Journal article Open Access

Modeling of All-Solid-State thin-film Li-ion Batteries: accuracy improvement

Kazemi, N.; Danilov, D.; Haverkate, L.; Dudney, N.J.; Unnikrishnan, S.; Notten, H.L.


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/2642487</identifier>
  <creators>
    <creator>
      <creatorName>Kazemi, N.</creatorName>
      <givenName>N.</givenName>
      <familyName>Kazemi</familyName>
      <affiliation>Forschungszentrum Jülich, Fundamental Electrochemistry (IEK-9), D-52425 Jülich, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Danilov, D.</creatorName>
      <givenName>D.</givenName>
      <familyName>Danilov</familyName>
      <affiliation>Forschungszentrum Jülich, Fundamental Electrochemistry (IEK-9), D-52425 Jülich, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Haverkate, L.</creatorName>
      <givenName>L.</givenName>
      <familyName>Haverkate</familyName>
      <affiliation>Forschungszentrum Jülich, Fundamental Electrochemistry (IEK-9), D-52425 Jülich, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Dudney, N.J.</creatorName>
      <givenName>N.J.</givenName>
      <familyName>Dudney</familyName>
      <affiliation>Forschungszentrum Jülich, Fundamental Electrochemistry (IEK-9), D-52425 Jülich, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Unnikrishnan, S.</creatorName>
      <givenName>S.</givenName>
      <familyName>Unnikrishnan</familyName>
      <affiliation>Forschungszentrum Jülich, Fundamental Electrochemistry (IEK-9), D-52425 Jülich, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Notten, H.L.</creatorName>
      <givenName>H.L.</givenName>
      <familyName>Notten</familyName>
      <affiliation>Forschungszentrum Jülich, Fundamental Electrochemistry (IEK-9), D-52425 Jülich, Germany</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Modeling of All-Solid-State thin-film Li-ion Batteries:  accuracy improvement</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <subjects>
    <subject>All-Solid-State Battery; Thin Film; Modeling</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2019-02-18</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/2642487</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.ssi.2019.02.003</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Thin-film Solid-State Batteries (TFSSB) is one of most promising and quickly developing fields in modern electrochemical energy storage. Modeling these devices is&lt;br&gt;
interesting from theoretical and practical point of view. This paper represents a simulation approach for TFSSB which overcome a major drawback of available&lt;br&gt;
mathematical models, i.e. decline in accuracy of the models at high current rates. A one-dimensional electrochemical model, including charge transfer kinetics on the&lt;br&gt;
electrolyte-electrode interface, diffusion and migration in electrolyte as well as diffusion in intercalation electrode has been developed and the simulation results are&lt;br&gt;
compared to experimental voltage-capacity measurements. A new definition of diffusion coefficient as a function of concentration, based on the experimental&lt;br&gt;
measurements, is used to improve the performance of the model. The simulation results fit the available experimental data at low and high discharge currents up to 5&lt;br&gt;
mA cm&amp;minus;2. The models show that the cathode diffusion constant is a prime factor limiting the rate capability for TFSSB in particular for ultrafast charging applications.&lt;/p&gt;</description>
  </descriptions>
</resource>
45
169
views
downloads
Views 45
Downloads 169
Data volume 387.0 MB
Unique views 44
Unique downloads 165

Share

Cite as