
TECHNISCHE UNIVERSITÄT DRESDEN

DEPARTMENT OF COMPUTER SCIENCE

INSTITUTE OF COMPUTER ENGINEERING

CHAIR OF COMPUTER ARCHITECTURE

PROF. DR. WOLFGANG E. NAGEL

Master’s-Thesis

for the acquisition of the academic degree
Master of Science

Investigating performance portability of a highly
scalable particle-in-cell simulation code on various

multi-core architectures

Benjamin Worpitz
(Born October 2nd, 1990 in Chemnitz)

Professor: Prof. Dr. Wolfgang E. Nagel
Tutor: Dr. Michael Bussmann, Dr. Guido Juckeland,

Dr. Andreas Knüpfer, Dr. Bernd Trenkler

Dresden, October 7, 2015

Aufgabenstellung
Zielstellung dieser Arbeit ist die Definition einer abstrakten Schnittstelle zur task- und datenparallelen

Abarbeitung von Prozessen auf Vielkernarchitekturen in C++. Hierbei soll der Einsatz Policy-basierter

Abstraktionen es erlauben, die Abarbeitung der Prozesse auf einzelnen Hardwarearchitekturen optimal

abzubilden, sodass die Performanceoptimierung eines Simulationscodes keine Änderung des Quellcodes

der Simulation erfordert, sondern eine Optimierung der entsprechenden Policy-Implementation. Konkret

soll dieser Mechanismus an dem Plasmacode PIConGPU implementiert werden, indem die entsprechen-

den aktuell in CUDA geschriebenen Optimierungen transparent auf die abstrakte Schnittstelle abgebildet

und mit einer Implementation auf einer Mehrkern-/Vielkern x86 Hardware strukturell und leistungsmä-

ßig verglichen werden. Dabei sollen optimierte Abbildungen mittels OpenMP / Boost.Fiber oder anderer

Methoden implementiert und per Leistungsmessungen verglichen und analysiert werden.

Task
The objective is to define an abstract interface for task- and data-parallel execution of processes on multi-

core architectures in C++. In doing so, the use of policy-based abstractions should allow to optimally

reflect the execution of processes on individual hardware architectures, with the result that the perfor-

mance optimization of a simulation code does not require a change to the source code of the simulation,

but only an optimization of the respective policy implementation. More specifically, this is to be imple-

mented in the plasma code PIConGPU by transparently mapping the respective optimizations, currently

written in CUDA, to the abstract interface and comparing them with an implementation on a multi-core /

many-core x86 hardware structurally and in terms of performance. Optimized mappings using OpenMP

/ Boost.Fiber or other methods are to be implemented and compared and analyzed by performance mea-

surements.

Statement of authorship

I hereby certify that the Master’s-Thesis I submitted today to the examination board of the faculty of

computer science with the title:

Investigating performance portability of a highly scalable particle-in-cell simulation code on various

multi-core architectures

has been composed solely by myself and that I did not use any sources and aids other than those stated,

with quotations duly marked as such.

Dresden, October 7, 2015

Benjamin Worpitz

Kurzfassung
Die alpaka Programmbibliothek definiert und implementiert ein abstraktes hierarchisches Parallelitäts-

Modell. Dieses Modell nutzt Parallelität und Speicherhierarchien auf allen verfügbaren Ebenen eines

Knotens mit aktueller Hardware aus. Dadurch ist es möglich Portabilität leistungsfähiger Codes über

verschiedenste Arten von Beschleunigern hinweg zu erreichen, indem bestimmte nicht unterstützte Stu-

fen ausgelassen, und nur die auf einer spezifischen Hardware verfügbaren Ebenen genutzt werden. Alle

Typen von Hardware (Mehrkern- und Vielkern-CPUs, GPUs sowie andere Beschleuniger) werden gleich

behandelt und können in einheitlicher Form programmiert werden. Die bereitgestellte C++ Template-

Schnittstelle ermöglicht die einfache Erweiterung der Bibliothek um andere Beschleuniger oder die Spe-

zialisierung der Interna zum Zwecke der Optimierung.

Abstract
The alpaka library defines and implements an abstract hierarchical redundant parallelism model. This

model exploits parallelism and memory hierarchies on a node at all levels available in current hardware.

This allows to achieve portability of performant codes across various types of accelerators by ignoring

specific unsupported levels and utilizing only the ones supported on a specific accelerator. All hardware

types (multi- and many-core CPUs, GPUs and other accelerators) are treated and can be programmed in

the same way. The C++ template interface provided allows for straightforward extension of the library

to support other accelerators and specialization of its internals for optimization.

1

Contents

1 Introduction 3
1.1 Motivation . 3

1.2 Problems in Porting Performant HPC Codes . 6

1.3 Related Works . 7

1.4 Distinction of the alpaka Library . 11

1.5 Comparison . 13

1.6 Structure of this Thesis . 13

2 Abstraction 15
2.1 Task Parallelism . 15

2.2 Data Parallelism . 16

2.2.1 Thread . 17

2.2.2 Block . 18

2.2.3 Warp . 20

2.2.4 Element . 21

2.2.5 Summary . 22

3 Implementation 25
3.1 Mapping Redundant Hierarchical Parallelism onto Specific Hardware Architectures . . . 25

3.1.1 CUDA GPUs . 25

3.1.2 x86 CPUs . 26

3.1.2.1 Thread . 26

3.1.2.2 Warp . 26

3.1.2.3 Block . 26

3.1.2.4 Threading Mechanisms . 28

3.1.2.5 Intel Xeon Phi . 29

3.2 Structure and Implementation of the alpaka Interface 31

3.2.1 Structure . 31

3.2.2 User Interface . 32

3.2.2.1 Thread Function . 32

3.2.2.2 Function Execution Domain Specifications 34

3.2.2.3 Accelerator Executable Functions . 34

3.2.2.4 Kernel Definition . 34

3.2.2.5 Index and Work Division . 35

3.2.2.6 Interface Properties . 35

3.2.2.7 Memory Management . 38

2

3.2.2.8 Kernel Execution . 38

3.2.3 Implementation in C++ . 39

3.2.3.1 Concept Implementations . 41

3.2.3.2 Template Specialization Selection on Arbitrary Conditions 44

4 Evaluation 47
4.1 Methodology . 47

4.2 Generalized Vector Addition . 50

4.2.1 CPU Sequential Execution . 51

4.2.2 CPU Parallel Execution . 54

4.2.3 CUDA Parallel Execution . 54

4.3 Generalized Matrix-Matrix-Multiplication . 55

4.3.1 GEMM on CUDA capable GPUs . 56

4.3.2 GEMM on x86 CPUs . 59

4.4 HASEonALPAKA . 64

5 Summary and Outlook 65
5.1 Summary . 65

5.2 Outlook . 65

Bibliography 69

List of Figures 73

List of Tables 77

A Code Listings 79
A.1 Generalized Vector Addition . 79

A.1.1 Direct Comparison of SAXPY Host and Kernel Codes 79

A.1.2 Direct comparison of assembler code snippets generated for sequential DAXPY

implementations . 81

A.1.3 Direct comparison of the PTX code generated for CUDA DAXPY implementations 83

A.1.4 Vectorized alpaka CUDA DAXPY PTX Code 85

A.2 Generalized Matrix-Matrix-Multiplication . 87

A.2.1 Direct Comparison of the native CUDA and alpaka CUDA DGEMM Kernels . . 87

A.2.2 Direct Comparison of the PTX code generated from native CUDA and alpaka

CUDA DGEMM . 93

B Additional Measurements 99
B.1 Generalized Vector Addition . 99

B.2 Generalized Matrix-Matrix-Multiplication . 101

3

1 Introduction

1.1 Motivation

PIConGPU is a relativistic Particle-in-Cell (PIC) code for graphics processing units (GPUs). With its

outstanding performance PIConGPU was one of the finalists of the 2013s Gordon Bell Prize. Without

conducting real experiments it allows to investigate the dynamics of a plasma. It is an open-source 12

project dual-licensed under the GPLv3 and LGPLv3 developed and maintained by the Junior Group

Computational Radiation Physics at the Institute for Radiation Physics of the HZDR.

The PIC algorithm is one of the central tools in computational plasma physics. Based on the Maxwell

equations it describes the dynamics of a plasma by computing the motion of electrons and ions (fig. 1.1).

Electric and magnetic fields act on (macro-)particles that can move freely between cells via the Lorentz

force. The new momenta and positions of the particle resulting from the integration of the equation of

motion then result in currents on the mesh, which in turn are required to compute the new electric and

magnetic fields.

Figure 1.1: One time-step of the relativistic particle-in-cell algorithm.[5]

PIConGPU utilizes both, task and data parallelism. Task parallelism is exploited by running different

kernels in parallel depending on the data already available and by overlapping computation and commu-

nication. Data parallelism requires the usage of special data structures. As can be seen in 1.2 the mesh

of cells storing the electric and magnetic fields is further partitioned in so called super cells. All cells

within a super cell are computed in parallel.

Because particles are moving freely between cells, it is not convenient to store them per cell. Some cells

1http://dx.doi.org/10.5281/zenodo.31121
2https://github.com/ComputationalRadiationPhysics/picongpu

http://dx.doi.org/10.5281/zenodo.31121
https://github.com/ComputationalRadiationPhysics/picongpu

4 1. INTRODUCTION

Figure 1.2: Schematic representation of a section of a 2D mesh of cells and particles for a PIC-simulation.
Super cells combining multiple cells are marked with a purple edge[5]

could have no particles while others are crowded. This would lead to irregular computation times for

individual cells and unpredictable execution times for a super cell. Furthermore, because particles are

constantly migrating from one cell to another cell, they would have to be moved between the particle

lists of the neighboring cells. By storing the particles per super cell, with each particle knowing its

cell, these load imbalances are smoothed and the move overhead is reduced because the total number of

moves between super cells is much smaller then the total number of moves between all individual cells.

Figure 1.3 shows that each super cell has a corresponding list of frames containing the particles. All of

the particles within a frame will be computed in parallel for all super cells. A frame stores the particle

attributes as a structure of arrays so that, for example, all particle positions are aligned, close together

and can be processed individually in a cache optimal manner. At the end of a time-step, particles that

are marked invalid are filled with ones that have moved into this super cell or valid ones from the end of

the frame list possibly removing empty or adding new frames. This resorting guarantees a continuously

filled list of frames with minimal size that can be processed in parallel optimally.

This domain decomposition of the mesh of fields into super cells of cells and particles into a list of frames

per super cell enables the code to scale across hundreds and thousands of GPUs. Even the roughly 18000

GPUs of the Titan supercomputer have been harnessed simultaneously to simulate the Kelvin-Helmholtz-

Instability in a previously unmatched resolution [4]. However, what scales well on current hardware does

not necessarily scale well on future architectures. The hardware landscape is always changing. In the

past the big clusters have been CPU only. Today we see a change to accelerator supported computing.

For example, GPUs, Intel Xeon Phis or other special purpose extension cards are extensively used. It is

unpredictable what the next big step will be and how the Exaflop hardware will look like. It is not clear

that GPUs will always be the best platform. Nevertheless, the underlying physical algorithms as well as

the need for heterogeneous architectures will not change.

1.1. MOTIVATION 5

Figure 1.3: Particle frame list. Each super cell holds a list of frames with fixed width. Frames hold the
attributes of multiple cells as a cache optimized structure of arrays. [8] p.36

Current highly parallel GPUs are optimized for throughput and hide latency and data dependencies by

always keeping a ready pool of work. This allows to sustain the performance at a high percent of peak.

CPUs in turn are designed to optimize the execution time of a single thread. Features like branch predic-

tion, speculative execution, register renaming and many more “[...] would cost far too much energy to be

replicated for thousands of parallel GPU threads but [...] are entirely appropriate for CPUs.” [3] Even

more specialized architectures will appear and find their way into HPC. For example, after the acquisi-

tion of Altera by Intel and AMD filing patents [16] supporting it, we will be seeing FPGAs integrated

into future processor generations.

“The essence of the heterogeneous computing model is that one size does not fit all. Parallel and serial

segments of the workload execute on the best-suited processor delivering faster overall performance,

greater efficiency, and lower energy and cost per unit of computation.” [3]

New hardware will not only allow to execute faster or calculate more. Systems like the pre-exascale

Summit cluster with a fat node architecture combining IBM POWER CPUs with NVIDIA GPUs and

a large coherent memory in between will furthermore enable the usage of new algorithms for a more

precise simulation of additional algorithms such as models for atomic physics. For example, PIConGPU

could be extended with an ionization kernel which would have to perform random searches for only a few

values in a lookup table of up to hundreds of gigabytes. This would perfectly fit to those IBM POWER

CPUs, while the rest of the simulation would still be running on the GPUs. Being able to express both of

those parallel tasks in the same way would greatly enhance the productivity of the programmer and the

clarity of the code.

Porting a complicated physics simulation code like PIConGPU from CUDA to x86 and possibly to other

hardware architectures is a non-trivial task. A lot of developer time could be saved if this task would

not have to be done repeatedly for every new hardware, but rather only once. Therefore, this work

investigates the porting of highly scalable simulation codes on various multi-core architectures.

6 1. INTRODUCTION

1.2 Problems in Porting Performant HPC Codes

Porting a highly performant code to a new architecture is a non-trivial task that poses many problems.

Often it is a requirement to keep the simulation operative on the previous platform as well. This means

that multiple hardware platforms have to be supported simultaneously. A great number of projects take

the route that seems easiest at first and simply duplicate all the parallel algorithms and port them to the

new back-end. All the specific API functions that have been used, have to be supplemented by the new

pendants, possibly guarded by preprocessor macros to switch between the old and the new version. A

switch of the back-end used in a simulation, for example, from OpenMP to CUDA often requires a near

rewrite. For example, the PIConGPU simulation consists of 80000 lines of code, thereof 20000 lines of

CUDA API and kernel code. Each newly supported platform would have to duplicate those nearly 20000

lines of code.

The following paragraphs will summarize problems that arise when performant HPC codes have to be

ported:

Sustainability: Because the underlying HPC hardware is constantly changing, every new genera-

tion will require an adaption of the simulation. Even to deliver the performance reached on previous

architectures is a tough task for programmers. Furthermore, nobody can guarantee the lifespan of the

parallelization technique used. OpenMP, CUDA, OpenACC and all the other possibilities could be dis-

continued or get deprecated for any reason at any time. Therefore, an abstract interface is required that

hides the particular back-end and allows to port the interface implementation and not the application

using the interface itself.

Heterogeneity: Some parts of a simulation perfectly map to current GPUs while other parts are better

computed on CPUs or other accelerators. Furthermore, by letting one part of the heterogeneous cluster

hardware idle, a lot of computing power is wasted. It is essential, especially for future architectures,

that those resources are utilized to reach the peak performance of the systems. This heterogeneous work

division not only depends on the architecture but also on the number of available hardware resources, the

workload and many other factors. Therefore, to reach good scaling across a multitude of systems, it is

necessary to be able to dynamically decide where to execute which part of the simulation either at make-

time, compile-time or at run-time. Currently this requires to duplicate the kernels and write specific

implementations per back-end. Many projects only allow to switch the back-end of the whole simulation

at once or possibly even per kernel at make-time. This will not be enough on future architectures where

the ability to mix the back-ends is required to optimally utilize different cluster architectures or to dy-

namically load balance tasks across a diverse set of (possibly failing) accelerator devices. Therefore, an

abstract interface unifying the abilities of all the back-ends is required to let the application express par-

allelism of the different back-ends in a unified algorithm that can then be mapped to the device currently

in use.

Maintainability: Looking at the software engineering aspects, duplication is a bad solution because

this leads to maintainability issues. In many projects such copies result in a large growth in the number of

lines of code while only minimal new functionality is implemented. Most of the new code only executes

things that have already been implemented for the initial platform. Developers having to change one

1.3. RELATED WORKS 7

of the algorithms additionally have to change all duplicates for all other back-ends. Depending on the

similarity of the implementations, this can result in a doubling / multiplication of developer efforts in the

worst-case scenario. Especially for open-source projects that rely on contributions from the community

this raises the hurdle for new developers because they have to know not only one, but multiple different

parallelization libraries. In the end good maintainability is what keeps a software project alive and what

ensures a steady development progress. Therefore, an interface hiding the differences between all the

back-ends is required to let the application express parallelism in a unified algorithm.

Testability: Code duplication, being the easiest way to port a simulation, exacerbates testing. Each

new kernel has to be tested separately because different bugs could have been introduced into the distinct

implementations. If the versions can be mixed, it is even harder because all combinations have to be

tested. Often the tests (continuous integration tests, unit tests, etc.) have to run on a special testing

hardware or on the production systems due to the reliance on the availability of special accelerators.

For example, CUDA compile tests are possible without appropriate hardware but it is not feasible to

execute even simple runtime tests due to the missing CPU emulation support. An interface allowing to

switch between acceleration back-ends, which are tested for compatibility among each other, enables

easy testing on development and test systems.

Optimizability: Even if the simulation code has encapsulated the APIs used, the optimal way to

write performant algorithms often differs between distinct parallelization frameworks. It is necessary

to allow the user to fine-tune the algorithm to run optimally on each different accelerator device by

compile time specialization or policy based abstractions without the need to duplicate the kernel. Within

the kernel there has to be knowledge about the underlying platform to adaptively use data structures

that map optimally onto the current architecture. To ease this optimization work, libraries with data

structures, communication patterns and other things hiding the differences between back-ends have to be

implemented. This would allow to optimize the interface implementation and not the simulation itself.

In summary, it can be stated that all the portability problems of current HPC codes could be solved by

introducing an abstract interface that hides the particular back-end implementations and unifies the way

to access the parallelism available on modern many-core architectures.

1.3 Related Works

There are multiple other libraries targeting the (portable) parallel task execution within nodes. Some

of them require language extensions, others pretend to achieve full performance portability across a

multitude of devices. But none of these libraries can provide full control over the (possibly diverse)

underlying hardware while being only minimal invasive. There is always a productivity-performance

trade-off.

Furthermore, many of the libraries do not satisfy the requirement for full single-source C++ support.

This is essential due to the PIConGPU simulation code relying heavily on template meta-programming

for method specialization and compile time optimizations.

8 1. INTRODUCTION

CUDA - Compute Unified Device Architecture CUDA [28] is a parallel computing platform and

programming model developed by NVIDIA 3. It is used in science and research as well as in consumer

software to compute highly parallel workloads on GPUs starting from image and video editing up to

simulations on high-performance computers. Such usage of graphics processing units not only for com-

puter graphics, but also for tasks that have traditionally been handled by the CPU is called GPGPU

(general-purpose computing on graphics processing units). A disadvantage of CUDA is that its applica-

tion is bound to the usage of NVIDIA GPUs. Currently no other vendors provide accelerators that support

CUDA. Additionally there is no supported free emulator allowing to execute CUDA code on CPUs.

The CUDA API is a higher level part of the programming model which allows to access and execute

code on GPUs from multiple host languages including C++. The CUDA C/C++ language on the other

hand is a mid level construct based on standard C++ with some extensions for accelerator programming

and limitations in the supported constructs. For example, throwing and catching exceptions as well as

runt-time type information (RTTI) are not supported. CUDA C/C++ is compiled to a low level virtual

instruction set called PTX (Parallel Thread Execution). The PTX code is later compiled to assembler

code by the GPU driver.

NVIDIA provides an extended C++ compiler based on the LLVM clang 4 compiler called nvcc that

allows to mix host C++ code using the CUDA API with CUDA C/C++. The host part of the C++ code

is compiled by the respective host system compiler (gcc, icc, clang, MSVC) while the GPU device code

is separately compiled to PTX. After the compilation steps both binaries are linked together to form the

final assembly.

CUDA defines a heterogeneous programming model where tasks are offloaded from the host CPU to

the device GPU. Functions that should be offloaded to the GPU are called kernels. As can be seen in

figure 1.4 a grid of such kernels is executed in parallel by multiple threads organized in blocks. Threads

within a block can synchronize, while blocks are executed independently and possibly in sequential order

depending on the underlying hardware.

The global device memory is the slowest but largest memory accessible by all threads. It can be accessed

from host code via methods provided by the CUDA API. Global memory is persistent across kernel

invocations. Threads within a block can communicate through a fast but small shared memory. Each

thread has a set of very low latency registers similar to CPU threads. Additionally there are special

purpose memory sections for constant and texture data.

The CUDA C/C++ language gives full control over memory, caches and the execution of kernels.

PGI CUDA-X86 5 is a compiler technology that allows to generate x86-64 binary code from CUDA

C/C++ applications using the CUDA Runtime API but does not support the CUDA Driver API. At run-

time CUDA C programs compiled for x86 execute each CUDA thread block using a single host core,

eliminating synchronization where possible. Multiple kernel threads are combined to be executed to-

gether via the CPUs SIMD (Single Instruction Multiple Data) capabilities for vectorized execution. The

PGI Unified Binary technology allows to create a single binary that uses NVIDIA GPUs when available,

or runs on multi-core CPUs else. The compiler is not always up-to-date with the latest CUDA versions

and is not available for free. Furthermore, the compiler seems not to be developed actively since NVIDIA

3http://www.nvidia.com/
4http://clang.llvm.org/
5https://www.pgroup.com/resources/cuda-x86.htm

http://www.nvidia.com/
http://clang.llvm.org/
https://www.pgroup.com/resources/cuda-x86.htm

1.3. RELATED WORKS 9

Figure 1.4: The grid of thread blocks defined by the CUDA programming model [22]. The execution
order of blocks is undefined but possibly parallel while no synchronization between block is
possible. In contrast, threads within a thread are allowed to synchronize and are executed in
parallel.

acquired PGI in 2013. Since 2012 no news were published and nothing could be found in the yearly

release notes of the PGI compiler suite.

GPU Ocelot 6 is an open-source dynamic JIT compilation framework. It allows to execute native

CUDA binaries by dynamically translating the NVIDIA PTX virtual instruction set architecture to other

instruction sets. It supports NVIDIA and AMD GPUs as well as multicore CPUs via a PTX to LLVM

(Low Level Virtual Machine) translator. The project is not in active development anymore. It only

supports PTX up to version 3.1 (current version is 4.2).

OpenMP 7 is an open specification for vendor agnostic shared memory parallelization. By adding

annotations (pragmas in C/C++) to loops or regions, it allows to easily parallelize existing sequential

C/C++/Fortran code in an incremental manner. Due to the nature of pragmas, these hints are ignored

if the compiler does not support them or thinks they are inappropriate. This allows those programs to

be compiled as sequential or parallel versions by only changing a compiler flag. In C/C++ the syntax

for OpenMP directives is #pragma omp followed by multiple clauses. For example, with the directive

#pragma omp parallel for, the compiler will automatically distribute the iterations of the directly fol-

lowing loop across the available cores. OpenMP 4.0 introduced support for offloading computations to

accelerator devices, substantially improved the task support and extended the SIMD capabilities. By

embedding code within a #pragma omp target block, the contained code will be executed on the se-

lected device. OpenMP 4.0 is missing the ability for unstructured data movement and only implements

6http://gpuocelot.gatech.edu/
7http://openmp.org//

http://gpuocelot.gatech.edu/
http://openmp.org//

10 1. INTRODUCTION

structured data movement from and to devices. The compiler directive #pragma omp target data

map(...)... at the begin of a code block will define which data is copied to, copied back from and is

created on the device. At the end of the code block the memory is copied back or gets deleted. There

is no way to allocate device memory that is persistent between kernel calls in different methods because

it is not possible to create a device data region spanning both functions in the general case. OpenMP

4.1, expected for the end of 2015, is likely to introduce #pragma omp target enter data, #pragma

omp target exit data and other unstructured data movement directives that allow to pass and obtain

pointers of already resident memory to and from offloaded kernels. Currently OpenMP does not provide

a way to control the hierarchical memory because its main assumption is a shared memory for all threads.

Therefore, the block shared memory on CUDA devices can not be explicitly utilized.

