (a—X, 6+X), and which clearly
lies in (a, b).

This general theorem may now be stated as follows:—

If fix) be a function which is limited and monotone in the interval
(a, b), and if <f>ix) be any function, limited or unlimited, which has a
Lebesgue integral in ia, b); then, if A, B be numbers such that

or
according as fix) diminishes or increases from a to b,

\ fix) <pix)dx = A \ 0(«) dx+B \ <j>ix) dx,
Jo Ja J *

where X is some number in the interval (a, b). The number X will
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depend on the values of A and B. In particular we may liave A = f{a),
B =f(b), or also A = / ( a + 0 ) , B = / ( & - 0 ) .

In case the function f(x) is never negative in the interval (a, b), we
may take JB = 0 if f(x) is a diminishing function; and we may take
A — 0 if f(x) is an increasing function. We obtain thus the following
generalization of Bonnet's theorem:—

If fix) be a limited monotone function which is never negative in the
interval (a, b), and if <j>{x) be any limited, or unlimited, function which
has a Lebesgue integral in (a, b), then

ri, rx

1 f(x) <f>{x) dx = A <j>(x) dx,
Jo Ja

where A is any number such that A ^f{a-\-0), and X is a number in the
interval (a, b), dependent on A, provided f(x) diminishes as x increases
from a to b. Also, when f(x) increases as x increases from a to b, we have

f''/(«) 0(«) dx = B [° </> (x) dx,

where B is any number ^ / (6—0) , and X is some number in the interval
[a, b) dependent on the value of B. In particular, ivemay take A =f(a),
B = /(&), in the two cases.

2. The mean-value theorem has been proved above for the case in
which the function <f> (x) is restricted only by the assumption that it
possesses a Lebesgue integral in the interval (a, 6). In particular, <p(x)
may have a Riemann integral, or may have an absolutely convergent
improper integral in accordance with the definition of Harnack. There
remains for consideration only the case in which <f>{x) has a non-
absolutely convergent improper integral in the interval (a, 6). Harnack's
extension of Riemann's definition is applicable to define such improper
integrals, but a wider definition is obtained by extending Harnack's
definition, so that the improper integral is taken to be the limit of a
sequence of Lebesgue integrals instead of that of a sequence of Riemann
integrals.*

This extension of Harnack's definition, which applies both to absolutely

* I have given the extension of Harnack's definition in The Theory of Functions of a Real
Variable, p. 557.

V 2
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and to non-absolutely convergent improper integrals may be stated as
follows : —

Let <f>(x) be a function which has a non-dense closed set G of points
of infinite discontinuity; the content of the set G being zero. Also let
<f>(x) be such that, in any interval whatever contained in {a, b) which
contains, in its interior and at its extremities, no point of the set G, it has
an integral in accordance with the definition of Lebesgue, or in particular
in accordance with that of Riemann. Let the points of G be enclosed in
the interiors of intervals of a finite set Sv 82, ..., Sn, so that each interval
of the set contains at least one point of G. Let the remaining part of
(a, b) consist of the intervals i/l} »;2, ..., >M which are free in their interiors
and at their ends from points of G. Let Sa denote the integral of <f>{x)
taken through the set of intervals •[»/}. Let a sequence of such sets of

intervals \S\ be taken such that 2S converges to zero as n is indefinitely

increased ; n having the values in a sequence of numbers which increase
indefinitely. If the numbers Si converge, as n is indefinitely increased,
to a definite number »S, independent of the particular sequence of sets of
intervals {$} chosen, subject only to the condition

lim 2 S = 0,
» = co 1

then the number S is defined to be the improper integral 1 <f> (x) dx.

Whenever an improper integral, so defined, is absolutely convergent,
the definition is in accordance with that of Lebesgue.* We need there-
fore consider only the case in which the integral is non-absolutely con-

r>>
vergent. It is known + that, if I <f>(x)dx exist as a non-absolutely con-

vergent integral, I <j>(x) also exists, and is a continuous function of x.

Moreover, it is known! that the convergence of 1 <f>(x)dx is uniform for
Ja

all values of x in the interval (a, b).

