Journal article Open Access

Temperature-dependent cycling performance and ageing mechanisms of C6/ LiNi1/3Mn1/3Co1/3O2 batteries

Dongjiang Li; Hu Li; Dmitri Danilov; Lu Gao; Jiang Zhou; Rüdiger-A. Eichel; Yong Yang; Peter H. L. Notten


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-06-08</subfield>
  </datafield>
  <controlfield tag="005">20200120154134.0</controlfield>
  <controlfield tag="001">1473590</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:1473590</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Ageing mechanisms of NMC-based Li-ion (C6/LiNi1/3Mn1/3Co1/3O2) batteries have been investigated under various cycling conditions. The electromotive force (EMF) curves are regularly determined by mathematical extrapolation of voltage discharge curves. The irreversible capacity losses determined from the EMF curves have been investigated as a function of time and cycle number. Parasitic side reactions, occurring at the cathode and anode, are considered to be responsible for charge-discharge efficiency (CDE) and discharge-charge efficiency (DCE), respectively. The recently developed non-destructive voltage analysis method is also applied to the present battery chemistry. The decline of the second plateau of the 〖dV〗_EMF/dQ curves upon cycling is considered to be an indicator of graphite degradation whereas the development of the third peak in these derivative curves is considered to be an indicator for electrode voltage slippage. XPS measurements confirm the deposition of transition-metal elements at the graphite electrode, indicating dissolution of these metals from the cathode. Furthermore, XPS analyses confirm the existence of a Cathode-Electrolyte-Interface (CEI) layer. The outer CEI layer is composed of various compounds, such as carbonate-related Li salts, LiF and NiF2, etc., while the inner CEI layer is dominantly composed of fluoride-related compounds, such as NiF2. Finally, a cathode degradation model including transition-metal dissolution and structure transformation is proposed.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Forschungszentrum Jülich, Fundamental Electrochemistry (IEK-9), D-52425 Jülich, Germany</subfield>
    <subfield code="a">Hu Li</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Forschungszentrum Jülich, Fundamental Electrochemistry (IEK-9), D-52425 Jülich, Germany</subfield>
    <subfield code="a">Dmitri Danilov</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Forschungszentrum Jülich, Fundamental Electrochemistry (IEK-9), D-52425 Jülich, Germany</subfield>
    <subfield code="a">Lu Gao</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Forschungszentrum Jülich, Fundamental Electrochemistry (IEK-9), D-52425 Jülich, Germany</subfield>
    <subfield code="a">Jiang Zhou</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Forschungszentrum Jülich, Fundamental Electrochemistry (IEK-9), D-52425 Jülich, Germany</subfield>
    <subfield code="a">Rüdiger-A. Eichel</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Forschungszentrum Jülich, Fundamental Electrochemistry (IEK-9), D-52425 Jülich, Germany</subfield>
    <subfield code="a">Yong Yang</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Forschungszentrum Jülich, Fundamental Electrochemistry (IEK-9), D-52425 Jülich, Germany</subfield>
    <subfield code="a">Peter H. L. Notten</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">3739043</subfield>
    <subfield code="z">md5:0dfb26fbec29501a7e41c217d402e1ce</subfield>
    <subfield code="u">https://zenodo.org/record/1473590/files/Temperature dependent cycling performance and ageing mechanisms.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Forschungszentrum Jülich, Fundamental Electrochemistry (IEK-9), D-52425 Jülich, Germany</subfield>
    <subfield code="a">Dongjiang Li</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Layered-oxid Cathode materials; Solid-Electrolyte-Interface; Cathode-Electrolyte-Interface; Capacity loss; Electromotive force; Derivative voltage analysis</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1016/j.jpowsour.2018.06.035</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Temperature-dependent cycling performance and ageing mechanisms of C6/ LiNi1/3Mn1/3Co1/3O2 batteries</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">769900</subfield>
    <subfield code="a">DEsign and MOdelling for improved BAttery Safety and Efficiency</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
</record>
84
118
views
downloads
Views 84
Downloads 118
Data volume 437.0 MB
Unique views 75
Unique downloads 112

Share

Cite as