OpenACC 8 is a pragma based programming standard for heterogeneous computing. It is very similar

to OpenMP and provides annotations for parallel execution and data movement as well as run-time func-

tions for accelerator and device management. In contrast to OpenMP it allows limited access to CUDA

block shared memory. Current compiler implementations support NVIDA, AMD and Intel accelerators.

Only as of OpenACC 2.0 explicit memory management and tiling is supported. OpenACC does not sup-

port dynamic allocation of memory (new, delete) in kernel code. It is aimed to be fully merged with

OpenMP at some point, but for now OpenMP 4.0 only introduced some parts of it.

OpenCL 9 is a programming framework for heterogeneous platforms. It is fully hardware independent

and can utilize CPUs and GPUs of nearly all vendors. This is achieved by compiling the OpenCL

kernel code (or the standardized SPIR intermediate representation) at run-time by the platform driver

into the native instruction set. Versions prior to 2.1 (released in March 2015) did only support a C-like

kernel language. Version 2.1 introduced a subset of C++14. OpenCL does not support single-source

programming (combining C++ host code and accelerator code in a single file). This is a precondition for

templated kernels which are required for policy based generic programming. It is necessary to note that

NVIDIA seems to neglect their OpenCL implementation. Support for version 1.2 has just been added

in April 2015 after only three and a half years after the publication of the standard. OpenCL does not

support dynamic allocation of memory (new, delete) in kernel code.

SYCL 10 is a cross-platform abstraction layer based on OpenCL. The main advantage over OpenCL

itself is that it allows to write single-source heterogeneous programs. It enables the usage of a single C++

template function for host and device code. As of now there is no usable free compiler implementation

available that has good support for multiple accelerator devices.

C++ AMP (Accelerated Massive Parallelism) 11 is an open specification from Microsoft currently

implemented on top of DirectX 11. It is an language extension requiring compiler support that allows to

annotate C++ code that can then be run on multiple accelerators. C++ AMP requires the usage of the

array data structure or the array_view wrapper responsible for copying data to and from the accelerator

8http://www.openacc-standard.org/
9https://www.khronos.org/opencl/

10https://www.khronos.org/sycl/
11https://msdn.microsoft.com/en-us/library/hh265136.aspx

http://www.openacc-standard.org/
https://www.khronos.org/opencl/
https://www.khronos.org/sycl/
https://msdn.microsoft.com/en-us/library/hh265136.aspx

1.4. DISTINCTION OF THE ALPAKA LIBRARY 11

devices. The parallel_for_each function is responsible for offloading the provided function object

whose operator() has to be annotated with restrict(amp). The threads can access shared memory

and synchronize. The range of supported accelerator devices, plaforms and compilers is currently very

limited.

KOKKOS 12 provides an abstract interface for portable, performant shared memory-programming.

It is a C++ library that offers parallel_for, parallel_reduce and similar functions for describing

the pattern of the parallel tasks. The execution policy determines how the threads are executed. For

example, this influences the sizes of blocks of threads or if static or dynamic scheduling should be used.

The library abstracts the kernel as a function object that can not have any user defined parameters for its

operator(). Inconveniently, arguments have to be stored in members of the function object coupling

algorithm and data together. KOKKOS provides both, abstractions for parallel execution of code and data

management. Multidimensional arrays with a neutral indexing and an architecture dependent layout are

available, which can be used, for example, to abstract the underlying hardwares preferred memory access

scheme that could be row-major, column-major or even blocked.

Thrust 13 is a parallel algorithms library resembling the C++ Standard Template Library (STL). It

allows to select either the CUDA, TBB or OpenMP back-end at make-time. Because it is based on

generic host_vector and device_vector container objects, it is tightly coupling the data structure and

the parallelization strategy. There exist many similar libraries such as ArrayFire 14 (CUDA, OpenCL,

native C++), VexCL 15 (OpenCL, CUDA), ViennaCL 16 (OpenCL, CUDA, OpenMP) and hemi 17 (CUDA,

native C++).

1.4 Distinction of the alpaka Library

In section 1.2 we saw that all the portability problems of current HPC codes could be solved with an ab-

stract interface unifying the underlying accelerator back-ends. Section 1.3 showed that there is currently

no project available that could solve all of the problems highlighted. Therefore the problem description

given at the begin of the work can not be solved satisfactorily by directly porting PIConGPU to any other

API but requires the definition of such an abstraction. As long as the implementation of this simple ab-

straction requires less then the 20000 lines of code, which would have to be changed within PIConGPU,

this even leads to less work then the direct port itself. A proof-of-concept library showing the feasibil-

ity of this approach has been implemented in this work. This C++ interface library is called alpaka -

Abstraction Library for Parallel Kernel Acceleration. The subsequent enumeration will summarize the

purpose of the library:

alpaka is ...

12https://github.com/kokkos
13https://thrust.github.io/
14http://www.arrayfire.com/
15https://github.com/ddemidov/vexcl/
16http://viennacl.sourceforge.net/
17https://github.com/harrism/hemi/

https://github.com/kokkos
https://thrust.github.io/
http://www.arrayfire.com/
https://github.com/ddemidov/vexcl/
http://viennacl.sourceforge.net/
https://github.com/harrism/hemi/

12 1. INTRODUCTION

• an abstract interface describing parallel execution on multiple hierarchy levels. It allows to im-

plement a mapping to various hardware architectures but is no optimal mapping itself.

• sustainably solving portability (50% on the way to reach full performance portability)

• solving the heterogeneity problem. An identical algorithm / kernel can be executed on heteroge-

neous parallel systems by selecting the target device.

• reducing the maintainability burden by not requiring to duplicate all the parts of the simulation

that are directly facing the parallelization framework. Instead, it allows to provide a single ver-

sion of the algorithm / kernel that can be used by all back-ends. All the accelerator depending

implementation details are hidden within the alpaka library.

• simplifying the testability by enabling easy back-end switching. No special hardware is required

for testing the kernels. Even if the simulation itself will always use the CUDA back-end, the tests

can completely run on a CPU. As long as the alpaka library is thoroughly tested for compatibility

between the acceleration back-ends, the user simulation code is guaranteed to generate identical

results (ignoring rounding errors / non-determinism) and is portable without any changes.

• optimizable. Everything in alpaka can be replaced by user code to optimize for special use-cases.

• extensible. Every concept described by the alpaka abstraction can be implemented by users.

Therefore it is possible to non-intrusively define new devices, streams, buffer types or even whole

accelerator back-ends.

• data structure agnostic. The user can use and define arbitrary data structures.

alpaka is not ...

• an automatically optimal mapping of algorithms / kernels to various acceleration platforms. Ex-

cept in trivial examples an optimal execution always depends on suitable selected data structure.

An adaptive selection of data structures is a separate topic that has to be implemented in a distinct

library.

• automatically optimizing concurrent data accesses.

• handling or hiding differences in arithmetic operations. For example, due to different round-
ing or different implementations of floating point operations, results can differ slightly between

accelerators.

• guaranteeing any determinism of results. Due to the freedom of the library to reorder or repar-

tition the threads within the tasks it is not possible or even desired to preserve deterministic re-

sults. For example, the non-associativity of floating point operations give non-deterministic results

within and across accelerators.

The alpaka library is aimed at parallelization within nodes of a cluster. It does not compete with libraries

for distribution of processes across nodes and communication among those. For these purposes libraries

like MPI (Message Passing Interface) or others should be used. MPI is situated one layer higher and can

1.5. COMPARISON 13

be combined with alpaka to facilitate the hardware of a whole heterogeneous cluster. The alpaka library

can be used for parallelization within nodes, MPI for parallelization across nodes.

1.5 Comparison

Table 1.1 summarizes which of the problems mentioned in section 1.2 can be solved by current intra-node

parallelization frameworks and the proof-of-concept alpaka abstraction library.

Framework /
API

Open-
Source

Free
Single-
Source
C++

Port-
ability

Hetero-
genity

Maintain-
ability

Test-
ability

Optimiz-
ability

Data
structure
agnostic

CUDA 7 3 3 7 7 7 7 3 3

PGI CUDA-x86 7 7 3 3 m 3 3 7 3

GPU Ocelot 3 3 3 3 m 3 3 7 3

OpenMP 3 3 3 3 3 3 3 7 3

OpenACC 3 3 3 3 3 3 3 7 3

OpenCL 3 3 7 3 3 3 3 7 3

SYCL 3 (3) 3 3 3 3 3 (3) 3

C++AMP 3 3 3 (3) 3 3 3 7 3

KOKKOS 3 3 3 3 m 3 3 7 m

Thrust 3 3 3 3 m 3 3 7 7

alpaka 3 3 3 3 3 3 3 3 3

Table 1.1: Properties of intra-node parallelization frameworks and their ability to solve the problems in
porting performant HPC codes. 3: yes / fully solved, m: partially solved, 7: no / not solved

1.6 Structure of this Thesis

In section 2 an abstraction layer will be defined which allows to utilize all levels of parallelism across

various architectures. Within this chapter the structure of current hardware and their peculiarities will be

explained and the influence on the final abstraction will be outlined.

During the course of this thesis a reference library called alpaka will be developed that implements the

abstraction layer. The library structure and the implementation will be described in chapter 3.

To evaluate the design of the abstraction and to estimate the overhead introduced by the alpaka library,

chapter 4 discusses measurements with artificial and real world codes. Native versions of DAXPY and

DGEMM algorithms will be compared with implementations using the corresponding alpaka back-ends.

Furthermore, an alpaka port of the HASEonGPU simulation on multiple CPU and GPU platforms will

be compared to its native CUDA version.

Finally, chapter 5 summarizes the achievement and discusses future developments.

14 1. INTRODUCTION

15

2 Abstraction

Parallelism and memory hierarchies at all levels need to be exploited in order to achieve performance

portability across various types of accelerators. Within this chapter an abstraction will be derivated

that tries to provide a maximum of parallelism while simultaneously considering implementability and

applicability in hardware.

Looking at the current HPC hardware landscape, we often see nodes with multiple sockets/processors

extended by accelerators like GPUs or Intel Xeon Phi, each with their own processing units. Within a

CPU or a Intel Xeon Phi there are cores with hyper-threads, vector units and a large caching infrastruc-

ture. Within a GPU there are many small cores and only few caches. Each entity in the hierarchy has

access to different memories. For example, each socket / processor manages its RAM, while the cores

additionally have non-explicit access to L3, L2 and L1 caches. On a GPU there are global, constant,

shared and other memory types which all can be accessed explicitly. The interface has to abstract from

these differences without sacrificing speed on any platform.

A process running on a multi-socket node is the largest entity within alpaka. The abstraction is only

about the task and data parallel execution on the process/node level and down. It does not provide any

primitives for inter-node communication. However, such libraries can be combined with alpaka.

An application process always has a main thread and is by definition running on the host. It can access the

host memory and various accelerator devices. Such accelerators can be GPUs, Intel Xeon Phis, the host

itself or other devices. Thus, the host not necessarily has to be different from the accelerator device used

for the computations. For instance, an Intel Xeon Phi simultaneously can be the host and the accelerator

device.

The alpaka library can be used to offload the parallel execution of task and data parallel work simultane-

ously onto different accelerator devices.

2.1 Task Parallelism

One of the basic building blocks of modern applications is task parallelism. For example, the operating

system scheduler, deciding which thread of which process gets how many processing time on which CPU

core, enables task parallelism of applications. It controls the execution of different tasks on different

processing units. Such task parallelism can be, for instance, the output of the progress in parallel to a

download. This can be implemented via two threads executing two different tasks.

The valid dependencies between tasks within an application can be defined as a DAG (directed acyclic

graph) in all cases. The tasks are represented by nodes and the dependencies by edges. In this model, a

task is ready to be executed if the number of incoming edges is zero. After a task finished it‘s work, it

is removed from the graph as well as all of it‘s outgoing edges,. This reduces the number of incoming

edges of subsequent tasks.

The problem with this model is the inherent overhead and the missing hardware and API support. When

16 2. ABSTRACTION

it is directly implemented as a graph, at least all depending tasks have to be updated and checked if they

are ready to be executed after a task finished. Depending on the size of the graph and the number of

edges this can be a huge overhead.

OpenCL allows to define a task graph in a somewhat different way. Tasks can be enqueued into an out-

of-order command queue combined with events that have to be finished before the newly enqueued task

can be started. Tasks in the command queue with unmet dependencies are skipped and subsequent ones

are executed. The CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE property of a command queue is an

optional feature only supported by few vendors. Therefore, it can not be assumed to be available on all

systems.

CUDA on the other hand does currently (version 7.5) not support such out-of-order queues in any way.

The user has to define dependencies explicitly through the order the tasks are enqueued into the queues

(called streams in CUDA). Within a stream, tasks are always executed in sequential order, while multiple

streams are executed in parallel. Streams can wait for events enqueued into other streams.

In both APIs, OpenCL and CUDA, a task graph can be emulated by creating one stream per task and

enqueuing a unique event after each task, which can be used to wait for the preceding task. However,

this is not feasible due to the large stream and event creation costs as well as other overheads within this

process.

Therefore, to be compatible with a wide range of APIs, the interface for task parallelism has to be

constrained. Instead of a general DAG, multiple queues of sequentially executed tasks will be used to

describe task parallelism. Events that can be enqueued into the queues enhance the basic task parallelism

by enabling synchronization between different streams, devices or the host threads.

2.2 Data Parallelism

In contrast to task parallelism, data parallelism describes the execution of one and the same task on mul-

tiple, often related data elements. For example, an image color space conversion is a textbook example

of a data parallel task. The same operation is executed independently on each pixel. Other data parallel

algorithms additionally introduce dependencies between threads in the input-, intermediate-, or output-

data. For example, the calculation of a brightness histogram has no input-data dependencies. However,

all pixel brightness values finally have to be merged into a single result. Even these two simple examples

show that it is necessary to think about the interaction of parallel entities to minimize the influence of

data dependencies.

Furthermore, it is necessary to respect the principles of spatial and temporal locality. Current hardware

is built around these locality principles to reduce latency by using hierarchical memory as a trade-off

between speed and hardware size. Multiple levels of caches, from small and very fast ones to very

large and slower ones exploit temporal locality by keeping recently referenced data as close to the actual

processing units as possible. Spatial locality in the main memory is also important for caches because

they are usually divided into multiple lines that can only be exchanged one cache line at a time. If one

data element is loaded and cached, it is highly likely that nearby elements are also cached. If the pixels

of an image are stored row wise but are read out column wise, the spatial locality assumption of many

CPUs is violated and the performance suffers. GPUs on the other hand do not have a large caching

hierarchy but allow explicit access to a fast memory shared across multiple cores. Therefore, the best

2.2. DATA PARALLELISM 17

way to process individual data elements of a data parallel task is dependent on the data structure as well

as the underlying hardware.

The main part of the alpaka abstraction is the way it abstracts data parallelism and allows the algorithm

writer to take into account the hierarchy of processing units, their data parallel features and corresponding

memory regions. The abstraction developed is influenced and based on the groundbreaking CUDA and

OpenCL abstractions of a multidimensional grid of threads with additional hierarchy levels in between.

Another level of parallelism is added to those abstractions to unify the data parallel capabilities of modern

hardware architectures. The explicit access to all hierarchy levels enables the user to write code that runs

performant on all current platforms. However, the abstraction does not try to automatically optimize

memory accesses or data structures but gives the user full freedom to use data structures matching the

underlying hardware preferences.

2.2.1 Thread

Theoretically, a basic data parallel task can be executed optimally by executing one thread per indepen-

dent data element. In this context, the term thread does not correspond to a native kernel-thread, an

OpenMP thread, a CUDA thread, a user-level thread or any other such threading variant. It only repre-

sents the execution of a sequence of commands forming the desired algorithm on a per data element level.

This ideal one-to-one mapping of data elements to threads leads to the execution of a multidimensional

grid of threads corresponding to the data structure of the underlying problem. The uniform function exe-

cuted by each of the threads is called a kernel. Some algorithms such as reductions require the possibility

to synchronize or communicate between threads to calculate a correct result in a time optimal manner.

Therefore our basic abstraction requires a n-dimensional grid of synchronizable threads each executing

the same kernel. Figure 2.1 shows an hypothetical hardware that could optimally execute this data paral-

lel task. The threads are mapped one-to-one to the cores of the processor. For a time optimal execution,

the cores have to have an all-to-all equal length connection for communication and synchronization.

The only difference between the threads is their positional index into the grid which allows each thread to

compute a different part of the solution. Threads can always access their private registers and the global

memory.

Registers All variables with default scope within a kernel are automatically saved in registers and are

not shared automatically. This memory is local to each thread and can not be accessed by other threads.

Global Memory The global memory can be accessed from every thread in the grid as well as from

the host thread. This is typically the largest but also the slowest memory available.

Individual threads within the grid are allowed to statically or dynamically allocate buffers in the global

memory.

Prior to the execution of a task, the host thread copies the input buffers and allocates the output buffers

onto the accelerator device. Pointers to these buffers then can be given as arguments to the task invoca-

tion. By using the index of each thread within the grid, the offset into the global input and output buffers

can be calculated. After the computation has finished, the output buffer can be used either as input to a

subsequent task or can be copied back to the host.

18 2. ABSTRACTION

Figure 2.1: On the left: The abstraction hierarchy with a grid of threads. On the right: A hypothetical
hardware that could execute data parallel tasks with the basic grid-thread abstraction opti-
mally by providing a one-to-one mapping of per data element threads to cores and an equal
length connection between all cores.

2.2.2 Block

Building a processor with possibly thousands of cores where all cores have an equal length connection

for fast communication and synchronization is not viable. Either the processor size would have to grow

exponentially with the number of cores or the all-to-all communication speed would decrease so much

that computations on the processor would be impractical. Therefore, the communication and synchro-

nization of threads has to be limited to sizes manageable by real hardware.

Figure 2.2 depicts the solution of introducing a new hierarchy level in the abstraction. A hypothetical

processor is allowed to provide synchronization and fast communication within blocks of threads but is

not required to provide synchronization across blocks. The whole grid is subdivided into equal sized

blocks with a fast but small shared memory. Current accelerator abstractions (CUDA and OpenCL) only

support equal sized blocks. This restriction could possibly be lifted to support future accelerators with

heterogeneous block sizes.

There is another reason why independent blocks are necessary. Threads that can communicate and

synchronize require either a one-to-one mapping of threads to cores, which is impossible because the

number of data elements is theoretically unlimited, or at least a space to store the state of each thread.

Even old single core CPUs were able to execute many communicating and synchronizing threads by

using cooperative or preemptive multitasking. Therefore, one might think that a single core would be

enough to execute all the data parallel threads. But the problem is that even storing the set of registers

and local data of all the possible millions of threads of a task grid is not always viable. The blocking

scheme solves this by enabling fast interaction of threads on a local scale but additionally removes the

necessity to store the state of all threads in the grid at once because only threads within a block must be

executed in parallel. Within a block of cores there still has to be enough memory to store all registers

of all contained threads. The independence of blocks allows applications to scale well across diverse

2.2. DATA PARALLELISM 19

Figure 2.2: On the left: The abstraction hierarchy with a grid of blocks of threads. On the right: A hypo-
thetical hardware that could execute data parallel tasks by providing a one-to-one mapping
of per data element threads to cores and fast synchronization and communication between
threads within a block.

devices. As can be seen in figure 2.3, the accelerator can assign blocks of the task grid to blocks of cores

in arbitrary order depending on availability and workload.

Figure 2.3: Mapping of a grid of threads subdivided into independent blocks onto processors with varying
number of blocks.

20 2. ABSTRACTION

Shared Memory Each block has its own shared memory. This memory can only be accessed explic-

itly by threads within the same block and gets discarded after the complete block finished its calculation.

This memory is typically very fast but also very small. No variables are shared between kernels by

default.

2.2.3 Warp

With the current abstraction only independent parallelism via blocks and synchronizable parallelism via

threads can be expressed. However, there are more variants of parallelism in real hardware. Because all

threads in the grid are executing the same kernel and even the same instruction at the same time when

ignoring divergent control flows, a lot of chip space can be saved. Multiple threads can be executed

in perfect synchronicity, which is also called lock-step. A group of such threads executing the same

instruction at the same time is called a warp (fig 2.4). All threads within a warp share a single instruction

pointer (IP), and all cores executing the threads share one instruction fetch (IF) and instruction decode

(ID) unit.

Figure 2.4: On the left: The abstraction hierarchy with a grid of blocks of warps of threads. On the right:
A hypothetical hardware that could execute data parallel tasks by providing a one-to-one
mapping of threads to data elements, combining multiple threads into independent blocks but
saving chip space by executing multiple threads in lock-step on simplified cores.

Even threads with divergent control flows can be executed within one warp. CUDA, for example, solves

this by supporting predicated execution and warp voting. For long conditional branches the compiler

inserts code which checks if all threads in the warp take the same branch. For small branches, where this

is too expensive, all threads always execute all branches. Control flow statements result in a predicate

and only in those threads where it is true, the predicated instructions will have an effect.

Not only CUDA GPUs support the execution of multiple threads in a warp. Full blown vector processors

with good compilers are capable of combining multiple loop iterations containing complex control flow

statements in a similar manner as CUDA.

Due to the synchronictiy of threads within a warp, memory operations will always occur at the same

2.2. DATA PARALLELISM 21

time in all threads. This allows to coalesce memory accesses. Different CUDA devices support different

levels of memory coalescing. Older ones only supported combining multiple memory accesses if they

were aligned and sequential in the order of thread indices. Newer ones support unaligned scattered

accesses as long as they target the same 128 byte segment.

The ability of very fast context switches between warps and a queue of ready warps allows CUDA capable

GPUs to hide the latency of global memory operations.

2.2.4 Element

To use the maximum available computing power of, for example, a modern x86 processor, the com-

putation has to utilize the SIMD vector registers. Many current architectures support issuing a single

instruction that can be applied to multiple data elements in parallel.

The original x86 instruction set architecture did not support SIMD instructions but has been enhanced

with MMX (64 bit width registers), SSE (128 bit width registers), AVX (256 bit width registers) and

AVX-512 (512 bit width registers) extensions. In varying degree, they allow to process multiple 32 bit

and 64 bit floating point numbers as well as 8, 16, 32 and 64 bit signed and unsigned integers.

CUDA capable GPUs do not have vector registers where multiple values of type float or double can

be manipulated by one instruction. Nevertheless, newer CUDA capable devices implement basic SIMD

instructions on pairs of 16 bit values and quads of 8-bit values. They are described in the documentation

of the PTX instruction set architecture chapter 8.7.13 [24] but are only of any use in very special problem

domains, for example for deep learning.

It would be optimal if the compiler could automatically vectorize our kernels when they are called in

a loop and vectorization is supported by the underlying accelerator. However, besides full blown vec-

tor processors, mainstream CPUs do not support predicated execution or similar complex things within

vector registers. At most, there is support for masking operations which allow to emulate at least some

conditional branching. Therefore, this missing hardware capability has to be circumvented by the com-

piler. There are scientific research projects such as the work done by Ralf Karrenberg et al [17] [18] [19]

building on the LLVM compiler infrastructure supporting such whole-function vectorization. However,

as will be shown in section 4.2.1, current mainstream compilers do not support automatic vectorization

of basic, non trivial loops containing control flow statements (if, else, for, etc.) or other non-trivial

memory operations. Therefore, it has to be made easier for the compiler to recognize the vectorization

possibilities by making it more explicit.

The opposite of automatic whole function vectorization is the fully explicit vectorization of expressions

via compiler intrinsics directly resulting in the desired assembly instruction. A big problem when trying

to utilize fully explicit vectorization is, that there is no common foundation supported by all explicit

vectorization methods. A wrapper unifying the x86 SIMD intrinsics found in the intrin.h or x86intrin

.h headers with those supported on other platforms, for example ARM NEON (arm_neon.h), PowerPC

Altivec (altivec.h) or CUDA is not available and to write one is a huge task in itself. However, if this

would become available in the future, it could easily be integrated into alpaka kernels.

