Preprint Open Access

Reduced Order Multirate Schemes for Coupled Differential-Algebraic Systems

Bannenberg, M.W.F.M.; Ciccazzo, A.; Günther, M.


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.4542811</identifier>
  <creators>
    <creator>
      <creatorName>Bannenberg, M.W.F.M.</creatorName>
      <givenName>M.W.F.M.</givenName>
      <familyName>Bannenberg</familyName>
      <affiliation>University of Wuppertal</affiliation>
    </creator>
    <creator>
      <creatorName>Ciccazzo, A.</creatorName>
      <givenName>A.</givenName>
      <familyName>Ciccazzo</familyName>
      <affiliation>STMicroelectronics</affiliation>
    </creator>
    <creator>
      <creatorName>Günther, M.</creatorName>
      <givenName>M.</givenName>
      <familyName>Günther</familyName>
      <affiliation>University of Wuppertal</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Reduced Order Multirate Schemes for Coupled Differential-Algebraic Systems</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2021</publicationYear>
  <subjects>
    <subject>Mulitrate, Model Order Reduction, Dierential-Algebraic Equations, Snapshot Sampling.</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2021-01-22</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Preprint"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4542811</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4542810</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/romsoc</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;In the context of time-domain simulation of integrated circuits, one often encounters large systems of coupled differential-algebraic equations. Simulation costs of these systems can become prohibitively large as the number of components keeps increasing. In an effort to reduce these simulation costs a twofold approach is presented in this paper. We combine maximum entropy snapshot sampling method and a nonlinear model order reduction technique, with multirate time integration. The obtained model order reduction basis is applied using the Gau&amp;szlig;-Newton method with approximated tensors reduction. This reduction framework is then integrated using a coupled-slowest-first multirate integration scheme. The convergence of this combined method verified numerically. Lastly it is shown that the new method results in a reduction of the computational effort without significant loss of accuracy.&lt;/p&gt;</description>
    <description descriptionType="Other">Preprint BUW-IMACM 21/04, Institute of Mathematical Modelling, Analysis and Computational Mathematics (IMACM), Bergische Universität Wuppertal, January 2021</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/765374/">765374</awardNumber>
      <awardTitle>Reduced Order Modelling, Simulation and Optimization of Coupled systems</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
55
38
views
downloads
All versions This version
Views 5555
Downloads 3838
Data volume 23.9 MB23.9 MB
Unique views 4848
Unique downloads 3333

Share

Cite as