It will now be shewn that, if <j> (x) dx exists in accordance with the
Ja

above definition, or in particular in accordance with that of Harnack,

* See Theory of Functions of a Real Variable, p. 397.
f Ibid., p. 558.f Ibid., p. 558.
+ Ibid., p. 383.
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then 1 f(x)<j>(x)dx also exists; where/(x) denotes as before a function
J CL

which is monotone and limited in (a, b).
Let <f>&{x) denote a function which is equal to zero at all interior points

of the intervals of a finite set \8\ which enclose the points of G, and
which is equal to <f>(x) at all points of (a, b) not in the interior of the
intervals d. Let <p&>(x) denote the corresponding function for another
such set of intervals \S'\. The condition of uniform convergence of
f*
I <j>{x)dx is expressed by the statement that, corresponding to any
Ja

arbitrarily chosen positive number e, a number £ can be determined such
that for any two sets of intervals {S\, \S'\ whatever, of the kind specified
in the definition, and such that 2(5 < £, US' < £, the condition

<f>s (x) dx — </>&• (x) dx
Ja

< €

is satisfied, for all values of x in (a, b).
Let F (x) denote the limited function defined by

we may then apply the second mean-value theorem to the function F(x).
Thus fh f ,

f(x)F(x)dx=f(a)\ F(x)dx+f(b) F(x)dx,
Ja Ja Jf

where $ is some point in the interval (a, b).
We have therefore

Denoting the expression on the right-hand side by e\ we see that, corre-
sponding to the arbitrarily chosen positive number e', the number £ can
be so chosen that for any two sets of intervals \S\, {8'\t such that
25 < f, 2<5' < £, the condition

rb rh

f(x) <ps (x) dx — f(x) 05- UO dx
Ja Ja

is satisfied. This is, however, the necessary and sufficient condition for

the existence of I f(x) <p(x)dx, in accordance with the above definition.
Ja

The following theorem has now been established :—
If 0(x) have an improper integral in (a, b), either absolutely or non-

absolutely convergent, in accordance with the above definition, or in
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particular, in accordance with the definition of Harnack, and if f(x) be
any limited and monotone function defined for the same interval, then
f(x)<f>(x) also has an improper integral in (a, b) in accordance with the
same definition.

Since any function of limited total fluctuation is expressible as the
difference of two monotone functions fx{x), f2(x), and since the two func-
tions f^xjQix), f^{x)<J>(x) have the same set G of points of infinite
discontinuity as <j>(x) has, we obtain the following general theorem:—

If <f>(x) have an improper integral in (a, b), either absolutely or non-
absolutely convergent, and if f(x) be any function with limited total

fluctuation (a variation bornee) in {a, b), then \ f{x)<f>{x)dx exists as an
improper integral.

This theorem is, of course, well known for the case in which

<j>(x)dx is absolutely convergent, but is, in its generality, so far as I
Jo
know, new for the case in which the integral of <j>(x) is non-absolutely
convergent.

It will be found useful in deciding as to the existence of non-absolutely
convergent integrals of special functions. For example, if the Fourier

coefficient ~ - I <f>{x)dx, corresponding to <j>{x), exists as a non-abso-

lutely convergent improper integral, then all the other coefficients
I f * i f 1 7 .

— \ <f>{x)co8nxdx, —1 <p(x) sin nx dx necessarily exist.

8. It will now be shewn that the second mean-value theorem holds
for any function 0(z) which has a non-absolutely convergent improper
integral in (a, b).

Applying the mean-value theorem to the limited function <f>s(x), we
have p ,v, j./,

f(x) <t>s(x) dx = A\ ' <ps(x)dx+B <t>&(x) dx,
Ja Ja JXt

where A and B are subject to the same conditions as in § 1. Now

I <ps(x)dx— I (f>(x)dx, \ <j>i{x)dx—\ <f>(x)dx,
Ja Ja JXt JXt

are both numerically less than an arbitrarily chosen number e, provided
2<? is sufficiently small. This follows from the uniform convergence of

f
Ja

<f>(x)dx.
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n rb
Also f(x)<ps{x)dx differs from I f(x)<f>(x)dx by less than e, if 2<5

Jo Ja
is sufficiently small. Hence we have

rb rXs rb

\ f(x)<f>(x)dx = A \ <l>(x)dx+B\ <f>(x)dx+*i,
Ja Ja JX,

where | ij \ is arbitrarily small. By similar reasoning to that employed
rx{ eh

at the end of § 1, it follows from the continuity of \ <f>(x)dx, \ <p(x)dx
J« J ^

with respect to x, that a number £ in (a, b) exists, such that

f(x) <j>{x)dx = A \ <l>{x)dx-\-B\ <f>{x)dx.
Ja Ju Jf

Bonnet's form of the theorem may be deduced as in § 1. The complete
generality of the second mean-value theorem has accordingly been
established.