Due to current compilers being unable to vectorize whole functions and the explicit vectorization intrin-

sics not being portable, one has to rely on the vectorization capabilities of current compilers for primitive

loops only consisting of a few computations. By creating a grid of data elements, where multiple ele-

ments are processed per thread and threads are pooled in independent blocks, as it is shown in figure

22 2. ABSTRACTION

2.5, the user is free to loop sequentially over the elements or to use vectorization for selected expres-

sions within the kernel. Even the sequential processing of multiple elements per thread can be useful

depending on the architecture. For example, the NVIDIA cuBLAS general matrix-matrix multiplication

(GEMM) internally executes only one thread for each second matrix data element to better utilize the

registers available per thread.

Figure 2.5: The abstraction hierarchy consisting of a grid of elements, where multiple elements are pro-
cessed per thread, multiple threads are executed in lock-step within a warp and multiple warps
form independent blocks.

2.2.5 Summary

In the further course of the work the abstraction will be called Redundant Hierarchical Parallelism. This

term is inspired by the paper The Future of Accelerator Programming: Abstraction, Performance or Can

We Have Both? [32]. It investigates a similar “concept of copious parallel programming” reaching 80%-

90% of the native performance while comparing CPU and GPU centric versions of an OpenCL n-body

simulation with a general version utilizing parallelism on multiple hierarchy levels.

The CUDA or OpenCL abstractions themselves are very similar to the one designed in the previous

sections and consists of all but the Element level. However, as has been shown, all five abstraction

hierarchy levels are necessary to fully utilize current architectures. By emulating unsupported or ignoring

redundant levels of parallelism, algorithms written with this abstraction can always be mapped optimally

to all supported accelerators. The table 2.1 summarizes the characteristics of the proposed hierarchy

levels.
Hierarchy Level Parallelism Synchronizable
grid sequential / parallel 7/ 3

block parallel 7

warp parallel 3

thread parallel / lock-step 3

element sequential 7

Table 2.1: Abstraction hierarchy levels, their different types of parallelism and their ability to
synchronize.

Depending on the stream a task is enqueued into, grids will either run in sequential order within the same

stream or in parallel in different streams. They can be synchronized by using events. Blocks can not be

2.2. DATA PARALLELISM 23

synchronized and therefore can use the whole spectrum of parallelism ranging from fully parallel up to

fully sequential execution depending on the device. Warps combine the execution of multiple threads in

lock-step and can be synchronized implicitly by synchronizing the threads they contain. Threads within

a block are executed in parallel warps and each thread computes a number of data elements sequentially.

24 2. ABSTRACTION

25

3 Implementation

This chapter describes how the abstraction defined in chapter 2 can be mapped to real devices (sec. 3.1).

Furthermore, the implementation of the library in C++, especially the way C++11 allows to define the

abstract concepts and to take advantage of the zero-overhead compile-time polymorphism is explained

in section 3.2.

3.1 Mapping Redundant Hierarchical Parallelism onto Specific
Hardware Architectures

By providing an accelerator independent interface for kernels, their execution and memory accesses at

different hierarchy levels, alpaka allows the user to write accelerator independent code that does not

neglect performance.

The mapping of the decomposition to the execution environment is handled by the alpaka library. A

computation that is described with a maximum of parallelism can not be mapped one to one to any exist-

ing hardware. GPUs do not have vector registers for float or double types. Therefore, the element level

is often omitted on CUDA accelerators. CPUs in turn are not (currently) capable of running thousands of

threads concurrently and do not have equivalently fast inter-thread synchronization and shared memory

access as GPUs do.

A major point of the redundant hierarchical parallelism abstraction is to ignore specific unsupported

levels and utilize only the ones supported on a specific accelerator. This allows a mapping to various

current and future accelerators in a variety of ways enabling optimal usage of the underlying compute

and memory capabilities.

In the following sections the grid level is always mapped to the whole device being in consideration.

The scheduler can always execute multiple kernel grids from multiple streams in parallel by statically or

dynamically subdividing the available resources. However, this will only ever simplify the mapping due

to less available processing units. Furthermore, being restricted to less resources automatically improves

the locality of data due to spatial and temporal locality properties of the caching hierarchy.

3.1.1 CUDA GPUs

Mapping the abstraction to GPUs supporting CUDA is straightforward because the hierarchy levels are

identical up to the element level. So blocks of warps of threads will be mapped directly to their CUDA

equivalent.

The element level will be supported through an additional run-time variable containing the extent of ele-

ments per thread. This variable can be accessed by all threads and should optimally be placed in constant

device memory for fast access. Additionally, it could be fully optimized away by template specialization

26 3. IMPLEMENTATION

if exactly one element is calculated per thread. This would allow the compiler to completely remove the

sequential element loops due to the compile-time constant of exactly one element per thread.

3.1.2 x86 CPUs

There are multiple possible ways to map the alpaka abstraction to x86 CPUs. Figure 3.1 shows a node

with two sockets and two cores each. Through symmetric multithreading (Hyper-Threading) each core

represents two processing units.

Figure 3.1: Compute and memory hierarchy of a dual-socket (Package) node with dual-core CPUs and
symmetric multithreading (Hyper-Threading).

3.1.2.1 Thread

Mapping the thread level directly to the processing units is the most trivial part of the assignment of

hierarchy levels to hardware units. However, the block and warp levels could be mapped to hardware

components in different ways with varying advantages and disadvantages.

3.1.2.2 Warp

Even though a warp seems to be identical to a vector register, because both execute a single uniform

instruction on multiple data elements, they are not the same. As has been described in section 2.2.3,

warps can handle branches with divergent control flows of multiple threads. There is no equivalent

hardware unit in a CPU supporting this. Therefore, the warp level can not be utilized on CPUs leading

to a one-to-one mapping of threads to warps which does not violate the rules of the abstraction.

3.1.2.3 Block

One Block Per Node By combining all threads/PUs of all processors on the node into one block,

the number of synchronizing and communicating threads is enlarged. This high possible thread count

would simplify the implementation of some types of algorithms but introduces performance issues on

multi-core nodes. The shared memory between all cores on a node is the RAM. However, the RAM and

the communication between the sockets is far too slow for fine-grained communication in the style of

CUDA threads.

3.1. MAPPING REDUNDANT HIERARCHICAL PARALLELISM ONTO SPECIFIC HARDWARE
ARCHITECTURES 27

One Block Per Socket If each processor on each socket would concurrently execute one block, the

L3 cache would be used as the fast shared memory. Although this is much better then to use the RAM,

there is still a problem. Regions of the global memory and especially from the shared memory that are

accessed are automatically cached in the L1 and / or L2 caches of each core. Not only the elements which

are directly accessed will be cached but always the whole cache line they lie in. Cache lines typically

have a size of 64 Bytes on modern x86 architectures. This leads to, for example, eight double precision

floating point numbers being cached at once even though only one value really is required. As long as

these values are only read there is no problem. However, if one thread writes to a value that is also cached

on other cores, all such cache copies have to be invalidated. This results in a lot of cache and bus traffic.

Due to the hierarchical decomposition of the grid of threads reflecting the data elements, neighboring

threads are always combined into a common block. By mapping a block to a socket, threads that are

executed concurrently always have very close indices into the grid. Therefore, the elements that are read

and written by the threads are always very close together within the memory and will most probably

share a cache line. This property is exploited on CUDA GPUs, where memory accesses within a warp

are combined into one large transaction. However, when multiple threads from multiple CPU cores write

to different elements within a cache line, this advantage is reversed into its opposite. This pattern which

is shown in figure 3.2 non-intuitively leads to heavy performance degradation and is called false-sharing.

Figure 3.2: Multiple threads on different cores accessing distinct values in the same cache-line lead to
performance degradation due to false-sharing. [20]

28 3. IMPLEMENTATION

One Block Per Core The best compromise between a high number of threads per block and a fast

communication between the threads is to map a block directly to a CPU core. Each processing unit

(possibly a Hyper-Thread) executes one or more threads of our hierarchical abstraction while executing

multiple elements locally either by processing them sequentially or in a vectorized fashion. This is

illustrated in figure 3.3.

Figure 3.3: Possible mapping of blocks, threads and elements to the compute and memory hierarchy of
a dual-socket node with dual-core CPUs and symmetric multithreading. Blocks are mapped
to cores, threads to processing units and multiple elements are executed per thread.

One Block Per Thread If there is no symmetric multithreading or if it is desired, it is also possible

to implement a mapping of one block with exactly one thread for each processing unit. This allows to

completely remove the synchronization overhead for tasks where this is not required at all.

3.1.2.4 Threading Mechanisms

The mapping of threads to processing units is independent of the threading mechanism that is used. As

long as the thread affinity to cores can be set correctly, OpenMP, pthread, std::thread or other libraries

and APIs can be used interchangeably to implement various alpaka back-ends. They all have different

advantages and disadvantages. Real operating system threads like pthread, std::thread and others have

a high cost of thread creation and thread change because their default stack size amounts to multiple

megabytes. OpenMP threads on the other hand are by default much more lightweight. However, they

are arbitrarily limited by the runtime implementation in the maximum number of concurrent threads

a machine supports. All of the previous methods have non-deterministic thread changes in common.

Therefore it is not possible to decide the order in which threads within a block are processed, which

could be a good optimization opportunity.

To allow blocks to contain more threads then the number of processing units each core provides, it is

possible to simply start more threads then processing units are available. This is called oversubscription.

Those threads can be bound to the correct cores and by relying on the operating system thread sched-

uler, they are preemptively multitasked while sharing a single cache and thereby avoiding false-sharing.

However, this is not always beneficial because the cost of thread changes by the kernel-mode scheduler

should not be underestimated.

3.1. MAPPING REDUNDANT HIERARCHICAL PARALLELISM ONTO SPECIFIC HARDWARE
ARCHITECTURES 29

Fibers To remove the overhead of the kernel mode scheduler as well as to enable the usage of de-

terministic thread context-switches, fibers can be used. A fiber is a user-space thread with cooperative

context-switches and extends the concept of coroutines. A coroutine is basically a function that can be

suspended and resumed but does not necessarily have a stack. In contrast, functions within most pro-

gramming languages represent subroutines and not coroutines because they can neither be suspended in

the mid of execution nor resumed exactly at the place they were suspended without losing values on the

functions local stack.

Multiple fibers can be executed within one operating system thread, which allows to simulate multiple

threads per block without kernel-mode multithreading. This was not possible without fibers because only

coroutines allow the kernel functions to be suspended at synchronization points and resumed when all

fibers reached it. Each time an operating system thread executing a function would wait for an other

thread or a resource, an equivalent fiber just switches to the next fiber within the executing host thread.

Due to the context changes happening at user-level, the cost is much lower. Additionally, fiber context

changes are deterministic and it is even possible to implement an user-level scheduler. An advantage of a

user level scheduler over the operating system thread scheduler is the possibility to optimally utilize the

caches by taking into account the memory access pattern of the algorithm. Furthermore, fibers reduce

the number of locks and busy waits within a block because only one fiber is active per operating system

thread at a time.

There are multiple C++ Standards Committee Papers (N3858, N3985, N4134) discussing the inclusion

of fibers, awaitable functions and similar concepts into C++.

3.1.2.5 Intel Xeon Phi

With it‘s 60 and more cores and 4 Hyper-Threads per core it is much larger then an ordinary CPU but

conceptually they are very similar. As can be seen in figure 3.4, which is showing a section of the

compute and memory hierarchy, the only difference is the amount of cores and Hyper-Threads. What

can not be seen in the figure is the size of the vector registers, which are 512 bits wide and thereby larger

then those of most conventional CPUs.

Because of the similarity, the same mapping that has been used for CPUs can also be used for the many-

core Intel Xeon Phi. A possible mapping of blocks to cores with the L1 and L2 caches as shared memory

and threads being mapped to processing units is shown in figure 3.5. Additionally, multiple elements

can be computed per thread which enables the utilization of vectorization depending on the type of the

elements.

30 3. IMPLEMENTATION

Figure 3.4: A section from the compute and memory hierarchy of a Intel Xeon Phi.

Figure 3.5: Possible mapping of blocks, threads and elements to the compute and memory hierarchy
of a Intel Xeon Phi. Blocks are mapped to cores, threads to processing units and multiple
elements are executed per thread.

3.2. STRUCTURE AND IMPLEMENTATION OF THE ALPAKA INTERFACE 31

3.2 Structure and Implementation of the alpaka Interface

To examine if the abstraction can accomplish it‘s design goals, a proof-of-concept library has been imple-

mented. It is called alpaka, an acronym for ‘Abstraction Library for Parallel Kernel Acceleration‘. The

source code is published[37] as open-source under the LGPLv3. It can be used for free in open-source

as well as commercial projects. The structure of the library is explained in section 3.2.1.

As described in Chapter 2, the general design of the library is very similar to CUDA and OpenCL but

extends both by some points, while not requiring any language extensions. General interface design as

well as interface implementation decisions differentiating alpaka from those libraries which are described

in section 3.2.2. It uses C++ because it is one of the most performant languages available on nearly all

systems. Furthermore, C++11 allows to describe the concepts in a very abstract way that is not possible

with many other languages. The alpaka library extensively makes use of advanced functional C++

template meta-programming techniques. The implementation details of the C++ library and the way it

provides extensibility and optimizability is discussed in section 3.2.3.

3.2.1 Structure

The alpaka library allows offloading of computations from the host execution domain to the accelerator

execution domain, whereby they are allowed to be identical.

In the abstraction hierarchy the library code is interleaved with user supplied code. This is depicted in

figure 3.6. User code invokes library functions, which in turn execute the user provided thread function

(kernel) in parallel on the accelerator. The kernel in turn calls library functions when accessing acceler-

ator properties and methods. Additionally, the user can enhance or optimize the library implementations

by extending or replacing specific parts.

Figure 3.6: Correlation between the execution domain and the code originator.

The alpaka abstraction itself only defines requirements a type has to fulfill to be usable with the template

functions the library provides. These type constraints are called concepts in C++.

A concept is a set of requirements consisting of valid expressions, associated types, invari-

ants, and complexity guarantees. A type that satisfies the requirements is said to model the

concept. A concept can extend the requirements of another concept, which is called refine-

ment.[1]

Concepts allow to safely define polymorphic algorithms that work with objects of many different types.

The alpaka library implements a stack of concepts and their interactions modeling the abstraction de-

fined in the previous chapter. Furthermore, default implementations for various devices and accelerators

modeling those are included in the library. The interaction of the main user facing concepts can be seen

in figure 3.7.

32 3. IMPLEMENTATION

Figure 3.7: Interaction of the main concepts.

For each type of Device there is a DeviceManager for enumerating the available Devices. A Device is

the requirement for creating Streams and Events as it is for allocating Buffers on the respective Device

. Buffers can be copied, their memory be set and they can be pinned or mapped. Copying and setting

a buffer requires the corresponding Copy and Set tasks to be enqueued into the Stream. An Event can

be enqueued into a Stream and its completion state can be queried by the user. It is possible to wait for

(synchronize with) a single Event, a Stream or a whole Device. An Executor can also be enqueued

into a Stream and will execute the Kernel if all previous tasks in the stream have been completed. The

Kernel in turn has access to the Accelerator it is running on. The Accelerator provides the Kernel

with its current index in the block or grid, their extents or other data as well as it allows to allocate shared

memory, execute atomic operations and many more.

3.2.2 User Interface

3.2.2.1 Thread Function

Many parallelization libraries / frameworks do not fully support the separation of the parallelization

strategy from the algorithm itself. OpenMP, for example, fully mixes the per thread algorithm and the

parallelization strategy. This can be seen in the source listing 3.8 showing a simple AXPY computation.

3.2. STRUCTURE AND IMPLEMENTATION OF THE ALPAKA INTERFACE 33

1 template<
2 typename TSize,
3 typename TElem>
4 void axpy(
5 TSize const n,
6 TElem const alpha,
7 TElem const * const X,
8 TElem * const Y)
9 {

10 #pragma omp parallel for
11 for (i=0; i<n; i++)
12 {
13 Y[i] = alpha * X[i] + Y[i];
14 }
15 }

Figure 3.8: AXPY with OpenMP.

Only one line of the function body, line 13, is the algorithm itself, while all surrounding lines represent

the parallelization strategy. In OpenACC the parallelization and the algorithm are similarly combined.

CUDA, OpenCL and other libraries allow, at least to some degree, to separate the algorithm from the

parallelization strategy. They define the concept of a kernel representing the algorithm itself which is

then parallelized depending on the underlying hardware. The AXPY CUDA kernel source code shown

in figure 3.9 consists only of the code of one single iteration.

1 template<
2 typename TSize,
3 typename TElem>
4 __global__ void axpy(
5 TSize const n,
6 TElem const alpha,
7 TElem const * const X,
8 TElem * const Y)
9 {

10 TSize const i(blockIdx.x*blockDim.x + threadIdx.x)
11 if(i < n)
12 {
13 Y[i] = alpha * X[i] + Y[i];
14 }
15 }

Figure 3.9: AXPY with CUDA.

On the other hand the CUDA implementation is bloated with code handling the inherent blocking scheme.

Even if the algorithm does not utilize blocking, as it is the case here, the algorithm writer has to calculate

the global index of the current thread by hand (line 10). Furthermore, to support vectors larger then the

predefined maximum number of threads per block (1024 for current CUDA devices), multiple blocks

have to be used. When the number of blocks does not divide the number of vector elements, it has to

be assured that the threads responsible for the vector elements behind the given length, do not access the

memory to prevent a possible memory access error.

By using the kernel concept, the parallelization strategy, whether all elements are executed in sequential

order, in parallel or blocked is not hard coded into the algorithm itself. The possibly multidimensional

nested loops do not have to be written by the user. For example, six loops would be required to emulate

34 3. IMPLEMENTATION

the CUDA execution pattern with a grid of blocks consisting of threads.

Furthermore the kernel concept breaks the algorithm down to the per element level. Recombining mul-

tiple kernel iterations to loop over lines, columns, blocks or any other structure is always possible by

changing the calling code and does not require a change of the kernel. In contrast, by using OpenMP this

would not be possible. Therefore the alpaka interface builds on the kernel concept, being the body of the

corresponding standard for loop executed in each thread.

3.2.2.2 Function Execution Domain Specifications

CUDA requires the user to annotate its functions with execution domain specifications. Functions that

can only be executed on the GPU have to be annotated with __device__, functions that can be executed

on the host and on the GPU have to be annotated with __host__ __device__ and host only functions can

optionally be annotated with __host__. The nvcc CUDA compiler uses these annotations to decide with

which back-ends a function has to be compiled. Depending on the compiler in use, alpaka defines the

macros ALPAKA_FN_HOST, ALPAKA_FN_ACC and ALPAKA_FN_HOST_ACC with the identical meaning which

can be used in the same positions. When the CUDA compiler is used, they are defined to their CUDA

equivalents, else they are empty.

3.2.2.3 Accelerator Executable Functions

Functions that should be executable on an accelerator do not only have to be annotated with the execution

domain. They most probably also require access to the accelerator data and methods, such as indices and

extents as well as functions to allocate shared memory and to synchronize all threads within a block. As

it was explained previously, there are no implicit built-in variables and functions in alpaka. Therefore the

accelerator has to be passed in as a template variable. Both, the execution domain specification combined

with the accelerator reference parameter can be seen in figure 3.10.

1 template<
2 typename TAcc>
3 ALPAKA_FN_ACC auto doSomethingOnAccelerator(
4 TAcc const & acc,
5 ...)
6 -> void
7 {
8 //...
9 }

Figure 3.10: Definition of a function with execution domain specification and accelerator reference
parameter.

3.2.2.4 Kernel Definition

The alpaka library requires the kernel entry point to be a function object. This means, the kernel is an

object that has implemented the operator() member function and can be called like any other function.

This allows, for example, to use C++11 lambdas, std::function objects or arbitrary other functions as

kernels and not only global functions which are required by CUDA. Furthermore, unlike CUDA, the

alpaka library does not differentiate between the kernel function that represents the entry point and other

3.2. STRUCTURE AND IMPLEMENTATION OF THE ALPAKA INTERFACE 35

functions that can be executed on the accelerator. The entry point function that has to be annotated

with __global__ in CUDA is internal to the alpaka CUDA back-end and is not exposed to the user. It

directly calls into the user supplied kernel function object whose invocation operator is declared with

ALPAKA_FN_ACC, which equals __device__ in CUDA. Thus there is no difference between the kernel

entry point function and any other accelerator function in alpaka. Figure 3.11 shows a basic example

kernel function object.

1 struct MyKernel
2 {
3 template<
4 typename TAcc>
5 ALPAKA_FN_ACC static auto operator()(
6 TAcc & acc/*,
7 ...*/) const
8 -> void
9 {

10 //...
11 }
12 // Members ...
13 };

Figure 3.11: Prototype definition of a user kernel function object.

The kernel function object is shared across all threads in all blocks. Due to the block execution order

being undefined, there is no safe and consistent way of altering state that is stored inside of the function

object. Therefore, the operator() of the kernel function object has to be const and is not allowed to

modify any of the object members. This is especially important for the CUDA back-end, as it could

possibly use the constant memory of the GPU to store the function object. The constant memory is a

fast, cached, read-only memory that is beneficial when all threads uniformly read from the same address

at the same time. In this case it is as fast as a read from a register.

3.2.2.5 Index and Work Division

CUDA requires the user to calculate the global index of the current thread within the grid by hand (already

shown in fig. 3.9). On the contrary, OpenCL provides the methods get_global_size, get_global_id,

get_local_size and get_local_id. Called with the required dimension, they return the corresponding

local or global index or extent (size). In alpaka this idea is extended to all dimensions. The alpaka::

workdiv::getWorkDiv and the alpaka::idx::getIdx functions both return a vector of the dimension-

ality the accelerator has be defined with. To unify the method interface and to avoid confusion between

the differing terms and meanings of the functions in OpenCL and CUDA, in alpaka these methods are

template functions. They are parametrized by the origin of the calculation as well as the unit in which

the values are calculated. For example, alpaka::workdiv::getWorkDiv<alpaka::Grid, alpaka::

Threads>(acc) returns a vector with the extents of the grid in units of threads.

3.2.2.6 Interface Properties

The alpaka library is different from other similar libraries (especially CUDA) in that it refrains from using

implicit or hidden state. This and other interface design decisions will be explained int the following

paragraphs.

36 3. IMPLEMENTATION

No Current Device: The CUDA runtime API for example supplies a current device for each user

code kernel-thread. Working with multiple devices requires to call cudaSetDevice to change the current

device whenever an operation should be executed on a non-current device. Even the functions for cre-

ating a stream (cudaStreamCreate) or an event (cudaEventCreate) use the current device without any

way to create them on a non current device. In the case of an event this dependency is not obvious, since

at the same time streams can wait for events from multiple devices allowing cross-device synchroniza-

tion without any additional work. So conceptually an event could also have been implemented device

independently. This can lead to hard to track down bugs due to the non-explicit dependencies, especially

in multi-threaded code using multiple devices.

No Default Device: In contrast to the CUDA runtime API alpaka does not provide a device by default

per kernel-thread. Especially in combination with OpenMP parallelized host code this keeps users from

surprises. The code snippet that is shown in figure 3.12 does not necessarily do what one would expect.

1 cudaSetDevice(1);
2

3 #pragma omp parallel for
4 for(int i = 0; i<10; ++i)
5 {
6 kernel<<<blocks,threads>>>(i);
7 }

Figure 3.12: OpenMP annotated code using CUDA illustrating undesired default device effects.

Depending on what the CUDA runtime API selects as default device for each of the OpenMP threads

(due to each of them having its own current device), not all of the kernels will necessarily run on device

one.

In the alpaka library all such dependencies are made explicit. All functions depending on a device

require it to be given as a parameter. The alpaka CUDA back-end checks before forwarding the calls

to the CUDA runtime API whether the current device matches the given one and changes it if required.

The alpaka CUDA back-end does not reset the current device to the one prior to the method invocation

out of performance considerations. This has to be considered when native CUDA code is combined with

alpaka code.

