Presentation Open Access

Putting Research-based Machine Learning Solutions for Subject Indexing into Practice

Kasprzik, Anna


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Subject Indexing</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Machine Learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Multi-Label Classification</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Software Engineering</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Libraries</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Practical Application</subfield>
  </datafield>
  <controlfield tag="005">20200124192135.0</controlfield>
  <controlfield tag="001">3617894</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">20-21 January 2020</subfield>
    <subfield code="a">QURATOR Conference 2020</subfield>
    <subfield code="c">Berlin, Germany</subfield>
    <subfield code="n">Scientific workshop</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1596678</subfield>
    <subfield code="z">md5:c7289a8b2a1e7605f27f9f0485965e08</subfield>
    <subfield code="u">https://zenodo.org/record/3617894/files/QURATORkas.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://qurator.ai/conference-qurator-2020/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-01-21</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3617894</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">ZBW Leibniz Information Centre of Economics</subfield>
    <subfield code="0">(orcid)0000-0002-1019-3606</subfield>
    <subfield code="a">Kasprzik, Anna</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Putting Research-based Machine Learning Solutions for Subject Indexing into Practice</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Subject indexing, i.e., the enrichment of metadata records for textual resources with descriptors from a controlled vocabulary, is one of the core activities of libraries. However, due to the proliferation of digital documents it is no longer possible to annotate every single document intellectually, which is why we need to explore the potentials of automation. At ZBW the efforts to partially or completely automate the subject indexing process have started around the year 2000 but the prototypical machine learning solutions that we developed in an applied research project over the past few years have yet to be integrated into productive operations at the library. In this short paper, we outline the challenges that we perceive and the steps that we are taking towards completing the transfer of our solutions into practice &amp;ndash; in particular, we are in the process of specifying what a suitable architecture for that task should look like and establishing a roadmap for the next two years indicating the milestones that have to be reached in order to build and test that architecture and to subsequently ensure its availability and continuous development during running operations.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3617893</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3617894</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">presentation</subfield>
  </datafield>
</record>
402
71
views
downloads
All versions This version
Views 402402
Downloads 7171
Data volume 113.4 MB113.4 MB
Unique views 381381
Unique downloads 6666

Share

Cite as