Zenodo.org will be unavailable for 2 hours on September 29th from 06:00-08:00 UTC. See announcement.

Conference paper Open Access

Using surrogate models to speed up the creation of aerodynamic databases in CEASIOMpy

Aidan Jungo (CFSE); Riolo, Vivien; Vos, Jan


JSON-LD (schema.org) Export

{
  "inLanguage": {
    "alternateName": "eng", 
    "@type": "Language", 
    "name": "English"
  }, 
  "description": "<p>Engineers always look for new methods to speed-up the aircraft design process. Aerody- namic analysis are often the most costly in terms of computational time. Machine learning techniques as surrogate modeling are more and more used in this domain, as well as for optimisation workflows.CEASIOMpy is an open source conceptual aircraft design software written in Python and using the CPACS standard, an XML data definition for aircraft. CEASIOMpy includes modules which cover several of the main aircraft design disciplines. These modules can be connected and executed in an order defined by the user depending on his needs. CEA- SIOMpy includes aircraft geometry CAD, Weight &amp; Balance estimation, aerodynamics (Vor- tex Lattice Methods and SU2), and stability analysis modules. The aerodynamic modules of CEASIOMpy are being used and further developed in the framework of the H2020 project AGILE4.0 in collaboration with other European partners in order to run Multidisciplinary Design Analysis and Optimization (MDAO) on aircraft design cases.Surrogate modeling was implemented in CEASIOMpy using the SMT libraries. First, a few high fidelity Euler calculation are performed for different flight state parameters (angle of attack, Mach number and altitudes), then these results are used to train a surrogate model that can be used to generate a more complete aerodynamics database or replace costly aerodynamic calculations in an optimisation workflow.In this paper we will describe the different parameters that are used to create and employ surrogate models efficiently in CEASIOMpy. Accuracy testing will be performed on different test cases. We will also evaluate the possibility to add geometry parameters (such as wing span, fuselage length, etc.) in a surrogate model to make it suitable for a real optimisation workflow.</p>", 
  "license": "https://creativecommons.org/licenses/by/4.0/legalcode", 
  "creator": [
    {
      "affiliation": "CFS Engineering", 
      "@id": "https://orcid.org/0000-0001-7501-8385", 
      "@type": "Person", 
      "name": "Aidan Jungo (CFSE)"
    }, 
    {
      "affiliation": "CFS Engineering", 
      "@type": "Person", 
      "name": "Riolo, Vivien"
    }, 
    {
      "affiliation": "CFS Engineering", 
      "@type": "Person", 
      "name": "Vos, Jan"
    }
  ], 
  "headline": "Using surrogate models to speed up the creation of aerodynamic databases in CEASIOMpy", 
  "image": "https://zenodo.org/static/img/logos/zenodo-gradient-round.svg", 
  "datePublished": "2020-10-21", 
  "url": "https://zenodo.org/record/4632819", 
  "@type": "ScholarlyArticle", 
  "keywords": [
    "aircraft disign", 
    "aerodynamics", 
    "surrogate model"
  ], 
  "@context": "https://schema.org/", 
  "identifier": "https://doi.org/10.5281/zenodo.4632819", 
  "@id": "https://doi.org/10.5281/zenodo.4632819", 
  "workFeatured": {
    "url": "https://read.meil.pw.edu.pl/", 
    "alternateName": "READ2020", 
    "location": "Online", 
    "@type": "Event", 
    "name": "Research and Education in Aircraft Design 2020"
  }, 
  "name": "Using surrogate models to speed up the creation of aerodynamic databases in CEASIOMpy"
}
177
146
views
downloads
All versions This version
Views 177177
Downloads 146146
Data volume 212.9 MB212.9 MB
Unique views 155155
Unique downloads 116116

Share

Cite as