No Default Stream: CUDA allows to execute commands without specifying a stream. The default

stream that is used synchronizes implicitly with all other streams on the device. If a command stream is

issued to the default, all other asynchronous streams have to wait before executing any new commands,

even when they have been enqueued much earlier. This can introduce hard to track down performance is-

sues. As of CUDA 7.0 the default stream can be converted to a non synchronizing stream with a compiler

option. Because concurrency is crucial for performance and users should think about the dependencies

between their commands from begin on, alpaka does not provide such a default stream. All asynchronous

operations (kernel launches, memory copies and memory sets) require a stream to be executed in.

No Implicit Built-in Variables and Functions: Within CUDA device functions (functions anno-

tated with __global__ or __device__) built-in functions (__syncthreads, __threadfence, atomicAdd,

3.2. STRUCTURE AND IMPLEMENTATION OF THE ALPAKA INTERFACE 37

...) and variables (gridDim, blockIdx, blockDim, threadIdx, warpSize, ...) are provided.

It would have been possible to emulate those implicit definitions by forcing the kernel function object

to inherit from a class providing these functions and members. However functions outside the kernel

function object would then pose a problem. They do not have access to those functions and members,

the function object has inherited. To circumvent this, the functions and members would have to be pub-

lic, the inheritance would have to be public and a reference to the currently executing function object

would have to be passed as parameter to external functions. This would have been too cumbersome and

inconsistent. Therefore access to the accelerator is given to the user kernel function object via one special

input parameter representing the accelerator. After that this accelerator object can simply be passed to

other functions. The built-in variables can be accessed by the user via query functions on this accelerator.

Abandoning all the implicit and default state makes it much easier for users of the library to reason

about their code.

No Language Extensions: Unlike CUDA, the alpaka library does not extend the C++ language

with any additional variable qualifiers (__shared__, __constant__, __device__) defining the memory

space. Instead of those qualifiers alpaka provides accelerator functions to allocate memory in different

the different memory spaces.

No Dimensionality Restriction: CUDA always uses three-dimensional indices and extents, even

though the task may only be one or two dimensional. OpenCL on the other hand allows grid and block

dimensions in the range [1, 3] but does not provide corresponding n-dimensional indices, but rather pro-

vides functions like get_global_id or get_local_id, which require the dimension in which the one-

dimensional ID is to be queried as a parameter. By itself this is no problem, but how can be assured

that a two-dimensional kernel is called with grid and block extents of the correct dimensionality at com-

pile time? How can it be assured that a kernel which only uses threadIdx.x or equivalently calls

get_global_id(0) will not get called with two dimensional grid and block extents? Because the result

in such a case is undefined, and most of the time not wanted by the kernel author, this should be easy to

check and reject at compile-time. In alpaka all accelerators are templatized on the dimensionality. This

allows a two-dimensional image filter to assert that it is only called with a two dimensional accelerator.

Thereby the algorithms can check for supported dimensionality of the accelerator at compile time instead

of runtime. Furthermore with the dimension being a template parameter, the CPU back-end implementa-

tions are able to use only the number of nested loops really necessary instead of the 6 loops (2× 3 loops

for grid blocks and block threads), which are mandatory to emulate the CUDA threaded blocking scheme.

By hiding all the accelerator functionality inside of the accelerator object that is passed to the user

kernel, the user of the alpaka library is not faced with any non-standard C++ extensions. Nevertheless

the CUDA back-end internally uses those language extensions.

Integral Sizes of Arbitrary Type: The type of sizes such as extents, indices and related variables

are depending on a template parameter of the accelerator and connected classes. This allows the kernel

to be executed with sizes of arbitrary ranges. Thereby it is possible to force the accelerator back-ends to

38 3. IMPLEMENTATION

perform all internal index, extent and other integral size depending computations with a given precision.

This is especially useful on current NVIDIA GPUs. Even though they support 64-bit integral operations,

they are emulated with multiple 32-bit operations. This can be a huge performance penalty when the

sizes of buffers, offsets, indices and other integral variables holding sizes are known to be limited.

No synchronous and asynchronous function versions: CUDA provides two versions of many

of the runtime functions, for example, cudaMemcpyAsync and cudaMemcpy. The asynchronous version

requires a stream while the synchronous version does not need a stream parameter. The asynchronous

version immediately returns control back to the caller while the task is enqueued into the given stream

and executed later in parallel to the host code. The synchronous version waits for the task to finish before

the function call returns control to the caller. Inconsistently, all kernels in a CUDA program can only be

started either asynchronously by default or synchronously if CUDA_LAUNCH_BLOCKING is defined. There

is no way to specify this on a per kernel basis. To switch a whole application from asynchronous to

synchronous calls, for example for debugging reasons, it is necessary to change the names of all the

runtime functions being called as well as their parameters. In alpaka this is solved by always enqueuing

all tasks into a stream and not defining a default stream. Asynchronous streams as well as synchronous

streams are provided for all devices. Changes to the synchronicity of multiple tasks can be made on a per

stream basis by changing the stream type at the place of creation. There is no need to change any line of

calling code.

3.2.2.7 Memory Management

Memory buffers can not only be identified by the pointer to their first byte. The C++ new and malloc,

the CUDA cudaMalloc as well as the OpenCL clCreateBuffer functions all return a plain pointer. This

is not enough when working with multiple accelerators and multiple devices. To know where a specific

pointer was allocated, additional information has to be stored to uniquely identify a memory buffer on

a specific device. Memory copies between multiple buffers additionally require the buffer extents and

pitches to be known. Many APIs, for example CUDA, require the user to store this information externally.

The memory allocation function of the alpaka library (alpaka::mem::buf::alloc<TElem>(device,

extents)) is uniform for all devices, even for the host device. It does not return raw pointers but

reference counted memory buffer objects that remove the necessity for manual freeing and the possibility

of memory leaks. Additionally the memory buffer objects know their extents, their pitches as well as the

device they reside on. This allows buffers that possibly reside on different devices with different pitches

to be copied only by providing the buffer objects as well as the extents of the region to copy (alpaka::

mem::view::copy(bufDevA, bufDevB, copyExtents).

3.2.2.8 Kernel Execution

The following subsection will discuss the source code listing shown in figure 3.13.

As described in section 3.2.2.6 the dimensionality of the task as well as the type for index and extent sizes

have to be defined explicitly. Following this, the type of accelerator to execute on, as well as the type of

the stream have to be defined. For both of these types instances have to be created. For the accelerator

this has to be done indirectly by enumerating the required device via the device manager, whereas the

3.2. STRUCTURE AND IMPLEMENTATION OF THE ALPAKA INTERFACE 39

1 // Define the dimensionality of the task.
2 using Dim = alpaka::dim::DimInt<1u>;
3 // Define the type of the sizes.
4 using Size = std::size_t;
5 // Define the accelerator to use.
6 using Acc = alpaka::acc::AccCpuSerial<Dim, Size>;
7 // Select the stream type.
8 using Stream = a::stream::StreamCpuAsync;
9

10 // Select a device to execute on.
11 auto devAcc(a::dev::DevManT<Acc>::getDevByIdx(0));
12 // Create a stream to enqueue the execution into.
13 Stream stream(devAcc);
14

15 // Create a 1-dimensional work division with 256 blocks a 16 threads.
16 auto const workDiv(alpaka::workdiv::WorkDivMembers<Dim, Size>(256u, 16u);
17 // Create an instance of the kernel function object.
18 MyKernel kernel;
19 // Create the execution task.
20 auto const exec(alpaka::exec::create<Acc>(workDiv, kernel/*, arguments ...*/);
21 // Enqueue the task into the stream.
22 alpaka::stream::enqueue(stream, exec);

Figure 3.13: Execution of a kernel by enqueuing the execution task into a stream.

stream can be created directly.

To execute the kernel shown in section 3.2.2.4, an instance of the kernel function object has to be con-

structed. Following this, an execution task combining the work division (grid and block sizes) with the

kernel function object and the bound invocation arguments has to be created. After that this task can be

enqueued into a stream for immediate or later execution (depending on the stream used). In appendix A.1

a minimal functional example of a kernel implementing a generalized vector addition, its invocation, as

well as all surrounding alpaka operations such as memory allocations and copies, is shown and directly

compared to the native CUDA implementation.

3.2.3 Implementation in C++

The full stack of concepts defined by the alpaka library and their inheritance hierarchy is shown in the

third column of figure 3.14. Default implementations for those concepts can be seen in the blueish

columns. The various accelerator implementations, shown in the lower half of the figure, only differ

in some of their underlying concepts but can share most of the base implementations. The default im-

plementations can, but do not have to be used at all. They can be replaced by user code in arbitrary

granularity. By substituting, for instance, the atomic operation implementation of an accelerator, the ex-

ecution can be fine-tuned, to better utilize the hardware instruction set of a specific processor. However,

also complete accelerators, devices and all of the other concepts can be implemented by the user without

the need to change any part of the alpaka library itself. The way this and other things are implemented

is explained in the following paragraphs.

40 3. IMPLEMENTATION

Figure 3.14: Overview of the structure of the alpaka library with concepts and implementations.

3.2. STRUCTURE AND IMPLEMENTATION OF THE ALPAKA INTERFACE 41

3.2.3.1 Concept Implementations

The alpaka library has been implemented with extensibility in mind. This means that there are no

predefined classes, modeling the concepts, the alpaka functions require as input parameters. They allow

arbitrary types as parameters, as long as they model the required concept.

C++ provides a language inherent object oriented abstraction allowing to check that parameters to a

function comply with the concept they are required to model. By defining interface classes, which model

the alpaka concepts, the user would be able to inherit his extension classes from the interfaces he wants

to model and implement the abstract virtual methods the interfaces define. The alpaka functions in turn

would use the corresponding interface types as their parameter types. For example, the Buffer concept

requires methods for getting the pitch or changing the memory pinning state. With this intrusive object

oriented design pattern the BufCpu or BufCudaRt classes would have to inherit from an IBuffer interface

and implement the abstract methods it declares. An example of this basic pattern is shown in figure 3.15.

1 struct IBuffer
2 {
3 virtual std::size_t getPitch() const = 0;
4 virtual void pin() = 0;
5 virtual void unpin() = 0;
6 ...
7 };
8

9 struct BufCpu : public IBuffer
10 {
11 virtual std::size_t getPitch() const override { ... }
12 virtual void pin() override { ... }
13 virtual void unpin() override { ... }
14 ...
15 };
16

17 ALPAKA_FN_HOST auto copy(
18 IBuffer & dst,
19 IBuffer const & src)
20 -> void
21 {
22 ...
23 }

Figure 3.15: Enforcement of concepts with basic C++ object orientation.

The compiler can then check at compile time that the objects the user wants to use as function parameters

can be implicitly cast to the interface type, which is the case for inherited base classes. The compiler

returns an error message on a type mismatch. However, if the alpaka library were using those language

inherent object oriented abstractions, the extensibility and optimizability it promises would not be pos-

sible. Classes and run-time polymorphism require the implementer of extensions to intrusively inherit

from predefined interfaces and override special virtual functions.

This is feasible for user defined classes or types where the source code is available and where it can be

changed. The std::vector class template on the other hand would not be able to model the Buffer

concept because we can not change its definition to inherit from the IBuffer interface class since it is

part of the standard library. The standard inheritance based object orientation of C++ only works well

when all the code it is to interoperate with can be changed to implement the interfaces. It does not enable

42 3. IMPLEMENTATION

interaction with unalterable or existing code that is too complex to change, which is the reality in the

majority of software projects.

Another option to implement an extensible library is to follow the way the C++ standard library uses.

It allows to specialize function templates for user types to model concepts without altering the types

themselves. For example, the std::begin and std::end free function templates can be specialized for

user defined types. With those functions specialized, the C++11 range-based for loops (for(auto &

i : userContainer){...}) [14, C++ Standard 6.5.4/1] can be used with user defined types. Equally

specializations of std::swap and other standard library function templates can be defined to extend those

with support for user types. One Problem with function specialization is, that only full specializations are

allowed. A partial function template specialization is not allowed by the standard. Another problem can

emerge due to users carelessly overloading the template functions instead of specializing them. Mixing

function overloading and function template specialization on the same base template function can result

in unexpected results. The reasons and effects of this are described more closely in an article from H.

Sutter (currently convener of the ISO C++ committee) in the C/C++ Users Journal [34].

The solution given in the article is to provide “a single function template that should never be specialized

or overloaded”. This function simply forwards its arguments “to a class template containing a static

function with the same signature”. This template class can fully or partially be specialized without

affecting overload resolution.

The way the alpaka library implements this is by not using the C++ inherent object orientation but lifting

those abstractions to a higher level. Instead of using a non-extensible class/struct for defining the

interface, a namespace is utilized. In place of abstract virtual member functions of the interface, alpaka

defines free functions within those namespaces. All those functions are templates allowing the user to

call them with arbitrary self defined types and not only those inheriting from a special interface type.

Unlike member functions, they have no implicit this pointer, so the object instance has to be explicitly

given as a parameter. Overriding the abstract virtual interface methods is replaced by the specialization

of a template type that is defined for each such namespace function.

A concept is completely implemented by specializing the predefined template types. This allows to

extend and fine-tune the implementation non-intrusively. For example, the corresponding pitch and

memory pinning template types can be specialized for std::vector. After doing this, the std::vector

can be used everywhere a buffer is accepted as argument throughout the whole alpaka library without

ever touching its definition.

A simple function allowing arbitrary tasks to be enqueued into a stream can be implemented in the way

shown in figure 3.16. The TSfinae template parameter will be explained in section 3.2.3.2.

A user who wants his stream type to be used with this enqueue function has to specialize the Enqueue

template struct. This can be either done partially by only replacing the TStream template parameter

and accepting arbitrary tasks or by fully specializing and replacing both TStream and TTask. This gives

the user complete freedom of choice. The example given in figure 3.17 shows this by specializing the

Enqueue type for a user stream type UserStream and arbitrary tasks. In addition figure 3.18 shows a full

specialization for a given UserStream and a UserTask.

When the enqueue function template is called with an instance of UserStream, the most specialized

version of the Enqueue template is selected depending on the type of the task TTask it is called with.

A type can model the stream concept completely by defining specializations for alpaka::stream::

3.2. STRUCTURE AND IMPLEMENTATION OF THE ALPAKA INTERFACE 43

1 namespace stream
2 {
3 template<
4 typename TStream,
5 typename TTask,
6 typename TSfinae = void>
7 struct Enqueue;
8

9 template<
10 typename TStream,
11 typename TTask>
12 ALPAKA_FN_HOST auto enqueue(
13 TStream & stream,
14 TTask & task)
15 -> void
16 {
17 Enqueue<
18 TStream,
19 TTask>
20 ::enqueue(
21 stream,
22 task);
23 }
24 }

Figure 3.16: Definition of the function to enqueue tasks into a stream.

1 struct UserStream{};
2

3 namespace stream
4 {
5 // partial specialization
6 template<
7 typename TTask>
8 struct Enqueue<
9 UserStream

10 TTask>
11 {
12 ALPAKA_FN_HOST static auto enqueue(
13 UserStream & stream,
14 TTask & task)
15 -> void
16 {
17 //...
18 }
19 };
20 }

Figure 3.17: Partial specialization of the Enqueue type to extend the functionality for a user type.

44 3. IMPLEMENTATION

1 struct UserStream{};
2 struct UserTask{};
3

4 namespace stream
5 {
6 // full specialization
7 template<>
8 struct Enqueue<
9 UserStream

10 UserTask>
11 {
12 ALPAKA_FN_HOST static auto enqueue(
13 UserStream & stream,
14 UserTask & task)
15 -> void
16 {
17 //...
18 }
19 };
20 }

Figure 3.18: Full specialization of the Enqueue type to extend the functionality for a user type.

Enqueue and alpaka::stream::Empty. This functionality can be accessed by the corresponding alpaka

::stream::enqueue and alpaka::stream::empty template functions.

Currently there is no native language support for describing and checking concepts in C++ at compile

time. A study group (SG8) is working on the ISO specification [15] and compiler forks implementing

them do exist. For usage in current C++ there are libraries like Boost.ConceptCheck ([33]) which try

to emulate requirement checking of concept types. Those libraries often exploit the preprocessor and

require non-trivial changes to the function declaration syntax. Therefore the alpaka library does not

currently make use of Boost.ConceptCheck. Neither does it facilitate the proposed concept specification

due to its dependency on non-standard compilers.

The usage of concepts as described in the working draft would often dramatically enhance the compiler

error messages in case of violation of concept requirements. Currently the error messages are pointing

deeply inside the stack of library template invocations where the missing method or the like is called.

Instead of this, with concept checking it would directly fail at the point of invocation of the outermost

template function with an expressive error message about the parameter and its violation of the concept

requirements. This would simplify especially the work with extendable template libraries like Boost or

alpaka. However, in the way concept checking would be used in the alpaka library, omitting it does not

change the semantic of the program, only the compile time error diagnostics. In the future when the

standard incorporates concept checking and the major compilers support it, it will be added to the alpaka

library.

3.2.3.2 Template Specialization Selection on Arbitrary Conditions

Basic template specialization only allows for a selection of the most specialized version where all ex-

plicitly stated types have to be matched identically. It is not possible to enable or disable a specialization

based on arbitrary compile time expressions depending on the parameter types. To allow such conditions,

alpaka adds a defaulted and unused TSfinae template parameter to all declarations of the implementa-

3.2. STRUCTURE AND IMPLEMENTATION OF THE ALPAKA INTERFACE 45

tion template structs. This was shown in figure 3.16 using the example of the Enqueue template type.

The C++ technique called SFINAE, an acronym for Substitution failure is not an error allows to disable

arbitrary specializations depending on compile time conditions. Specializations where the substitution of

the parameter types by the deduced types would result in invalid code will not result in a compile error,

but will simply be omitted. An example in the context of the Enqueue template type is shown in figure

3.19.

1 struct UserStream{};
2

3 namespace stream
4 {
5 template<
6 typename TStream,
7 typename TTask>
8 struct Enqueue<
9 TStream

10 TTask,
11 typename std::enable_if<
12 std::is_base_of<UserStream, TStream>::value
13 && (TTask::TaskId == 1u)
14 >::type>
15 {
16 ALPAKA_FN_HOST static auto enqueue(
17 TStream & stream,
18 TTask & task)
19 -> void
20 {
21 //...
22 }
23 };
24 }

Figure 3.19: Specialization of the Enqueue type using SFINAE for arbitrary conditions.

The Enqueue specialization shown here does not require any direct type match for the TStream or the

TTask template parameter. It will be used in all contexts where TStream has inherited from UserStream

and where the TTask has a static const integral member value TaskId that equals one. If the TTask type

does not have a TaskId member, this code would be invalid and the substitution would fail. However,

due to SFINAE, this would not result in a compiler error but rather only in omitting this specialization.

The std::enable_if template results in a valid expression, if the condition it contains evaluates to true,

and an invalid expression if it is false. Therefore it can be used to disable specializations depending on

arbitrary boolean conditions. It is utilized in the case where the TaskId member is unequal one or the

TStream does not inherit from UserStream. In this cirumstances, the condition itself results in valid

code but because it evaluates to false, the std::enable_if specialization results in invalid code and the

whole Enqueue template specialization gets omitted.

46 3. IMPLEMENTATION

47

4 Evaluation

To estimate the overhead introduced by the alpaka library and to show whether the abstraction introduces

any noticeable problems regarding performance portability across multiple hardware architectures, the

following chapter discusses measurements with artificial and real world codes. The exact methodology

by which the tests have been carried out is described in section 4.1.

To compare the performance of the various back-ends, the generalized vector addition (AXPY) is used

as synthetic benchmark in section 4.2 and the generalized matrix multiplication (GEMM) in section 4.3.

To show that the abstraction does not only work in artificial cases, the HASEonGPU[39] simulation has

been ported from CUDA to alpaka. The original HASEonGPU simulation can only be compared directly

to the alpaka port of the simulation that uses the CUDA back-end. All the other alpaka back-ends are

difficult to compare to because there is no version of HASEonGPU using OpenMP natively. Therefore

HASEonGPU will be used to show that a port from CUDA to alpaka is possible and that the overhead

which is introduced by the additional layer is small enough to be compensated by the benefit of hard-

ware independence (sec. 4.4). The only comparison that can be done across all alpaka back-ends and

all the different hardware devices utilized is to compare the achieved performance relative to the peak

performance of the underlying hardware. This comparison is not always useful or meaningful but can

give a rough estimate. For example, the properties of the memory hierarchy which could be very dif-

ferent across devices can have much more influence on the speed than the theoretical peak performance.

Memory limited applications can, for instance, strongly benefit from the larger cache hierarchy and main

memory sizes of current CPUs while other algorithms may gain from the very fast interaction within the

small shared memory of current GPUs. All this is not expressed in the theoretical peak performance and

will therefore be neglected when comparing across alpaka back-ends on different hardware devices.

4.1 Methodology

The measurements that will be presented in the following chapter have been performed on the Hypnos

[6] cluster of the Helmholtz-Zentrum Dresden Rossendorf (HZDR). The measurements were taken on

dual-socket nodes with Intel Xeon E5-2630 v3 CPUs (figure 4.1), 256 GB of RAM and 8 NVIDIA K80

GPUs (figure 4.2). Due to the architecture of the K80 GPU consisting of two independent CUDA devices

only one half of one of the GPUs has been used. Ideas of how to overcome this limitation that is also

present in native CUDA code are discussed in section 5.2.

48 4. EVALUATION

architecture Haswell-EP (22 nm)
number of cores 8 (16 Hyper-Threads)
clock frequency 2.4 GHz (3.2 GHz turbo)
instruction-set extension AVX2
memory bandwidth 59 GB/s
L3 cache size 20MB

L2 cache size 8× 256KB

L1i cache size 8× 32KB

L1d cache size 8× 32KB

Table 4.1: Specification of the Intel Xeon E5-2630 v3 [10].

architecture 2×KeplerGK210 (28 nm)
compute capability 3.7
number of SMX 2× 13

number of CUDA cores 2× 2496

clock frequency 562 MHz (875 MHz turbo)
32-bit Tflop/s 2× 2.8

64-bit Tflop/s 2× 0.935

global memory 2× 12 GB
memory bandwidth (ECC off) 2× 240 GB/s
L2 cache size 1536 KB

Table 4.2: Specification of the NVIDIA K80 GPU [26].

The HASEonGPU measurements used NVIDIA K20 GPUs 4.3 and some highly parallel CPU measure-

ments were taken on quad-socket nodes with AMD Opteron 6276 CPUs (figure 4.4) and 256 GB of

RAM.
architecture 2×KeplerGK110 (28 nm)
compute capability 3.5
number of SMX 13

number of CUDA cores 2496

clock frequency 705 MHz (875 MHz turbo)
32-bit Tflop/s 3.52

64-bit Tflop/s 1.17

global memory 5 GB
memory bandwidth (ECC off) 208 GB/s
L2 cache size 1536 KB

Table 4.3: Specification of the NVIDIA K20 GPU [25].

During the measurements the nodes were always used exclusively, that is, all cores have been reserved,

even though some of them may have been unused. This ensures that the measurements are not disturbed

by other processes using cores on the respective nodes.

The executables have been built with the NVIDIA nvcc compiler from the CUDA 7.0 SDK and g++ 4.9.2.

Binaries are built for the x86_64 instruction set which implies support for at least SSE2.

4.1. METHODOLOGY 49

architecture Interlagos (0.32 nm)
number of cores 16
clock frequency 2.3 GHz (3.2 GHz turbo)
instruction-set extension AVX
max. memory bandwidth 51.2 GB/s
L3 cache size 16MB

L2 cache size 16× 1000KB

L1 cache size 16× 48KB

Table 4.4: Specification of the AMD Opteron 6276 [2].

The minimal runtime of multiple iterations is chosen to filter out disturbances from various sources, for

instance, the possibly very long time of initial CUDA device context creation on first access.

Since the measurements were performed in a number of separate runs for different back-ends due to

compiler incompatibilities, the node assigned by the batch system is not necessarily the same for all

measurements. Even though the hardware is the same in all nodes, this results in slightly varying perfor-

mance characteristics due to hardware inherent production variations and temperature differences. Both,

GPUs and CPUs used can produce fluctuations in the results of the measurements due to their turbo

boost, a temperature dependent over-clocking.

Multiple versions of the BLAS algorithms that are implemented in the following chapter exist for dif-

ferent underlying data types. For example, there is a generalized matrix-matrix-multiplication for single

precision (SGEMM), double precision (DGEMM), half precision (HGEMM) and complex floating point

numbers (ZGEMM).

Those versions can have very different performance characteristics depending on the hardware they are

executed on. On a modern x86 CPU the single precision version will be approximately twice as fast as

the double precision version. This is due to eight single precision values (32 bit each) or four double

precision values (64 bit each) fitting into a 256 bit AVX vector register at once. The Intel Xeon Phi even

has 512 bit wide vector registers allowing to operate on eight double precision values at once [11]. A

similar but not compatible instruction set extension for 512 bit vector operations will be introduced in

the next generation of Intel CPUs [12].

On GPUs this ratio can be much worser depending on the architecture. Because there are separate single

precision (SP) and double precision (DP) processing units on current NVIDIA GPU architectures and the

hardware development is mostly lead by graphics applications which are generally single precision only,

the number of double precision units is considerably lower. On the current NVIDIA Tesla GPUs (K80,

K40, K20X and K20) the ratio SP:DP is 3:1 while it is even worse on consumer cards. [25, 26] A GTX

580 has a ratio of 4:1, a GTX 680/780 of 24:1 and the current current high-end card, the GTX 980 has

only one double precision unit per 32 single precision units.

The work division, the decomposition of the given grid-element extent into grid-block, block-thread and

thread-element extents, is automatically calculated. The block extents are chosen to be the maximum the

accelerator allows and can be constrained to be exactly quadratic, nearly quadratic or linear depending on

the task. Furthermore, the block extents can be forced to divide the full grid extents without remainder.

The native CUDA version will always be compared to a alpaka CUDA version using the same work

division.

50 4. EVALUATION

Graphs shown in the evaluation will either display absolute execution times of different implementations

with varying problem sizes or the speed relative to a specified implementation with varying problem

sizes. The relative speed ε is defined as ε = Torig/Tnew, where Torig is the time to solution of the

original version and Tnew is the time to solution of the version to compare to. Native implementations

are often used as original version, while alpaka versions represent the new versions being compared to.

If the alpaka versions reach a relative speed factor of one, they are as fast as the native version. If the

factor is lower, they are slower.

4.2 Generalized Vector Addition

The generalized vector addition algorithm (AXPY) is part of the first of three levels of the Basic Linear

Algebra Subprograms (BLAS) specification. It computes Y ← αX + Y where X and Y are vectors

while α is a scaling factor. The AXPY shorthand is derived from the formula pronounced Alpha X Plus

Y. The standard sequential algorithm is shown in the source code listing 4.1.

1 template<
2 typename TSize,
3 typename TElem>
4 auto axpy(
5 TSize const & n,
6 TElem const & alpha,
7 TElem const * const X,
8 TElem * const Y) const
9 -> void

10 {
11 for(TSize i = 0; i < n; ++i)
12 {
13 Y[i] = alpha * X[i] + Y[i];
14 }
15 }

Figure 4.1: Source code of a sequential generalized vector addition.

The generalized vector addition is used as a trivial example to showcase the performance characteristics

of basic algorithms ported with alpaka. The AXPY algorithm can be parallelized perfectly because all

elements in the result vector depend on exactly one distinct element of both input vectors and there are

no dependencies between the threads. Theoretically it is possible to execute it in constant time when

there are as many processing elements as there are vector elements.

In the following sections the double precision version (DAXPY) will be used to compare a native imple-

mentation on the respective platform with the generic alpaka version using the corresponding back-end.

The input vectors are densely filled with random values in the range [0.0, 10.0]. Only the time needed to

compute the result is measured. The time for allocating the vectors on the host, filling them, a possible

data transfer between the processor and a co-processor as well as device and stream initialization are not

included.

Naturally all the alpaka tests on all platforms will use the same generic alpaka AXPY function object

without any platform specific optimizations.

For benchmarking the different AXPY versions a library called vecadd [38] has been written. It is

published as open-source under the LGPLv3.

4.2. GENERALIZED VECTOR ADDITION 51

4.2.1 CPU Sequential Execution

A basic implementation of the AXPY Kernel starts exactly one thread per vector element (fig. 4.2).

1 struct AxpyKernel
2 {
3 template<
4 typename TAcc,
5 typename TSize,
6 typename TElem>
7 ALPAKA_FN_ACC auto operator()(
8 TAcc const & acc,
9 TSize const & n,

10 TElem const & alpha,
11 TElem const * const X,
12 TElem * const Y) const
13 -> void
14 {
15 auto const i(alpaka::idx::getIdx<alpaka::Grid, alpaka::Threads>(acc)[0u]);
16 if(i < n)
17 {
18 Y[i] = alpha * X[i] + Y[i];
19 }
20 }
21 };

Figure 4.2: Source code of a generalized vector addition alpaka kernel function object.

When directly comparing the basic sequential algorithm (fig. 4.1) with this alpaka kernel using the

sequential back-end (fig. 4.2) the expected linearly raising computation time can be observed (fig. B.1

in the appendix). The alpaka sequential version reaches approximately 78% of the speed of the native

sequential version as can be seen in figure 4.3.

Figure 4.3: Comparison of the alpaka non-vectorized sequential relative to the native sequential general-
ized vector addition.

52 4. EVALUATION

Looking at the assembler code being generated by the compiler (fig. A.2 in the appendix) it is possible to

spot the difference. It can be seen that the compiler was not able to recognize the looping pattern due to

the obfuscation by the conditional branch within the kernel. Even though the compiler was able to inline

all the recursive function invocations within alpaka right up to the kernel function object invocation,

the compiler was not able to optimize the code in the same way. Therefore only the native sequential

version has been vectorized to use the packed double precision SSE2 instructions movupd, mulpd and

addpd instead of the single value versions movsd, mulsd and addsd.

The assembler code of the alpaka version seems to be more streamlined because it has only half the

number of instructions between the two timekeepings. But this impression is deceptive. The compiler

optimizes the execution speed at the expense of the binary size (space-time trade-off). The additional

lines of the native version are not in the inner loop of the algorithm but rather handle the special cases of

an odd number of elements or an unaligned start address.

Changing the kernel to incorporate vectorization requires an additional loop within the kernel to compute

multiple elements per thread. This loop should not contain any branches to ease the work of the loop

vectorizer. The compiler will recognize the iteration independent looping pattern and optimizes this by

using SIMD instructions to process multiple consecutive iterations together.

This allows alpaka to map the execution to exactly one grid of one block with one thread executing all

the elements. The result is an only marginally slower execution time (99.5% of the native version see

fig. 4.4) of the kernel shown in figure 4.5. It uses the grid, thread and element levels of the hierarchical

redundant parallelism abstraction.

Figure 4.4: Comparison of the alpaka sequential vectorized relative to the native sequential generalized
vector addition.

4.2. GENERALIZED VECTOR ADDITION 53

1 struct AxpyKernel
2 {
3 template<
4 typename TAcc,
5 typename TSize,
6 typename TElem>
7 ALPAKA_FN_ACC auto operator()(
8 TAcc const & acc,
9 TSize const & n,

10 TElem const & alpha,
11 TElem const * const X,
12 TElem * const Y) const
13 -> void
14 {
15 // Get the index of the current thread in the grid.
16 auto const gridThreadIdx(
17 alpaka::idx::getIdx<alpaka::Grid, alpaka::Threads>(acc)[0u]);
18 // Get the number of elements per thread.
19 auto const threadElemExtent(
20 alpaka::workdiv::getWorkDiv<alpaka::Thread, alpaka::Elems>(acc)[0u]);
21 // Calculate the index of the first element this thread calculates.
22 auto const threadFirstElemIdx(
23 gridThreadIdx * threadElemExtent);
24 if(threadFirstElemIdx < n)
25 {
26 // All but the last thread calculate exactly threadElemExtent elements.
27 // The last thread calculates the remaining elements from

threadFirstElemIdx to n.
28 auto const elems(threadElemExtent + alpaka::math::min(acc, 0, n-(

threadFirstElemIdx+threadElemExtent)));
29 // Loop over the elements this thread has to calculate.
30 for(TSize i(threadFirstElemIdx); i<(threadFirstElemIdx+elems); ++i)
31 {
32 Y[i] = alpha * X[i] + Y[i];
33 }
34 }
35 }
36 };

Figure 4.5: Source code of a generalized vector addition alpaka kernel function object using the grid,
thread and element levels of the hierarchical redundant parallelism abstraction.

54 4. EVALUATION

4.2.2 CPU Parallel Execution

The parallel CPU test compares the code that was shown in figure 3.8 with the non-vectorized (figure

4.2)) and the vectorized (figure 4.5)) alpaka kernel using the OpenMP block parallelizing back-end.

OpenMP has been set to create 256 threads via the OMP_NUM_THREADS environment variable as

this resulted in the fastest execution time of many tested thread counts. In figure 4.6 can be seen that

the vectorized alpaka code is faster then the native OpenMP version for smaller vectors. This can be

explained by the missing vectorization in the native OpenMP version that is as fast as the non-vectorized

alpaka variant.

Figure 4.6: Comparison of the alpaka OpenMP relative to the native OpenMP generalized vector
addition.

In figure B.2 in the appendix can be seen that the computation time grows linearly with the problem size.

Comparing the timings with the previously shown sequential execution times it can be observed that

both parallel versions are faster then the sequential versions but by no means as fast as one could have

expected from two eight core CPUs. This is due to the nature of the task being fully memory bandwidth

limited and not compute bound. For two corresponding elements from the X and Y vectors one addition

and one multiplication have to be carried out. In fact, modern CPUs can even combine those two into a

single fused-multiply-add instruction (FMA). The task being fully memory bandwidth limited does only

give the vectorized version an advantage over the non-vectorized versions as long as the data fits into the

caches. For larger vector extents all versions are equally fast due to the limited memory bandwidth.

4.2.3 CUDA Parallel Execution

The parallel CUDA test compares the native CUDA kernel that was shown in figure 3.9 with the alpaka

kernel (figure 4.5)) using the CUDA back-end.

4.3. GENERALIZED MATRIX-MATRIX-MULTIPLICATION 55

A comparison of the complete code to compute the DAXPY natively in CUDA and via alpaka can be

found in appendix A.1. This code example also includes the setup of a device, a stream, the buffers, their

initialization, copies, the kernel invocation and the following clean-up.

As might be expected due to the different peak performances the versions running on the K80 GPU are

faster then those running on the Intel Xeon CPU (fig. B.3 in the appendix).

As can be seen in figure 4.7 there is only a minimal difference between the two CUDA versions. The

alpaka version reaches 99.6% of the speed of the native one. This can further be backed up by comparing

the generated PTX codes. The PTX code shown in figure A.3 in the appendix compares the native

CUDA with the non-vectorized alpaka kernel 4.2. It is identical up to two additional but unused function

parameters in the alpaka variant as well as different internal variable names. The vectorized alpaka

kernel 4.5, introduces some additional instructions into the PTX code (fig. A.4) due to the additional

loop which explains the marginal overhead. This shows that the only alpaka abstraction that introduces

a minimal overhead within a simple kernel when using the CUDA back-end is the optional element level

which is necessary to reach good CPU performance. Figure B.4 in the appendix shows that processing

more then one element per thread on the K80 GPU does not increase the performance.

Figure 4.7: Comparison of the alpaka CUDA relative to the native CUDA generalized vector addition.

4.3 Generalized Matrix-Matrix-Multiplication

The generalized matrix-matrix-multiplication (GEMM) is part of the third of three levels of the Basic

Linear Algebra Subprograms (BLAS) specification. It computes C ← αAB + βC where C, A and

B are matrices A = (ai,j), B = (bi,j) while α and β are scaling factors. Additionally, all the matrices

can be strided. The standard sequential cache optimized (ikj loop order) algorithm that computes the

equation (4.1) is shown in figure 4.8 and has a complexity of O(N3).

56 4. EVALUATION

ci,j = α ·
m∑
k=1

ai,k · bk,j + β · ci,j 1 ≤ i ≤ l, 1 ≤ j ≤ n. (4.1)

1 for(size_t i = 0; i < m; ++i){
2 for(size_t j = 0; j < n; ++j){
3 C[i*ldc + j] = beta * C[i*ldc + j];
4 }
5 for(size_t k2 = 0; k2 < k; ++k2){
6 for(size_t j = 0; j < n; ++j){
7 C[i*ldc + j] = alpha * A[i*lda + k] * B[k*ldb + j] + C[i*ldc + j];
8 }
9 }

10 }

Figure 4.8: Source code of a sequential generalized matrix multiplication (ikj).

The generalized matrix-matrix-multiplication is a thoroughly researched algorithm. It‘s performance

characteristics on different hardware types are well known and libraries like the Intel MKL (math kernel

library [13]) and NVIDIA cuBLAS [27] are optimized to get the best results possible on the corresponding

hardware. The generalized matrix-matrix-multiplication can utilize all levels of parallelism on GPUs and

CPUs ranging, for example, from blocking over shared memory to vectorization. Therefore it should be

ideal to showcase the usage of these techniques within the alpaka library.

In the following sections the DGEMM will be used to compare a native implementation on the respective

platform with the generic alpaka version using the corresponding back-end. The input matrices are dense

and always have square extents to not have a bias towards implementations preferring column or row-

major layout. Initially, the matrices are filled with random values in the range [0.0, 10.0]. Only the time

needed to compute the result is measured. The time for allocating the vectors on the host, filling them, a

possible data transfer between the processor and a co-processor as well as device and stream initialization

are not included.

This time, in contrast to the generalized vector addition, the order will be in reverse and the native CUDA

algorithm will be the starting point.

For benchmarking the different GEMM versions a library called matmul [36] has been written. It is

published as open-source under the LGPLv3.

4.3.1 GEMM on CUDA capable GPUs

On CUDA capable GPUs a comparison between a GEMM written in native CUDA, an alpaka version

using the CUDA back-end and the GEMM from the NVIDIA cuBLAS library will be carried out.

The native CUDA GEMM implementation used for measurements extents the algorithm given in the

CUDA C Programming Guide [28, p. 27-29] that only computes C = A×B with the addition of the C

matrix and the two scaling factors α and β. The computation uses a blocked execution scheme by taking

advantage of the CUDA inherent work division of the solution space (grid) into blocks of communicating

threads. Each block of threads is responsible for computing a square sub-matrix of the result matrix C

as sum over the corresponding sub-matrices of A and B as can be seen in figure 4.9.

The multiplication algorithm takes advantage of the block shared memory. Each thread is loading the one

corresponding element from the sub-matrices of A and B from global memory into the shared memory.

4.3. GENERALIZED MATRIX-MATRIX-MULTIPLICATION 57

Figure 4.9: Generalized matrix-matrix-multiplication using shared memory [23].

After the synchronization of all threads within a block, the sub-matrices of A and B fully reside within

the block shared memory. Now each thread can compute the sub-matrix dot product locally with the data

being as close as possible to all of them. By repeating this loading and computation step, accumulating

over all sub-matrix dot products of the corresponding pairs of sub-matrices of A and B, the final elements

of C are computed. The source code of the CUDA kernel implementation can be found in the appendix

in figure A.5.

The alpaka version using the CUDA back-end is a nearly direct transcription of the equivalent native

CUDA code. The complete kernel code is shown in figure A.6 in the appendix.

The DGEMM from the NVIDIA cuBLAS library is fine-tuned for different compute-capabilites and

GPUs. In contrast to many other libraries, cuBLAS expects the matrices in column-major storage or-

der. Because the storage order of multidimensional C arrays is row-major, we have to change the order

of the arguments given to ‘cublasDgemm‘. By swapping the matrix A with the matrix B the result is

still correct. Because cuBLAS sees the matrices in transposed order due to the inverse storage order it ex-

pects, the following computation is executed: CT ← αBTAT +βCT . By reading the transposed result

matrix CT that has been written in column-major order as a row-major matrix we receive the expected

untransposed result C.

Figure 4.10 shows the expected cubic growth in computation time for increasing matrix sizes.

The variant using cuBLAS scales much better than the other two versions and reaches six to seven times

the speed of the others (fig. B.5 in the appendix). This is due to cuBLAS not only optimizing the block

58 4. EVALUATION

Figure 4.10: Comparison of the time to solution of the NVIDIA cuBLAS and the alpaka CUDA relative
to the native CUDA generalized matrix-matrix-multiplication.

size for shared memory usage. Beyond what the basic implementation does it is also unrolling loops

combined with prefetching into the thread local register file and reordering instructions to reduce the

influence of latencies within the pipeline [35]. All these details lead to less memory loading operations

and more calculations per memory load as well as a shift from operations within shared memory to

operations within registers.

When directly comparing the execution time of the alpaka CUDA with the native CUDA version (figure

4.11) a small overhead can be observed. It can be explained by additional registers being used per thread

to store the number of elements per thread as well as a minimal number of additional runtime calls the

alpaka CUDA back-end has to do, to ensure correct behavior in all circumstances. For example, it has

to check and set the current CUDA device on every function call that leads to the invocation of a device

dependent CUDA function. This allows interoperability with user code that directly uses CUDA which

could potentially have changed the device in between two alpaka calls.

When directly comparing the PTX device code shown in section A.3 in the appendix the two versions

are identical up to a single additional but unused function parameter in the alpaka variant, the elements

per thread extent variable as well as different internal variable names. This could further be optimized

by removing the elements per thread extent variable completely at compile-time if there is exactly one

element per thread.

4.3. GENERALIZED MATRIX-MATRIX-MULTIPLICATION 59

Figure 4.11: Comparison of the alpaka CUDA relative to the native CUDA generalized matrix-matrix-
multiplication.

4.3.2 GEMM on x86 CPUs

On CPUs multiple series of DGEMM measurements will be taken. First of all a comparison between a

sequential implementation and an alpaka version using the sequential back-end will be carried out. Those

measurements are using only one single core. Furthermore a comparison between a native OpenMP

implementation, and an alpaka version using the OpenMP back-end will be executed. Shortcomings of

the kernel that is directly derived from the CUDA version will get revealed during these tests and ways

how to overcome the speed problems will get pointed out.

CPU Sequential Execution

The comparison of the single core versions shows that a direct adaption of the CUDA matrix multiplica-

tion algorithm is not the most efficient version on the CPU. The sequential alpaka back-end only reaches

up to 18% of the speed of the native sequential ikj blocked version and is even half as slow as the not

optimized sequential ijk version (fig. 4.12). The blocked native version switches the j and the k loops

to obtain better cache usage.

The alpaka version using the same kernel as the one used on the GPU does not optimally map to a CPU. It

uses an additional level of blocking over the shared memory as was shown in figure 4.9. With the number

of threads per block being one in the sequential case, the whole inner loop over the sub-matrices as well

as the caching of the sub-matrix data in the shared memory is superfluous. This loop, the shared memory

allocations as well as the two copies are useless and are not optimized away and contribute to over 50%

of the instructions within the loop body. By removing this overhead, the relative speed of the CPU

back-end versus the optimized native sequential version increases to up to nearly 40% of the optimized

60 4. EVALUATION

Figure 4.12: Comparison of the alpaka sequential relative to the native blocked C++ generalized matrix-
matrix-multiplication.

sequential version (fig. 4.13). This shows that the alpaka abstraction does not automatically lead to

performant ports of an application but also requires to think about the flow of data within the kernel.

By additionally using adaptive data structures that are specialized for different accelerators, a single

instance of the kernel can be defined that runs optimal on multiple architectures. In this case, a shared

memory buffer is required that only caches the data on platforms where this is beneficial and directly

forwards accesses to the underlying memory on all other accelerators. Because such data structures do

not currently exist, an alpaka kernel is used, that dose not use any shared memory at all (fig. A.7).

The alpaka version of the algorithm without shared memory copies uses the same execution strategy as

the original GPU kernel. The same basic ijk loop order as in the slow native version is used, where

i × j kernels are executed, each calculating one element of the C matrix. This element is calculated

by the dot product of a line of A and a column of B. This column-wise iteration over the B matrix

stored in row-major order is very cache unfriendly leading to much more cache-misses and a decrease

in performance especially when the matrices do not fit into the cache anymore. This is again a problem

that can be solved by considering the properties of the underlying data structures. One solution could

be to change the loop order, but it is equally correct to change the data structure and to convert the B

matrix from a row-major into a column-major matrix. The resulting kernel is shown in figure A.8 in

the appendix. Figure 4.14 shows the result of this change to a column-major matrix layout which is

equivalent to storing the transposed matrix B in row-major order. The new version reaches nearly 50%

of the performance of the native optimized sequential version even when the matrices exceed the kernel

size. The rest of the performance difference can be explained most probably by the much higher number

of integer index calculations that have to be done per data element. Each element is computed by a single

4.3. GENERALIZED MATRIX-MATRIX-MULTIPLICATION 61

Figure 4.13: Comparison of the alpaka sequential kernel without usage of shared memory relative to the
native blocked C++ generalized matrix-matrix-multiplication.

independent kernel invocation which has to calculate the entire indices into the A, B and C matrices.

In contrast to this, the native version only has to do some basic increments to get to the next element.

By utilizing the element level of the alpaka abstraction hierarchy and computing multiple elements per

thread, this overhead could possibly be reduced.

62 4. EVALUATION

Figure 4.14: Comparison of the alpaka sequential kernel without usage of shared memory and a trans-
posedB matrix relative to the native blocked C++ generalized matrix-matrix-multiplication.

CPU Parallel Execution

By parallelizing only the outer loop of the standard algorithm that had been shown in figure 4.8, multiple

rows of the result matrix are calculated in parallel. The insertion of only one annotation directly in front

of the loop is required to parallelize the algorithm using OpenMP. Everything else is automatically taken

over by the compiler. By the way of example this is shown in figure 4.15.

1 #pragma omp parallel for
2 for(size_t i = 0; i < m; ++i){
3 for(size_t j = 0; j < n; ++j){
4 C[i*ldc + j] = beta * C[i*ldc + j];
5 }
6 for(size_t k2 = 0; k2 < k; ++k2){
7 for(size_t j = 0; j < n; ++j){
8 C[i*ldc + j] = alpha * A[i*lda + k] * B[k*ldb + j] + C[i*ldc + j];
9 }

10 }
11 }

Figure 4.15: C-code of a generalized matrix-matrix-multiplication with OpenMP annotations.

In this scheme one processing unit calculates one or multiple rows (m/p) of the result matrix (fig. 4.16)

where m is the number of rows and p the number of OpenMP threads. The number of threads is limited

to p ≤ n. The corresponding rows of the matrices A and C are required, but always the complete B

matrix

Theoretically it should be beneficial to initially distribute the work evenly with schedule(static). Due

to inherent differences between the threads, for example, the scheduled start time or the socket they are

4.3. GENERALIZED MATRIX-MATRIX-MULTIPLICATION 63

P1 :

c0,0 c0,1 c0,2

=

a0,0 a0,1 a0,2

×

b0,0 b0,1 b0,2

b1,0 b1,1 b1,2

b2,0 b2,1 b2,2

+

c0,0 c0,1 c0,2

P2 : · · ·

Figure 4.16: Scheme of the line-parallel matrix-matrix-multiplication.

pinned to, this is not correct in practice. If only one thread is slower then the others with a static work

assignment, all other threads have to wait for the slower thread at the end. Because the probability of

such variations increases with rising time to solution, it is useful for larger matrices to assign the work

dynamically into parts of decreasing size with schedule(guided).

Comparing the version of the alpaka kernel without shared memory and a transposed B matrix to the

native OpenMP version (fig. 4.15) shows that the alpaka version reaches up to 90% of the native perfor-

mance (fig. 4.17). This is due to the single core version being compute bound, but the multi-core version

being memory bandwidth limited. The additional index calculations are nearly completely hidden by the

memory latency.

Figure 4.17: Comparison of the alpaka OpenMP kernel without usage of shared memory and a trans-
posed B matrix relative to the native OpenMP generalized matrix-matrix-multiplication.

64 4. EVALUATION

4.4 HASEonALPAKA

To complement the results of the artificial tests, the real world simulation code HASEonGPU[39] con-

sisting of circa 10,000 lines of code has been ported to use the alpaka library instead of directly using

CUDA. HASEonGPU implements an adaptive Monte Carlo algorithm for computing the amplified spon-

taneous emission (ASE) flux in laser gain media pumped by pulsed lasers. The project is published under

the GPLv3 open-source license. It achieves excellent speedups by utilizing MPI to scale across whole

clusters combined with CUDA for a highly data parallel computations. Porting HASEonGPU to alpaka

has been carried out by an independent developer and required circa 3 weeks of time.

After the porting has been finished, HASEonGPU has successfully been executed on GPU and CPU

clusters. Figure 4.18 compares the relative speed of an HASEonGPU computation executed with iden-

tical parameters on different systems. The original native CUDA version is used as the base case for

comparison. The alpaka version using the CUDA back-end running on the same NVIDIA K20 cluster as

the native version does not show any overhead at all leading to identical execution times. On the Intel

and AMD CPU clusters the OpenMP 2 accelerator back-end without support for the not required thread

level parallelism is used. Each block contains exactly one thread computing multiple elements. This

perfectly maps to the CPUs capabilities for independent vectorized parallelism and leads to very good

results. The nearly doubled time to solution on both, the Intel and AMD CPU clusters, is on par with

the halved double precision peak performance of those systems relative to the NVIDIA K20 used as the

reference.

Figure 4.18: Comparison of the native CUDA HASEonGPU implementation relative to the alpaka port
using the CUDA and the OpenMP 2 accelerator back-ends. The measurement used 4209
sample points and 1 million rays per sample point.

65

5 Summary and Outlook

5.1 Summary

In this work has been shown that it is possible to define and implement an abstract (chapter 2) interface

(section 3.2) that allows to facilitate parallelism on all levels available in modern hardware (section 3.1).

By implementing a proof-of-concept library it was possible to show that the portability problems of

current codes can be solved sustainably. Heterogeneous accelerators can be used within a single appli-

cation using one uniform way to describe the algorithms for all accelerators back-ends. Additionally it

allows to implement heterogeneous work balancing queues that can run a kernel on any available device

adaptively. The maintainability burden is reduced immensely by only implementing one version of each

kernel for all platforms reducing the possibility of bugs and incompatibilities. The portability of the

kernels is guaranteed by the library implementation and can be thoroughly tested in one place rather then

for each algorithm in each project. By giving the kernel compile-time knowledge about the accelerator it

is running on, users as well as libraries can optimize their implementations through abstraction and com-

pile time template meta-programming. The alpaka library offers interoperability with all the underlying

APIs (CUDA, OpenMP, Fibers, etc.) and direct access to native pointers and handles. Users can always

extend the library with missing special functionality for their accelerator by utilizing the functional trait

specialization design or they can even use the native underlying API where appropriate.

In chapter 4 has been shown that there is almost no overhead over the native APIs and that by utilizing the

additional element level, kernels can be written in a performance portable way across GPUs, CPUs and

other accelerators. It had been possible to write a single DAXPY and DGEMM kernel that runs nearly

as fast on CPUs as it does on GPUs. The resulting CUDA PTX code is almost identical to that of the

native CUDA equivalents. This shows the advantages of the compile nature of alpaka library. However,

it also became evident, that the choice of the correct data structure as well as an access pattern that is

supported by the executing hardware is very important. The alpaka abstraction library is only able to

portably deliver performance when the platform differences with respect to the memory hierarchy are

taken into account. However, this is also true for all other current acceleration libraries.

The extremely rapid and successful porting of the HASEonGPU simulation demonstrates the applicabil-

ity and functionality in real world scenarios. A performance portable port was possible within 3 weeks

without having to duplicate or rewrite major parts of the simulation. This resulted in simulation times

scaling nearly ideally (relative to the native version) across CPUs and GPUs when considering the plat-

form‘s theoretical peak performance.

5.2 Outlook

Porting PIConGPU The porting of the PIConGPU simulation that lead to the development of the

alpaka abstraction hierarchy and library is currently in progress. On this basis, optimizations and imple-

66 5. SUMMARY AND OUTLOOK

mentations for other accelerator devices, especially the Intel Xeon Phi, are planned.

Kernel as Chain of Unsynchronized Functions An abstract kernel interface for heterogeneous

devices is a huge step. Nevertheless, there is clearly more to do. The way a kernel currently is defined

does not provide full freedom and all possibilities to optimally adapt to all existing and future hardware.

Without full control over the kernel code and the ability to transform it in a way OpenCL [7] or the PGI

compiler can do, it is the task of the user to enable vectorization and utilize CPUs as much as possible.

However, we do not want to lose the ability to programatically specialize or replace every part of the

acceleration hierarchy to a compiler. Therefore, a way to enhance the abstraction defined in this thesis is

to further restrict the possibilities of kernel function objects and to expand the requirements of the kernel

concept.

A way to automatically improve especially the performance of CPU back-ends is to allow a way of

code transformation within the kernels via expression templates or other techniques. By representing a

kernel as a chain of function objects (possibly a special directed acyclic graph for nested kernels/func-

tions), where the function objects at the nodes can be executed in parallel and transitions between nodes

represent synchronization points, the adaption to hardware capabilities could be enhanced. The current

kernels would have to be partitioned into unsynchronized, parallel parts by splitting at the synchroniza-

tion statements as can be seen in the upper row of figure 5.1.

When using CUDA, the synchronization mechanisms of the GPU could be used and the chain could

be executed by a single kernel, interleaving the parallel parts (calls to the node‘s function objects) with

synchronization calls. This would not introduce any overhead for the CUDA back-end.

On the other hand this could allow to remove the necessity of synchronization between threads within

a block for CPU back-ends not providing fast synchronization. The chain‘s nodes would be executed

sequentially as independent kernels, where the nodes themselves would be executed in parallel by the

back-end. This would save the overhead of synchronization mechanisms because the synchronization is

implicit in this model.

By removing the possibility of synchronization within a kernel function object itself and making it part

of the interface, further optimizations could be implemented. For example, threads within a block would

not necessarily have to be executed in parallel. A single kernel-thread could coalesce multiple threads

and execute them sequentially. This would allow the compiler to optimize better and utilize vectorization

across block threads without the user explicitly writing out a loop at all.

Description of Distributed Data Structures To achieve full performance portability across mul-

tiple accelerator architectures it is not only necessary to abstract the parallelism portably, but also to

abstract performant and distributed data structures. The alpaka library by purpose is agnostic to the

underlying data structures but as has been shown in multiple places in this work, different accelera-

tors require different data structures for a performant execution. Whether column-major vs. row-major,

caching in GPU shared memory vs. implicitly or explicitly within CPU caches as well as data layout

in a structure of arrays vs. an array of structures and many more data structure details are depending

on the underlying accelerator specifics. These differences have to be hidden behind an interface. The

application developer should not have to know all these intricacies but simply use the wrapper library

which automatically uses the best data structure depending on the accelerator back-end.

5.2. OUTLOOK 67

Figure 5.1: Comparison of the current and a possible extended kernel concept and their usages.

68 5. SUMMARY AND OUTLOOK

Concurrent Usage of Multiple Devices for a Single Kernel To extend the functionality of the

library even more, the concurrent usage of multiple, possibly heterogeneous devices for acceleration

of a single kernel within a node could be implemented. Multiple GPUs could be working together on

an otherwise too memory limited task (shared, local or global memory). This could also fully utilize

GPUs like the NVIDIA K80, which combines two K40 GPUs on one board sharing the PCI connection,

because currently a K80 GPU can only ever be used as two independent K40 GPUs. This task is very

hard because the library would have to know latencies and other timings to estimate the win or loss of

utilizing a combination of possibly non-uniform devices. Another problem is the unrestricted relation

between the thread index and the locations of global memory the results are written to. Duplicating the

input data across all collaborating devices is one easy, but not memory sparing way to provide the kernel

with input data. However, the procedure of merging the buffers the result data have been written to, to

produce a single result buffer, is undefined. Maybe this could be achieved by further extending the kernel

concept.

Partitioning of Devices Not only combining multiple heterogeneous devices is worth looking into,

but also partitioning devices is a field that should be evaluated. Therefore, the current Device concept

should be extended by a DeviceView concept. For example, a view of a device could select a subset

of CPU cores and memory. The current Device concept would always model the DeviceView concept

by permanently using all of its cores and memory. With a DeviceView it would be possible to partition

for instance a eight core CPU into six cores for one DeviceView and two cores for another DeviceView.

Then kernels executed in the corresponding streams will only be able to use the cores they are allowed to.

This would prevent independent streams from mutually influencing each other. Furthermore, this would

allow to guarantee selected compute resources for time critical tasks.

Support for More Accelerators and APIs Another thing that would greatly enhance the use-

fulness of the alpaka library would be the support of more accelerators and APIs. Especially sup-

port for offloading computations to the Intel Xeon Phi would be desirable. This would most proba-

bly be implemented with OpenMP 4.1[30] because it introduces the methods omp_target_alloc and

omp_target_free as well as the target clauses omp target data use_deviceptr(p) and omp target

is_deviceptr(p) which should make it easy to implement the abstraction defined by the alpaka library.

Further on, APIs such as Intel TBB[9], Intel Cilk Plus[31], C++AMP[21] or OpenACC[29] should be

evaluated for their usefulness and support for even more types of accelerators. All of this can be done

independently by users without having to change any line of code of the existing alpaka library due to its

modular, non-intrusive, extensible design. Those extensions can be added to the library later, resulting

in benefit for all current users without having to change anything.

69

Bibliography

[1] David Abrahams and Aleksey Gurtovoy. C++ Template Metaprogramming: Concepts, Tools, and

Techniques from Boost and Beyond (C++ in Depth Series). Addison-Wesley Professional, 2004.

ISBN 0321227255.

[2] Advanced Micro Devices, Inc. Amd opteron processor solutions : Amd opteronTM 6276. http:

//products.amd.com/pages/OpteronCPUDetail.aspx?id=759. [Online; accessed

Jul 21, 2015].

[3] Andre R. Brodtkorb, Christopher Dyken, Trond R. Hagen, Jon M. Hjelmervik, and Olaf O.

Storaasli. State-of-the-art in heterogeneous computing. Sci. Program., 18(1):1–33, January 2010.

http://dx.doi.org/10.1155/2010/540159.

[4] M. Bussmann, H. Burau, T. E. Cowan, A. Debus, A. Huebl, G. Juckeland, T. Kluge, W. E. Nagel,

R. Pausch, F. Schmitt, U. Schramm, J. Schuchart, and R. Widera. Radiative signatures of the

relativistic kelvin-helmholtz instability. In Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis, SC ’13, pages 5:1–5:12, New York,

NY, USA, 2013. ACM. http://dx.doi.org/10.1145/2503210.2504564.

[5] M. Bussmann and G. Juckeland. Pushing Plasma Simulations Towards Exascale Performance with

PIConGPU, March 2013. GTC 2013, San Jose (CA), USA.

[6] Helmholtz-Zentrum Dresden Rossendorf. High Performance Computing at HZDR. https://

www.hzdr.de/db/Cms?pNid=1615. [Online; accessed May 21, 2015].

[7] Dafei Huang, Mei Wen, Changqing Xun, Dong Chen, Xing Cai, Yuran Qiao, Nan Wu, and Chun-

yuan Zhang. Automated Transformation of GPU-Specific OpenCL Kernels Targeting Performance

Portability on Multi-Core/Many-Core CPUs. In Euro-Par 2014 Parallel Processing - 20th Inter-

national Conference, Porto, Portugal, August 25-29, 2014. Proceedings, pages 210–221, 2014.

http://dx.doi.org/10.1007/978-3-319-09873-9_18.

[8] Axel Huebl. Injection Control for Electrons in Laser-Driven Plasma Wakes on the Femtosecond

Time Scale. Technische Universität Dresden, August 2014. Diploma thesis for the german degree

"Diplom-Physiker". http://dx.doi.org/10.5281/zenodo.15924.

[9] Intel Corporation. Intel Threading Building Blocks. https://www.

threadingbuildingblocks.org/. [Online; accessed September 28, 2015].

[10] Intel Corporation. Intel xeon processor e5-2630 v3. http://ark.intel.com/

de/products/83356/Intel-Xeon-Processor-E5-2630-v3-20M-Cache-2_

40-GHz. [Online; accessed Jul 21, 2015].

http://products.amd.com/pages/OpteronCPUDetail.aspx?id=759
http://products.amd.com/pages/OpteronCPUDetail.aspx?id=759
http://dx.doi.org/10.1155/2010/540159
http://dx.doi.org/10.1145/2503210.2504564
https://www.hzdr.de/db/Cms?pNid=1615
https://www.hzdr.de/db/Cms?pNid=1615
http://dx.doi.org/10.1007/978-3-319-09873-9_18
http://dx.doi.org/10.5281/zenodo.15924
https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
http://ark.intel.com/de/products/83356/Intel-Xeon-Processor-E5-2630-v3-20M-Cache-2_40-GHz
http://ark.intel.com/de/products/83356/Intel-Xeon-Processor-E5-2630-v3-20M-Cache-2_40-GHz
http://ark.intel.com/de/products/83356/Intel-Xeon-Processor-E5-2630-v3-20M-Cache-2_40-GHz

70 Bibliography

[11] Intel Corporation. Intel Xeon Phi Coprocessor Instruction Set Architecture Reference Manual,

September 2012. https://software.intel.com/sites/default/files/forum/

278102/327364001en.pdf [Online; accessed Aug 15, 2015].

[12] Intel Corporation. Intel Architecture Instruction Set Extensions Programming Reference, October

2014. https://software.intel.com/sites/default/files/managed/0d/53/

319433-022.pdf [Online; accessed Aug 15, 2015].

[13] Intel Corporation. Intel Math Kernel Library Reference Manual. https://software.intel.

com/sites/default/files/managed/9d/c8/mklman.pdf, 2015. [Online; accessed

May 20, 2015].

[14] ISO/IEC JTC1 SC22 WG21. Programming Languages — C++. International Orga-

nization for Standardization (ISO), Genevan, Switzerland, 1st edition, February 2012.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_

detail.htm?csnumber=50372.

[15] ISO/IEC JTC1 SC22 WG21. Programming Languages — C++ Extensions for Concepts. http:

//www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4377.pdf, Febru-

ary 2015. [Online; accessed June 17, 2015].

[16] N.S. Jayasena, M.J. Schulte, G.H. Loh, and M. Ignatowski. Die-stacked memory device with

reconfigurable logic, June 2015. US Patent App. 14/551,147.

[17] Ralf Karrenberg. Automatic Packetization. PhD thesis, Saarland University, July 2009.

[18] Ralf Karrenberg and Sebastian Hack. Whole Function Vectorization. In International Symposium

on Code Generation and Optimization, CGO, 2011.

[19] Ralf Karrenberg and Sebastian Hack. Improving Performance of OpenCL on CPUs. In Compiler

Construction, 2012. http://dx.doi.org/10.1007/978-3-642-28652-0_1.

[20] Martin Thompson. False Sharing. http://1.bp.blogspot.com/-MYso5dR5ItE/

TjOy1Mbr3NI/AAAAAAAAAAk/uLPjSeGhbmg/s1600/cache-line.png. [Online; ac-

cessed September 27, 2015].

[21] Microsoft Corporation. C++AMP : Language and Programming

Model. http://download.microsoft.com/download/2/2/9/

22972859-15C2-4D96-97AE-93344241D56C/CppAMPOpenSpecificationV12.

pdf, October 2013. Version 1.2 [Online; accessed July 24, 2015].

[22] NVIDIA Corporation. Grid of Thread Blocks. http://docs.nvidia.com/cuda/

cuda-c-programming-guide/graphics/grid-of-thread-blocks.png. [On-

line; accessed Aug 04, 2015].

[23] NVIDIA Corporation. Matrix Multiplication with Shared Memory. http:

//docs.nvidia.com/cuda/cuda-c-programming-guide/graphics/

matrix-multiplication-with-shared-memory.png. [Online; accessed May

20, 2015].

https://software.intel.com/sites/default/files/forum/278102/327364001en.pdf
https://software.intel.com/sites/default/files/forum/278102/327364001en.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://software.intel.com/sites/default/files/managed/9d/c8/mklman.pdf
https://software.intel.com/sites/default/files/managed/9d/c8/mklman.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4377.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4377.pdf
http://dx.doi.org/10.1007/978-3-642-28652-0_1
http://1.bp.blogspot.com/-MYso5dR5ItE/TjOy1Mbr3NI/AAAAAAAAAAk/uLPjSeGhbmg/s1600/cache-line.png
http://1.bp.blogspot.com/-MYso5dR5ItE/TjOy1Mbr3NI/AAAAAAAAAAk/uLPjSeGhbmg/s1600/cache-line.png
http://download.microsoft.com/download/2/2/9/22972859-15C2-4D96-97AE-93344241D56C/CppAMPOpenSpecificationV12.pdf
http://download.microsoft.com/download/2/2/9/22972859-15C2-4D96-97AE-93344241D56C/CppAMPOpenSpecificationV12.pdf
http://download.microsoft.com/download/2/2/9/22972859-15C2-4D96-97AE-93344241D56C/CppAMPOpenSpecificationV12.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/graphics/grid-of-thread-blocks.png
http://docs.nvidia.com/cuda/cuda-c-programming-guide/graphics/grid-of-thread-blocks.png
http://docs.nvidia.com/cuda/cuda-c-programming-guide/graphics/matrix-multiplication-with-shared-memory.png
http://docs.nvidia.com/cuda/cuda-c-programming-guide/graphics/matrix-multiplication-with-shared-memory.png
http://docs.nvidia.com/cuda/cuda-c-programming-guide/graphics/matrix-multiplication-with-shared-memory.png

Bibliography 71

[24] NVIDIA Corporation. Parallel Thread Execution ISA. http://docs.nvidia.com/cuda/

pdf/ptx_isa_3.2.pdf, July 2013. Version 3.2 [Online; accessed September 03, 2015].

[25] NVIDIA Corporation. Tesla Kepler Family Datasheet. http://www.nvidia.com/

content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf, October

2013. [Online; accessed May 19, 2015].

[26] NVIDIA Corporation. Tesla K80 Datasheet. http://international.download.

nvidia.com/pdf/kepler/TeslaK80-datasheet.pdf, October 2014. [Online; ac-

cessed May 19, 2015].

[27] NVIDIA Corporation. cuBLAS Library. http://docs.nvidia.com/cuda/pdf/

CUBLAS_Library.pdf, March 2015. [Online; accessed May 20, 2015].

[28] NVIDIA Corporation. NVIDIA CUDA C Programming Guide Version 7.0. http://docs.

nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf, March 2015. [Online; ac-

cessed May 20, 2015].

[29] OpenACC-standard.org. The OpenACC Application Programming Interface. http://www.

openacc.org/sites/default/files/OpenACC.2.0a_1.pdf, August 2013. Version

2.0a [Online; accessed July 24, 2015].

[30] OpenMP Architecture Review Board. OpenMP Application and Programming Interface. http://

openmp.org/mp-documents/OpenMP4.1_Comment_Draft.pdf, July 2015. Version

4.1 rev4 [Online; accessed July 24, 2015].

[31] Arch D. Robison. Composable parallel patterns with intel cilk plus. Computing in Science and

Engg., 15(2):66–71, March 2013. http://dx.doi.org/10.1109/MCSE.2013.21.

[32] K. Rocki, M. Burtscher, and R. Suda. The Future of Accelerator Programming: Abstraction, Per-

formance or Can We Have Both? In Parallel and Distributed Systems (ICPADS), 2013 Interna-

tional Conference on, pages 442–443, Dec 2013. http://dx.doi.org/10.1109/ICPADS.

2013.76.

[33] Jeremy Siek, Andrew Lumsdaine, and David Abrahams. The Boost Concept Check

Library (BCCL). http://www.boost.org/doc/libs/1_58_0/libs/concept_

check/concept_check.htm. [Online; accessed July 20, 2015].

[34] Herb Sutter. Sutter’s Mill: Why Not Specialize Function Templates? C/C++ Users Journal,

19(7):65ff, July 2001.

[35] V. Volkov and J.W. Demmel. Benchmarking GPUs to Tune Dense Linear Algebra. In Proceedings

of the 2008 ACM/IEEE Conference on Supercomputing, SC ’08, pages 31:1–31:11, Nov 2008.

http://dx.doi.org/10.1109/SC.2008.5214359.

[36] Benjamin Worpitz. matmul - Generalized Matrix-Matrix-Multiplication Library with C Inter-

face. https://github.com/BenjaminW3/matmul, 2013-2015. [Online; accessed July

24, 2015].

http://docs.nvidia.com/cuda/pdf/ptx_isa_3.2.pdf
http://docs.nvidia.com/cuda/pdf/ptx_isa_3.2.pdf
http://www.nvidia.com/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf
http://www.nvidia.com/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf
http://international.download.nvidia.com/pdf/kepler/TeslaK80-datasheet.pdf
http://international.download.nvidia.com/pdf/kepler/TeslaK80-datasheet.pdf
http://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf
http://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf
http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf
http://openmp.org/mp-documents/OpenMP4.1_Comment_Draft.pdf
http://openmp.org/mp-documents/OpenMP4.1_Comment_Draft.pdf
http://dx.doi.org/10.1109/MCSE.2013.21
http://dx.doi.org/10.1109/ICPADS.2013.76
http://dx.doi.org/10.1109/ICPADS.2013.76
http://www.boost.org/doc/libs/1_58_0/libs/concept_check/concept_check.htm
http://www.boost.org/doc/libs/1_58_0/libs/concept_check/concept_check.htm
http://dx.doi.org/10.1109/SC.2008.5214359
https://github.com/BenjaminW3/matmul

72 Bibliography

[37] Benjamin Worpitz. alpaka - Abstraction Library for Parallel Kernel Acceleration. https://

github.com/ComputationalRadiationPhysics/alpaka, 2014-2015. [Online; ac-

cessed July 24, 2015].

[38] Benjamin Worpitz. vecadd - Generalized Vector Addition Library with C Interface. https:

//github.com/BenjaminW3/vecadd, 2015. [Online; accessed August 13, 2015].

[39] E. Zenker, C. Eckert, D. Albach, and M. Bussmann. HASEonGPU - High performance Amplified

Spontaneous Emission on GPU. http://dx.doi.org/10.5281/zenodo.13964, 2015.

[Online; accessed September 26, 2015].

https://github.com/ComputationalRadiationPhysics/alpaka
https://github.com/ComputationalRadiationPhysics/alpaka
https://github.com/BenjaminW3/vecadd
https://github.com/BenjaminW3/vecadd
http://dx.doi.org/10.5281/zenodo.13964

List of Figures 73

List of Figures

1.1 One time-step of the relativistic particle-in-cell algorithm.[5] 3

1.2 Schematic representation of a section of a 2D mesh of cells and particles for a PIC-

simulation. Super cells combining multiple cells are marked with a purple edge[5] 4

1.3 Particle frame list. Each super cell holds a list of frames with fixed width. Frames hold

the attributes of multiple cells as a cache optimized structure of arrays. [8] p.36 5

1.4 The grid of thread blocks defined by the CUDA programming model [22]. The execu-

tion order of blocks is undefined but possibly parallel while no synchronization between

block is possible. In contrast, threads within a thread are allowed to synchronize and are

executed in parallel. 9

2.1 On the left: The abstraction hierarchy with a grid of threads. On the right: A hypothetical

hardware that could execute data parallel tasks with the basic grid-thread abstraction

optimally by providing a one-to-one mapping of per data element threads to cores and an

equal length connection between all cores. 18

2.2 On the left: The abstraction hierarchy with a grid of blocks of threads. On the right: A

hypothetical hardware that could execute data parallel tasks by providing a one-to-one

mapping of per data element threads to cores and fast synchronization and communica-

tion between threads within a block. 19

2.3 Mapping of a grid of threads subdivided into independent blocks onto processors with

varying number of blocks. 19

2.4 On the left: The abstraction hierarchy with a grid of blocks of warps of threads. On the

right: A hypothetical hardware that could execute data parallel tasks by providing a one-

to-one mapping of threads to data elements, combining multiple threads into independent

blocks but saving chip space by executing multiple threads in lock-step on simplified cores. 20

2.5 The abstraction hierarchy consisting of a grid of elements, where multiple elements are

processed per thread, multiple threads are executed in lock-step within a warp and mul-

tiple warps form independent blocks. 22

3.1 Compute and memory hierarchy of a dual-socket (Package) node with dual-core CPUs

and symmetric multithreading (Hyper-Threading). 26

3.2 Multiple threads on different cores accessing distinct values in the same cache-line lead

to performance degradation due to false-sharing. [20] 27

3.3 Possible mapping of blocks, threads and elements to the compute and memory hierarchy

of a dual-socket node with dual-core CPUs and symmetric multithreading. Blocks are

mapped to cores, threads to processing units and multiple elements are executed per thread. 28

3.4 A section from the compute and memory hierarchy of a Intel Xeon Phi. 30

74 List of Figures

3.5 Possible mapping of blocks, threads and elements to the compute and memory hierarchy

of a Intel Xeon Phi. Blocks are mapped to cores, threads to processing units and multiple

elements are executed per thread. 30

3.6 Correlation between the execution domain and the code originator. 31

3.7 Interaction of the main concepts. 32

3.8 AXPY with OpenMP. 33

3.9 AXPY with CUDA. 33

3.10 Definition of a function with execution domain specification and accelerator reference

parameter. 34

3.11 Prototype definition of a user kernel function object. 35

3.12 OpenMP annotated code using CUDA illustrating undesired default device effects. . . . 36

3.13 Execution of a kernel by enqueuing the execution task into a stream. 39

3.14 Overview of the structure of the alpaka library with concepts and implementations. . . . 40

3.15 Enforcement of concepts with basic C++ object orientation. 41

3.16 Definition of the function to enqueue tasks into a stream. 43

3.17 Partial specialization of the Enqueue type to extend the functionality for a user type. . . . 43

3.18 Full specialization of the Enqueue type to extend the functionality for a user type. 44

3.19 Specialization of the Enqueue type using SFINAE for arbitrary conditions. 45

4.1 Source code of a sequential generalized vector addition. 50

4.2 Source code of a generalized vector addition alpaka kernel function object. 51

4.3 Comparison of the alpaka non-vectorized sequential relative to the native sequential gen-

eralized vector addition. 51

4.4 Comparison of the alpaka sequential vectorized relative to the native sequential general-

ized vector addition. 52

4.5 Source code of a generalized vector addition alpaka kernel function object using the grid,

thread and element levels of the hierarchical redundant parallelism abstraction. 53

4.6 Comparison of the alpaka OpenMP relative to the native OpenMP generalized vector

addition. 54

4.7 Comparison of the alpaka CUDA relative to the native CUDA generalized vector addition. 55

4.8 Source code of a sequential generalized matrix multiplication (ikj). 56

4.9 Generalized matrix-matrix-multiplication using shared memory [23]. 57

4.10 Comparison of the time to solution of the NVIDIA cuBLAS and the alpaka CUDA relative

to the native CUDA generalized matrix-matrix-multiplication. 58

4.11 Comparison of the alpaka CUDA relative to the native CUDA generalized matrix-matrix-

multiplication. 59

4.12 Comparison of the alpaka sequential relative to the native blocked C++ generalized

matrix-matrix-multiplication. 60

4.13 Comparison of the alpaka sequential kernel without usage of shared memory relative to

the native blocked C++ generalized matrix-matrix-multiplication. 61

4.14 Comparison of the alpaka sequential kernel without usage of shared memory and a trans-

posedB matrix relative to the native blocked C++ generalized matrix-matrix-multiplication. 62

List of Figures 75

4.15 C-code of a generalized matrix-matrix-multiplication with OpenMP annotations. 62

4.16 Scheme of the line-parallel matrix-matrix-multiplication. 63

4.17 Comparison of the alpaka OpenMP kernel without usage of shared memory and a trans-

posed B matrix relative to the native OpenMP generalized matrix-matrix-multiplication. 63

4.18 Comparison of the native CUDA HASEonGPU implementation relative to the alpaka

port using the CUDA and the OpenMP 2 accelerator back-ends. The measurement used

4209 sample points and 1 million rays per sample point. 64

5.1 Comparison of the current and a possible extended kernel concept and their usages. . . . 67

A.1 Direct comparison of SAXPY host and kernel codes. Left: native CUDA, Right: alpaka . 81

A.2 Direct comparison of assembler code snippets generated for sequential DAXPY imple-

mentations. Left: native, Mid: alpaka sequential, Right: alpaka sequential vectorized . . 83

A.3 Direct comparison of the PTX code generated for CUDA DAXPY implementations. Left:

native CUDA, Right: alpaka CUDA non-vectorized . 85

A.4 Vectorized alpaka CUDA DAXPY PTX code . 87

A.5 Generalized matrix-matrix-mulitplication kernel using CUDA 88

A.6 Generalized matrix-matrix-mulitplication kernel using alpaka 91

A.7 Generalized matrix-matrix-mulitplication kernel using alpaka without shared memory

copy . 92

A.8 Generalized matrix-matrix-mulitplication kernel using alpaka without shared memory

copy and with a transposed B matrix . 93

A.9 Native CUDA DGEMM PTX code . 97

A.10 alpaka CUDA DGEMM PTX code . 97

B.1 Comparison of the time to solution of the vectorized and non-vectorized alpaka sequen-

tial and the native sequential generalized vector addition. 99

B.2 Comparison of the execution time of the alpaka OpenMP and the native OpenMP gener-

alized vector addition. 100

B.3 Comparison of the time to solution of generalized vector addition variants. 100

B.4 Comparison of alpaka CUDA versions with varying element per thread counts relative

to the native CUDA generalized vector addition. 101

B.5 Comparison of the NVIDIA cuBLAS and the alpaka CUDA relative to the native CUDA

generalized matrix-matrix-multiplication. 101

76 List of Figures

List of Tables 77

List of Tables

1.1 Properties of intra-node parallelization frameworks and their ability to solve the problems

in porting performant HPC codes. 3: yes / fully solved, m: partially solved, 7: no / not

solved . 13

2.1 Abstraction hierarchy levels, their different types of parallelism and their ability to syn-

chronize. 22

4.1 Specification of the Intel Xeon E5-2630 v3 [10]. 48

4.2 Specification of the NVIDIA K80 GPU [26]. 48

4.3 Specification of the NVIDIA K20 GPU [25]. 48

4.4 Specification of the AMD Opteron 6276 [2]. 49

78 List of Tables

79

A Code Listings

A.1 Generalized Vector Addition

A.1.1 Direct Comparison of SAXPY Host and Kernel Codes

#include <cuda_runtime.h> #include <alpaka/alpaka.hpp>
struct AxpyKernel
{

template<typename TAcc>
__global__ void axpyKernel(ALPAKA_FN_ACC void operator()(

TAcc const & acc,
const float alpha, const float *X, const double alpha, const double

float *Y, * X, double * Y,
int numElements) int numElements) const

{ {
int i = blockDim.x * blockIdx.x + auto const gridThreadIdx(alpaka::

threadIdx.x; idx::getIdx<alpaka::Grid,
alpaka::Threads>(acc)[0u]);

auto const threadElemExtent(
alpaka::workdiv::getWorkDiv<
alpaka::Thread, alpaka::Elems
>(acc)[0u]);

auto const threadFirstElemIdx(
gridThreadIdx *
threadElemExtent);

if (i < numElements) if(threadFirstElemIdx < n)
{ {

auto const elems(
threadElemExtent + alpaka
::math::min(acc, 0, n-(
threadFirstElemIdx+
threadElemExtent)));

for(TSize i(
threadFirstElemIdx); i<(
threadFirstElemIdx+elems);
++i)

{
Y[i] = alpha * X[i] + Y[i]; Y[i] = alpha * X[i]+Y[i];

} }
} }

}
};

int main() int main()
{ {

// CUDA is always 3 dimensional. // The dimensionality of the task.
using Dim = alpaka::dim::DimInt<1u>;

// CUDA always uses size_t. // Define the type used for sizes.
using Size = std::size_t;

// CUDA is the only possible // Select the accelerator type to
accelerator back-end. execute on.

using Acc = alpaka::acc::AccGpuCuda<
Dim, Size>;

// The CUDA default stream is // Select the stream type.
synchronous, it synchronizes with using Stream = alpaka::stream::
all other streams and the host StreamCpuAsync;
thread implicitly.

// Get the host device this thread is
running on.

80 APPENDIX A. CODE LISTINGS

auto devHost(alpaka::dev::cpu::getDev
());

// CUDA implicitly selects a default // Select a device to execute on.
device. auto devAcc(alpaka::dev::DevManT<Acc

>::getDevByIdx(0));

// Use the cuda default stream. // Create a stream on the accelerator
device.

Stream stream(devAcc);

int numElements = 50000; int numElements = 50000;
size_t size = numElements * sizeof(

double);

// Allocate the host vectors // Allocate the host vectors
double * h_X = (double *)malloc(size) auto h_X(alpaka::mem::buf::alloc<

; double,Size>(devHost,numElements))
;

double * h_Y = (double *)malloc(size) auto h_Y(alpaka::mem::buf::alloc<
; double,Size>(devHost,numElements))

;

// Initialize the input // Initialize the input
double const alpha(rand()/(double) double const alpha(rand()/(double)

RAND_MAX); RAND_MAX);
for (int i = 0; i < numElements; ++i) for (int i = 0; i < numElements; ++i)
{ {

h_X[i] = rand()/(double)RAND_MAX; alpaka::mem::view::getPtrNative(
h_X)[i] = rand()/(double)

h_Y[i] = rand()/(double)RAND_MAX; RAND_MAX;
} alpaka::mem::view::getPtrNative(

h_Y)[i] = rand()/(double)
RAND_MAX;

}

// Allocate the device vectors // Allocate the device vectors
double * d_X, * d_Y;
cudaMalloc((void **)&d_X, size); auto d_X(alpaka::mem::buf::alloc<

double,Size>(devAcc,numElements));
cudaMalloc((void **)&d_Y, size); auto d_Y(alpaka::mem::buf::alloc<

double,Size>(devAcc,numElements));

// Copy X and Y from host to device // Copy X and Y from host to device
memory memory

cudaMemcpy(d_X, h_X, size, alpaka::mem::view::copy(d_X, h_X,
cudaMemcpyHostToDevice); numElements);

cudaMemcpy(d_Y, h_Y, size, alpaka::mem::view::copy(d_Y, h_Y,
cudaMemcpyHostToDevice); numElements);

// Set the block and grid sizes. // Set the block and grid sizes.
int threadsPerBlock = 256; auto const workDiv(alpaka::workdiv::
int blocksPerGrid =(numElements + getValidWorkDiv<Acc>(devAcc,

threadsPerBlock - 1) / numElements, 1, false));
threadsPerBlock;

// Crete an instance of the kernel
functor

AxpyKernel axpyKernel;

// Launch the Vector Add CUDA Kernel // Create the kernel executor.
axpyKernel<<< auto const exec(alpaka::exec::create<

blocksPerGrid, threadsPerBlock Acc>(
>>>(workDiv,

alpha, axpyKernel,
d_X, alpha,
d_Y, mem::getNativePtr(d_X),
numElements); mem::getNativePtr(d_Y),

numElements));

// Enqueue the execution task into

A.1. GENERALIZED VECTOR ADDITION 81

the stream.
alpaka::stream::enqueue(stream, exec)

;

// Copy Y from device to host memory. // Copy Y from device to host memory.
cudaMemcpy(h_Y, d_Y, size, alpaka::mem::view::copy(h_Y, d_Y,

cudaMemcpyDeviceToHost); numElements);

// Free the memory // Memory is automatically freed when
cudaFree(d_X); cudaFree(d_Y); going out of scope.
free(h_X); free(h_Y);

return EXIT_SUCCESS; return EXIT_SUCCESS;
} }

Figure A.1: Direct comparison of SAXPY host and kernel codes. Left: native CUDA, Right: alpaka

A.1.2 Direct comparison of assembler code snippets generated for sequential
DAXPY implementations

call getTimeSec call getTimeSec call getTimeSec
testl %ebx, %ebx movq 112(%rsp), %rax movq 112(%rsp), %rax
movsd %xmm0, (%rsp) movq 152(%rsp), %rdx movq 128(%rsp), %rbp
movsd 8(%rsp), %xmm2 movsd %xmm0, 40(%rsp) movsd %xmm0, 24(%rsp)
jle .L10 movq 128(%rsp), %rsi movq 144(%rsp), %r10
movq %r12, %rax movq $0, 264(%rsp) movq $0, 264(%rsp)
salq $60, %rax movq $0, 272(%rsp) movq $0, 272(%rsp)
shrq $63, %rax movq %rax, %rdi movq %rax, %r12
cmpl %ebx, %eax movq %rax, 208(%rsp) movq %rax, 208(%rsp)
cmova %ebx, %eax movq 120(%rsp), %rax movq 120(%rsp), %rax
cmpl $3, %ebx movq %rdx, 248(%rsp) testl %r12d, %r12d
jg .L23 xorl %edx, %edx movq %rbp, 224(%rsp)
movl %ebx, %eax testl %edi, %edi movq %r10, 240(%rsp)

.L11: movq %rsi, 224(%rsp) movq $0, 280(%rsp)
movsd 0(%rbp), %xmm0 movq $0, 280(%rsp) movl $0, 288(%rsp)
cmpl $1, %eax movq %rax, 216(%rsp) movq %rax, 216(%rsp)
movl $1, %edx movq 136(%rsp), %rax movq 136(%rsp), %rax
mulsd %xmm2, %xmm0 movl $0, 288(%rsp) movq $0, 304(%rsp)
addsd (%r12), %xmm0 movq $0, 304(%rsp) movq %rax, 232(%rsp)
movsd %xmm0, (%r12) movq %rax, 232(%rsp) movq 152(%rsp), %rax
je .L5 movq 144(%rsp), %rax movq %rax, 248(%rsp)
movsd 8(%rbp), %xmm0 movq %rax, 240(%rsp) leaq 288(%rsp), %rax
cmpl $3, %eax leaq 288(%rsp), %rax movq %rax, 256(%rsp)
movb $2, %dl movq %rax, 256(%rsp) jle .L1130
mulsd %xmm2, %xmm0 jle .L1021 movsd (%rsp), %xmm1
addsd 8(%r12), %xmm0 .p2align 4,,10 movq %r15, 32(%rsp)
movsd %xmm0, 8(%r12) .p2align 3 xorl %r8d, %r8d
jne .L5 .L1020: movl 20(%rsp), %r11d
movsd 16(%rbp), %xmm0 movl %esi, %eax movq 40(%rsp), %r15
movb $3, %dl movl %edx, 288(%rsp) xorl %r13d, %r13d
mulsd %xmm2, %xmm0 imull %edx, %eax unpcklpd %xmm1, %xmm
addsd 16(%r12), %xmm0 cmpl 8(%rsp), %eax 1
movsd %xmm0, 16(%r12) jge .L1019 movq 48(%rsp), %rbx

.L5: movq 24(%rsp), %r8 movq %r14, 56(%rsp)
cmpl %eax, %ebx movsd 16(%rsp), %xmm0 .p2align 4,,10
je .L10 cltq .p2align 3

.L4: movq 32(%rsp), %rcx .L1129:
subl %eax, %ebx mulsd (%r8,%rax,8), % movl %ebp, %edx
movl %eax, %ecx xmm0 movl %r8d, 288(%rsp)
leal -2(%rbx), %r8d leaq (%rcx,%rax,8), imull %r8d, %edx
shrl %r8d %rcx imull %r10d, %edx
addl $1, %r8d addsd (%rcx), %xmm0 cmpl %r11d, %edx
cmpl $1, %ebx movsd %xmm0, (%rcx) jge .L1131
leal (%r8,%r8), %r9d .L1019: leal (%rdx,%r10), %
je .L7 addl $1, %edx eax

82 APPENDIX A. CODE LISTINGS

movapd %xmm2, %xmm0 movq $0, 272(%rsp) movl %r11d, %esi
salq $3, %rcx cmpl %edi, %edx subl %eax, %esi
xorl %eax, %eax jne .L1020 testl %esi, %esi
leaq 0(%rbp,%rcx), % .L1021: movl %esi, %eax

rsi call getTimeSec cmovg %r13d, %eax
xorl %edi, %edi addl %r10d, %eax
addq %r12, %rcx addl %edx, %eax
unpcklpd %xmm0, %xmm cmpl %edx, %eax

0 jle .L1131
.L8: movslq %edx, %rsi

movupd (%rsi,%rax), % subl %edx, %eax
xmm1 leaq (%rbx,%rsi,8),

addl $1, %edi %rcx
mulpd %xmm0, %xmm1 movq %rcx, %rdi
addpd (%rcx,%rax), % salq $60, %rdi

xmm1 shrq $63, %rdi
movaps %xmm1, (%rcx,% cmpl %eax, %edi

rax) cmova %eax, %edi
addq $16, %rax cmpl $3, %eax
cmpl %edi, %r8d cmovbe %eax, %edi
ja .L8 testl %edi, %edi
addl %r9d, %edx je .L1133
cmpl %r9d, %ebx movsd (%rsp), %xmm2
je .L10 cmpl $1, %edi

.L7: movsd (%r15,%rsi,8),
movslq %edx, %rdx %xmm0
mulsd 0(%rbp,%rdx,8), mulsd %xmm2, %xmm0

%xmm2 addsd (%rcx), %xmm0
leaq (%r12,%rdx,8), movsd %xmm0, (%rcx)

%rax leal 1(%rdx), %ecx
addsd (%rax), %xmm2 je .L1156
movsd %xmm2, (%rax) movslq %ecx, %rcx

.L10: cmpl $3, %edi
xorl %eax, %eax movsd (%r15,%rcx,8),
call getTimeSec %xmm0

leaq (%rbx,%rcx,8),
%r9

leal 2(%rdx), %ecx
mulsd %xmm2, %xmm0
addsd (%r9), %xmm0
movsd %xmm0, (%r9)
jne .L1156
movslq %ecx, %rcx
addl $3, %edx
movsd (%r15,%rcx,8),

%xmm0
leaq (%rbx,%rcx,8),

%r9
mulsd %xmm2, %xmm0
addsd (%r9), %xmm0
movsd %xmm0, (%r9)

.L1134:
cmpl %edi, %eax
je .L1131

.L1133:
subl %edi, %eax
movl %edi, %ecx
leal -2(%rax), %r9d
shrl %r9d
addl $1, %r9d
cmpl $1, %eax
leal (%r9,%r9), %edi
movl %edi, 8(%rsp)
je .L1136
addq %rcx, %rsi
xorl %edi, %edi
xorl %ecx, %ecx
salq $3, %rsi
leaq (%r15,%rsi), %r

14
addq %rbx, %rsi

A.1. GENERALIZED VECTOR ADDITION 83

.L1137:
movupd (%r14,%rcx), %

xmm0
addl $1, %edi
mulpd %xmm1, %xmm0
addpd (%rsi,%rcx), %

xmm0
movaps %xmm0, (%rsi,%

rcx)
addq $16, %rcx
cmpl %r9d, %edi
jb .L1137
movl 8(%rsp), %esi
addl %esi, %edx
cmpl %eax, %esi
je .L1131

.L1136:
movsd (%rsp), %xmm0
movslq %edx, %rdx
leaq (%rbx,%rdx,8),

%rax
mulsd (%r15,%rdx,8),

%xmm0
addsd (%rax), %xmm0
movsd %xmm0, (%rax)

.L1131:
addl $1, %r8d
movq $0, 272(%rsp)
cmpl %r12d, %r8d
jne .L1129
movq 32(%rsp), %r15
movq 56(%rsp), %r14

.L1130:
call getTimeSec

Figure A.2: Direct comparison of assembler code snippets generated for sequential DAXPY implemen-

tations. Left: native, Mid: alpaka sequential, Right: alpaka sequential vectorized

A.1.3 Direct comparison of the PTX code generated for CUDA DAXPY
implementations

// //
// Generated by NVIDIA NVVM Compiler // Generated by NVIDIA NVVM Compiler
// //
// Compiler Build ID: CL-19324607 // Compiler Build ID: CL-19324607
// Cuda compilation tools, release 7.0, V // Cuda compilation tools, release 7.0, V

7.0.27 7.0.27
// Based on LLVM 3.4svn // Based on LLVM 3.4svn
// //

.version 4.2 .version 4.2

.target sm_35 .target sm_35

.address_size 64 .address_size 64

// .globl _Z27vecadd_axpy_par_cuda_ // .globl _ZN6alpaka4exec4cuda6
kernelidPKdPd detail10cudaKernelISt17integral_

constantImLm1EEi16
AxpyAlpakaKernelJidPKdPdEEEvNS_3
VecIT_T0_EET1_DpT2_

.visible .entry _Z27vecadd_axpy_par_cuda_ .visible .entry _ZN6alpaka4exec4cuda6
kernelidPKdPd(detail10cudaKernelISt17integral_

constantImLm1EEi16
AxpyAlpakaKernelJidPKdPdEEEvNS_3VecIT_
T0_EET1_DpT2_(
.param .align 16 .b8 _ZN6alpaka4exec4

84 APPENDIX A. CODE LISTINGS

cuda6detail10cudaKernelISt17
integral_constantImLm1EEi16
AxpyAlpakaKernelJidPKdPdEEEvNS_3
VecIT_T0_EET1_DpT2__param_0[16],

.param .align 1 .b8 _ZN6alpaka4exec4
cuda6detail10cudaKernelISt17
integral_constantImLm1EEi16
AxpyAlpakaKernelJidPKdPdEEEvNS_3
VecIT_T0_EET1_DpT2__param_1[1],

.param .u32 _Z27vecadd_axpy_par_cuda_ .param .u32 _ZN6alpaka4exec4cuda6
kernelidPKdPd_param_0, detail10cudaKernelISt17integral_

constantImLm1EEi16
AxpyAlpakaKernelJidPKdPdEEEvNS_3
VecIT_T0_EET1_DpT2__param_2,

.param .f64 _Z27vecadd_axpy_par_cuda_ .param .f64 _ZN6alpaka4exec4cuda6
kernelidPKdPd_param_1, detail10cudaKernelISt17integral_

constantImLm1EEi16
AxpyAlpakaKernelJidPKdPdEEEvNS_3
VecIT_T0_EET1_DpT2__param_3,

.param .u64 _Z27vecadd_axpy_par_cuda_ .param .u64 _ZN6alpaka4exec4cuda6
kernelidPKdPd_param_2, detail10cudaKernelISt17integral_

constantImLm1EEi16
AxpyAlpakaKernelJidPKdPdEEEvNS_3
VecIT_T0_EET1_DpT2__param_4,

.param .u64 _Z27vecadd_axpy_par_cuda_ .param .u64 _ZN6alpaka4exec4cuda6
kernelidPKdPd_param_3 detail10cudaKernelISt17integral_

constantImLm1EEi16
AxpyAlpakaKernelJidPKdPdEEEvNS_3
VecIT_T0_EET1_DpT2__param_5

))
{ {

.reg .pred %p<2>; .reg .pred %p<2>;

.reg .s32 %r<6>; .reg .s32 %r<6>;

.reg .f64 %fd<5>; .reg .f64 %fd<5>;

.reg .s64 %rd<8>; .reg .s64 %rd<8>;

ld.param.u32 %r2, [_Z27vecadd_axpy ld.param.u32 %r2, [_ZN6alpaka4exec
_par_cuda_kernelidPKdPd_param_0]; 4cuda6detail10cudaKernelISt17

integral_constantImLm1EEi16
AxpyAlpakaKernelJidPKdPdEEEvNS_3
VecIT_T0_EET1_DpT2__param_2];

ld.param.f64 %fd1, [_Z27vecadd_ ld.param.f64 %fd1, [_ZN6alpaka4
axpy_par_cuda_kernelidPKdPd_param exec4cuda6detail10cudaKernelISt17
_1]; integral_constantImLm1EEi16

AxpyAlpakaKernelJidPKdPdEEEvNS_3
VecIT_T0_EET1_DpT2__param_3];

ld.param.u64 %rd1, [_Z27vecadd_ ld.param.u64 %rd1, [_ZN6alpaka4
axpy_par_cuda_kernelidPKdPd_param exec4cuda6detail10cudaKernelISt17
_2]; integral_constantImLm1EEi16

AxpyAlpakaKernelJidPKdPdEEEvNS_3
VecIT_T0_EET1_DpT2__param_4];

ld.param.u64 %rd2, [_Z27vecadd_ ld.param.u64 %rd2, [_ZN6alpaka4
axpy_par_cuda_kernelidPKdPd_param exec4cuda6detail10cudaKernelISt17
_3]; integral_constantImLm1EEi16

AxpyAlpakaKernelJidPKdPdEEEvNS_3
VecIT_T0_EET1_DpT2__param_5];

mov.u32 %r3, %ctaid.x; mov.u32 %r3, %ctaid.x;
mov.u32 %r4, %ntid.x; mov.u32 %r4, %ntid.x;
mov.u32 %r5, %tid.x; mov.u32 %r5, %tid.x;
mad.lo.s32 %r1, %r4, %r3, %r5; mad.lo.s32 %r1, %r4, %r3, %r5;
setp.ge.s32 %p1, %r1, %r2; setp.ge.s32 %p1, %r1, %r2;
@%p1 bra BB6_2; @%p1 bra BB6_2;

cvta.to.global.u64 %rd3, %rd2; cvta.to.global.u64 %rd3, %rd2;
cvta.to.global.u64 %rd4, %rd1; cvta.to.global.u64 %rd4, %rd1;
mul.wide.s32 %rd5, %r1, 8; mul.wide.s32 %rd5, %r1, 8;
add.s64 %rd6, %rd4, %rd5; add.s64 %rd6, %rd4, %rd5;
ld.global.nc.f64 %fd2, [%rd6]; ld.global.f64 %fd2, [%rd6];
add.s64 %rd7, %rd3, %rd5; add.s64 %rd7, %rd3, %rd5;
ld.global.f64 %fd3, [%rd7]; ld.global.f64 %fd3, [%rd7];

A.1. GENERALIZED VECTOR ADDITION 85

fma.rn.f64 %fd4, %fd2, %fd1, %fd3; fma.rn.f64 %fd4, %fd2, %fd1, %fd3;
st.global.f64 [%rd7], %fd4; st.global.f64 [%rd7], %fd4;

BB6_2: BB6_2:
ret; ret;

} }

Figure A.3: Direct comparison of the PTX code generated for CUDA DAXPY implementations. Left:

native CUDA, Right: alpaka CUDA non-vectorized

A.1.4 Vectorized alpaka CUDA DAXPY PTX Code

//

// Generated by NVIDIA NVVM Compiler

//

// Compiler Build ID: CL-19324607

// Cuda compilation tools, release 7.0, V7.0.27

// Based on LLVM 3.4svn

//

.version 4.2

.target sm_35

.address_size 64

// .globl _ZN6alpaka4exec4cuda6detail10cudaKernelISt17integral_constantImLm1EEi26

AxpyVectorizedAlpakaKernelJidPKdPdEEEvNS_3VecIT_T0_EET1_DpT2_

.visible .entry _ZN6alpaka4exec4cuda6detail10cudaKernelISt17integral_constantImLm1

EEi26AxpyVectorizedAlpakaKernelJidPKdPdEEEvNS_3VecIT_T0_EET1_DpT2_(

.param .align 16 .b8 _ZN6alpaka4exec4cuda6detail10cudaKernelISt17integral_

constantImLm1EEi26AxpyVectorizedAlpakaKernelJidPKdPdEEEvNS_3VecIT_T0_EET1_

DpT2__param_0[16],

.param .align 1 .b8 _ZN6alpaka4exec4cuda6detail10cudaKernelISt17integral_

constantImLm1EEi26AxpyVectorizedAlpakaKernelJidPKdPdEEEvNS_3VecIT_T0_EET1_

DpT2__param_1[1],

.param .u32 _ZN6alpaka4exec4cuda6detail10cudaKernelISt17integral_constantImLm1

EEi26AxpyVectorizedAlpakaKernelJidPKdPdEEEvNS_3VecIT_T0_EET1_DpT2__param_2,

.param .f64 _ZN6alpaka4exec4cuda6detail10cudaKernelISt17integral_constantImLm1

EEi26AxpyVectorizedAlpakaKernelJidPKdPdEEEvNS_3VecIT_T0_EET1_DpT2__param_3,

.param .u64 _ZN6alpaka4exec4cuda6detail10cudaKernelISt17integral_constantImLm1

EEi26AxpyVectorizedAlpakaKernelJidPKdPdEEEvNS_3VecIT_T0_EET1_DpT2__param_4,

.param .u64 _ZN6alpaka4exec4cuda6detail10cudaKernelISt17integral_constantImLm1

EEi26AxpyVectorizedAlpakaKernelJidPKdPdEEEvNS_3VecIT_T0_EET1_DpT2__param_5

)

{

.reg .pred %p<4>;

.reg .s32 %r<19>;

.reg .f64 %fd<5>;

.reg .s64 %rd<14>;

ld.param.u32 %r4, [_ZN6alpaka4exec4cuda6detail10cudaKernelISt17integral_

constantImLm1EEi26AxpyVectorizedAlpakaKernelJidPKdPdEEEvNS_3VecIT_T0_EET1_

86 APPENDIX A. CODE LISTINGS

DpT2__param_0];

ld.param.u32 %r9, [_ZN6alpaka4exec4cuda6detail10cudaKernelISt17integral_

constantImLm1EEi26AxpyVectorizedAlpakaKernelJidPKdPdEEEvNS_3VecIT_T0_EET1_

DpT2__param_2];

ld.param.f64 %fd1, [_ZN6alpaka4exec4cuda6detail10cudaKernelISt17integral_

constantImLm1EEi26AxpyVectorizedAlpakaKernelJidPKdPdEEEvNS_3VecIT_T0_EET1_

DpT2__param_3];

ld.param.u64 %rd8, [_ZN6alpaka4exec4cuda6detail10cudaKernelISt17integral_

constantImLm1EEi26AxpyVectorizedAlpakaKernelJidPKdPdEEEvNS_3VecIT_T0_EET1_

DpT2__param_4];

ld.param.u64 %rd9, [_ZN6alpaka4exec4cuda6detail10cudaKernelISt17integral_

constantImLm1EEi26AxpyVectorizedAlpakaKernelJidPKdPdEEEvNS_3VecIT_T0_EET1_

DpT2__param_5];

mov.u32 %r1, %ntid.x;

mov.u32 %r2, %ctaid.x;

mov.u32 %r3, %tid.x;

mad.lo.s32 %r10, %r1, %r2, %r3;

mul.lo.s32 %r18, %r10, %r4;

setp.ge.s32 %p1, %r18, %r9;

@%p1 bra BB7_4;

sub.s32 %r11, %r9, %r4;

sub.s32 %r12, %r11, %r18;

mov.u32 %r13, 0;

min.s32 %r14, %r13, %r12;

add.s32 %r15, %r18, %r4;

add.s32 %r6, %r15, %r14;

setp.ge.s32 %p2, %r18, %r6;

@%p2 bra BB7_4;

cvta.to.global.u64 %rd13, %rd9;

cvta.to.global.u64 %rd12, %rd8;

mul.lo.s32 %r17, %r4, %r10;

mul.wide.s32 %rd3, %r17, 8;

BB7_3:

add.s64 %rd10, %rd12, %rd3;

ld.global.f64 %fd2, [%rd10];

add.s64 %rd11, %rd13, %rd3;

ld.global.f64 %fd3, [%rd11];

fma.rn.f64 %fd4, %fd2, %fd1, %fd3;

st.global.f64 [%rd11], %fd4;

add.s64 %rd13, %rd13, 8;

add.s64 %rd12, %rd12, 8;

add.s32 %r18, %r18, 1;

setp.lt.s32 %p3, %r18, %r6;

@%p3 bra BB7_3;

BB7_4:

ret;

}

A.2. GENERALIZED MATRIX-MATRIX-MULTIPLICATION 87

Figure A.4: Vectorized alpaka CUDA DAXPY PTX code

A.2 Generalized Matrix-Matrix-Multiplication

A.2.1 Direct Comparison of the native CUDA and alpaka CUDA DGEMM Kernels

1 //---

2 // CUDA generalized matrix-matrix-multiplication kernel.

3 // It uses extern shared memory to support dynamic block sizes.

4 //---

5 __global__ void matmul_gemm_par_cuda_dyn_block_size_1d_extern_shared_kernel(

6 TSize const m, TSize const n, TSize const k,

7 TElem const alpha,

8 TElem const * const MATMUL_RESTRICT A, TSize const lda,

9 TElem const * const MATMUL_RESTRICT B, TSize const ldb,

10 TElem const beta,

11 TElem * const MATMUL_RESTRICT C, TSize const ldc)

12 {

13 // Column and row of C to calculate.

14 TSize const gridThreadIdxX = blockIdx.x*blockDim.x + threadIdx.x;

15 TSize const gridThreadIdxY = blockIdx.y*blockDim.y + threadIdx.y;

16

17 // Column and row inside the block of C to calculate.

18 TSize const blockThreadIdxX = threadIdx.x;

19 TSize const blockThreadIdxY = threadIdx.y;

20

21 // The block threads extents.

22 TSize const blockThreadsExtentX = blockDim.x;

23 TSize const blockThreadsExtentY = blockDim.y;

24 TSize const & blockThreadsExtent = blockThreadsExtentX;

25

26 // Shared memory used to store the current blocks of A and B.

27 extern __shared__ TElem pBlockSharedA[];

28 TElem * const pBlockSharedB(pBlockSharedA + blockThreadsExtentX*
blockThreadsExtentY);

29

30 TSize const sharedBlockIdx1d(blockThreadIdxY*blockThreadsExtentX +

blockThreadIdxX);

31

32 // If the element corresponding to the current thread is outside of the

respective matrix.

33 bool const insideA = (gridThreadIdxY < m);

34 bool const insideB = (gridThreadIdxX < n);

35 bool const insideC = (insideA && insideB);

36

37 TElem dotProduct(0);

38

39 // Loop over all blocks of A and B that are required to compute the C block.

40 TSize const blockMulCount(

41 static_cast<TSize>(

42 ceil(

43 static_cast<float>(k) / static_cast<float>(blockThreadsExtent))));

88 APPENDIX A. CODE LISTINGS

44 for (TSize k2(0); k2<blockMulCount; ++k2)

45 {

46 // Copy the current blocks of A and B into shared memory in parallel.

47 // If the element of the current thread is outside of the matrix, zero is

written into the shared memory.

48 // This is possible because zero is a result neutral extension of the

matrices regarding the dot product.

49 TSize const AIdxX(k2*blockThreadsExtentX + blockThreadIdxX);

50 TSize const AIdx1d(gridThreadIdxY*lda + AIdxX);

51 pBlockSharedA[sharedBlockIdx1d] =

52 ((!insideA) || (AIdxX >= k))

53 ? static_cast<TElem>(0)

54 : A[AIdx1d];

55

56 TSize const BIdxY(k2*blockThreadsExtentY + blockThreadIdxY);

57 TSize const BIdx1d(BIdxY*ldb + gridThreadIdxX);

58 pBlockSharedB[sharedBlockIdx1d] =

59 ((!insideB) || (BIdxY >= k))

60 ? static_cast<TElem>(0)

61 : B[BIdx1d];

62

63 // Synchronize to make sure the complete blocks are loaded before starting

the computation.

64 __syncthreads();

65

66 // Compute the dot products within shared memory.

67 for (TSize k3(0); k3<blockThreadsExtent; ++k3)

68 {

69 dotProduct += pBlockSharedA[blockThreadIdxY*blockThreadsExtentX + k3]

70 * pBlockSharedB[k3*blockThreadsExtentY + blockThreadIdxX];

71 }

72

73 // Synchronize to make sure that the preceding computation is done before

loading the next blocks of A and B.

74 __syncthreads();

75 }

76

77 if (insideC)

78 {

79 TSize const CIdx1d(gridThreadIdxY*ldc + gridThreadIdxX);

80 C[CIdx1d] = alpha * dotProduct + beta * C[CIdx1d];

81 }

82 }

Figure A.5: Generalized matrix-matrix-mulitplication kernel using CUDA

1 //###

2 // alpaka generalized matrix-matrix-multiplication kernel.

3 //###

4 class GemmAlpakaKernel

5 {

6 public:

A.2. GENERALIZED MATRIX-MATRIX-MULTIPLICATION 89

7 template<

8 typename TAcc,

9 typename TElem>

10 ALPAKA_FN_ACC auto operator()(

11 TAcc const & acc,

12 TSize const & m, TSize const & n, TSize const & k,

13 TElem const & alpha,

14 TElem const * const MATMUL_RESTRICT A, TSize const & lda,

15 TElem const * const MATMUL_RESTRICT B, TSize const & ldb,

16 TElem const & beta,

17 TElem * const MATMUL_RESTRICT C, TSize const & ldc) const

18 -> void

19 {

20 // Assure that the kernel is executed with a 2-dimensional accelerator.

21 static_assert(alpaka::dim::Dim<TAcc>::value == 2u,

22 "The accelerator used for the GemmAlpakaKernel has to be 2 dimensional!"

);

23

24 // Column and row of C to calculate.

25 auto const gridThreadIdx(alpaka::idx::getIdx<alpaka::Grid, alpaka::Threads>(

acc));

26 TSize const & gridThreadIdxX(gridThreadIdx[1u]);

27 TSize const & gridThreadIdxY(gridThreadIdx[0u]);

28

29 // Column and row inside the block of C to calculate.

30 auto const blockThreadIdx(alpaka::idx::getIdx<alpaka::Block, alpaka::Threads

>(acc));

31 TSize const & blockThreadIdxX(blockThreadIdx[1u]);

32 TSize const & blockThreadIdxY(blockThreadIdx[0u]);

33

34 // The block threads extents.

35 auto const blockThreadsExtents(alpaka::workdiv::getWorkDiv<alpaka::Block,

alpaka::Threads>(acc));

36 TSize const & blockThreadsExtentX(blockThreadsExtents[1u]);

37 TSize const & blockThreadsExtentY(blockThreadsExtents[0u]);

38 TSize const & blockThreadsExtent(blockThreadsExtentX);

39

40 // Shared memory used to store the current blocks of A and B.

41 TElem * const pBlockSharedA(acc.template getBlockSharedExternMem<TElem>());

42 TElem * const pBlockSharedB(pBlockSharedA + blockThreadsExtentX*
blockThreadsExtentY);

43

44 TSize const sharedBlockIdx1d(blockThreadIdxY*blockThreadsExtentX +

blockThreadIdxX);

45

46 // If the element corresponding to the current thread is outside of the

respective matrix.

47 bool const insideA = (gridThreadIdxY < m);

48 bool const insideB = (gridThreadIdxX < n);

49 bool const insideC = (insideA && insideB);

50

51 TElem dotProduct(0);

90 APPENDIX A. CODE LISTINGS

52

53 // Loop over all blocks of A and B that are required to compute the C block.

54 TSize const blockMulCount(

55 static_cast<TSize>(

56 alpaka::math::ceil(

57 acc,

58 static_cast<float>(k)/static_cast<float>(blockThreadsExtent))));

59 for(TSize k2(0); k2<blockMulCount; ++k2)

60 {

61 // Copy the current blocks of A and B into shared memory in parallel.

62 // If the element of the current thread is outside of the matrix, zero

is written into the shared memory.

63 // This is possible because zero is a result neutral extension of the

matrices regarding the dot product.

64 TSize const AIdxX(k2*blockThreadsExtentX + blockThreadIdxX);

65 TSize const AIdx1d(gridThreadIdxY*lda + AIdxX);

66 pBlockSharedA[sharedBlockIdx1d] =

67 ((!insideA) || (AIdxX>=k))

68 ? static_cast<TElem>(0)

69 : A[AIdx1d];

70

71 TSize const BIdxY(k2*blockThreadsExtentY + blockThreadIdxY);

72 TSize const BIdx1d(BIdxY*ldb + gridThreadIdxX);

73 pBlockSharedB[sharedBlockIdx1d] =

74 ((!insideB) || (BIdxY>=k))

75 ? static_cast<TElem>(0)

76 : B[BIdx1d];

77

78 // Synchronize to make sure the complete blocks are loaded before

starting the computation.

79 acc.syncBlockThreads();

80

81 // Compute the dot products within shared memory.

82 for(TSize k3(0); k3<blockThreadsExtent; ++k3)

83 {

84 dotProduct += pBlockSharedA[blockThreadIdxY*blockThreadsExtentX + k3

]

85 * pBlockSharedB[k3*blockThreadsExtentY + blockThreadIdxX];

86 }

87

88 // Synchronize to make sure that the preceding computation is done

before loading the next blocks of A and B.

89 acc.syncBlockThreads();

90 }

91

92 if(insideC)

93 {

94 TSize const CIdx1d(gridThreadIdxY*ldc + gridThreadIdxX);

95 C[CIdx1d] = alpha * dotProduct + beta * C[CIdx1d];

96 }

97 }

98 };

A.2. GENERALIZED MATRIX-MATRIX-MULTIPLICATION 91

Figure A.6: Generalized matrix-matrix-mulitplication kernel using alpaka

1 //###

2 // alpaka generalized matrix-matrix-multiplication kernel.

3 //###

4 class GemmAlpakaNoSharedKernel

5 {

6 public:

7 template<

8 typename TAcc,

9 typename TElem>

10 ALPAKA_FN_ACC auto operator()(

11 TAcc const & acc,

12 TSize const & m, TSize const & n, TSize const & k,

13 TElem const & alpha,

14 TElem const * const MATMUL_RESTRICT A, TSize const & lda,

15 TElem const * const MATMUL_RESTRICT B, TSize const & ldb,

16 TElem const & beta,

17 TElem * const MATMUL_RESTRICT C, TSize const & ldc) const

18 -> void

19 {

20 static_assert(alpaka::dim::Dim<TAcc>::value == 2u,

21 "The accelerator used for the GemmAlpakaKernel has to be 2 dimensional!"

);

22

23 // Column and row of C to calculate.

24 auto const gridThreadIdx(alpaka::idx::getIdx<alpaka::Grid, alpaka::Threads>(

acc));

25 TSize const & gridThreadIdxX(gridThreadIdx[1u]);

26 TSize const & gridThreadIdxY(gridThreadIdx[0u]);

27

28 // If the element corresponding to the current thread is outside of the

respective matrix.

29 bool const insideA(gridThreadIdxY < m);

30 bool const insideB(gridThreadIdxX < n);

31 bool const insideC(insideA && insideB);

32

33 // If the element is outside of the matrix it was only a helper thread that

did not calculate any meaningful results.

34 if(insideC)

35 {

36 TElem dotProduct(0);

37

38 // Compute the dot products.

39 for(TSize k3(0); k3<k; ++k3)

40 {

41 TSize const AIdx1d(gridThreadIdxY*lda + k3);

42 TSize const BIdx1d(gridThreadIdxX + k3*ldb);

43 dotProduct += A[AIdx1d] * B[BIdx1d];

44 }

45

46 TSize const CIdx1d(gridThreadIdxY*ldc + gridThreadIdxX);

92 APPENDIX A. CODE LISTINGS

47 C[CIdx1d] = alpha * dotProduct + beta * C[CIdx1d];

48 }

49 }

50 };

Figure A.7: Generalized matrix-matrix-mulitplication kernel using alpaka without shared memory copy

1 //###

2 // alpaka generalized matrix-matrix-multiplication kernel.

3 //###

4 class GemmAlpakaNoSharedTransposedBKernel

5 {

6 public:

7 template<

8 typename TAcc,

9 typename TElem>

10 ALPAKA_FN_ACC auto operator()(

11 TAcc const & acc,

12 TSize const & m, TSize const & n, TSize const & k,

13 TElem const & alpha,

14 TElem const * const MATMUL_RESTRICT A, TSize const & lda,

15 TElem const * const MATMUL_RESTRICT B, TSize const & ldb,

16 TElem const & beta,

17 TElem * const MATMUL_RESTRICT C, TSize const & ldc) const

18 -> void

19 {

20 // Assure that the kernel is executed with a 2-dimensional accelerator.

21 static_assert(alpaka::dim::Dim<TAcc>::value == 2u,

22 "The accelerator used for the GemmAlpakaNoSharedTransposedBKernel has to

be 2 dimensional!");

23

24 // Column and row of C to calculate.

25 auto const gridThreadIdx(alpaka::idx::getIdx<alpaka::Grid, alpaka::Threads>(

acc));

26 TSize const & gridThreadIdxX(gridThreadIdx[1u]);

27 TSize const & gridThreadIdxY(gridThreadIdx[0u]);

28

29 // If the element corresponding to the current thread is outside of the

respective matrix.

30 bool const insideA = (gridThreadIdxY < m);

31 bool const insideB = (gridThreadIdxX < n);

32 bool const insideC = (insideA && insideB);

33

34 // If the element is outside of the matrix it was only a helper thread that

did not calculate any meaningful results.

35 if(insideC)

36 {

37 TElem dotProduct(0);

38

39 // Compute the dot products.

40 for(TSize k3(0); k3<k; ++k3)

41 {

A.2. GENERALIZED MATRIX-MATRIX-MULTIPLICATION 93

42 TSize const AIdx1d(gridThreadIdxY*lda + k3);

43 TSize const BIdx1d(gridThreadIdxX*ldb + k3);

44 dotProduct += A[AIdx1d] * B[BIdx1d];

45 }

46

47 TSize const CIdx1d(gridThreadIdxY*ldc + gridThreadIdxX);

48 C[CIdx1d] = alpha * dotProduct + beta * C[CIdx1d];

49 }

50 }

51 };

Figure A.8: Generalized matrix-matrix-mulitplication kernel using alpaka without shared memory copy

and with a transposed B matrix
A.2.2 Direct Comparison of the PTX code generated from native CUDA and

alpaka CUDA DGEMM

// //
// Generated by NVIDIA NVVM Compiler // Generated by NVIDIA NVVM Compiler
// //
// Compiler Build ID: CL-19324607 // Compiler Build ID: CL-19324607
// Cuda compilation tools, release 7.0, V // Cuda compilation tools, release 7.0, V

7.0.27 7.0.27
// Based on LLVM 3.4svn // Based on LLVM 3.4svn
// //

.version 4.2 .version 4.2

.target sm_35 .target sm_35

.address_size 64 .address_size 64

.extern .shared .align 8 .b8 .extern .shared .align 8 .b8 _ZN6alpaka3
pBlockSharedA[]; acc5shMemE[];

// .globl _Z59matmul_gemm_par_cuda_ // .globl _ZN6alpaka4exec4cuda6
dyn_block_size_1d_extern_shared_ detail10cudaKernelISt17integral_
kerneliiidPKdiS0_idPdi constantImLm2EEi22

GemmAlpakaSharedKernelJiiidPKdiS8_
idPdiEEEvNS_3VecIT_T0_EET1_DpT2_

.visible .entry _Z59matmul_gemm_par_cuda_ .visible .entry _ZN6alpaka4exec4cuda6
dyn_block_size_1d_extern_shared_ detail10cudaKernelISt17integral_
kerneliiidPKdiS0_idPdi(constantImLm2EEi22

GemmAlpakaSharedKernelJiiidPKdiS8_
idPdiEEEvNS_3VecIT_T0_EET1_DpT2_(
.param .align 16 .b8 _ZN6alpaka4exec4

cuda6detail10cudaKernelISt17
integral_constantImLm2EEi22
GemmAlpakaSharedKernelJiiidPKdiS8_
idPdiEEEvNS_3VecIT_T0_EET1_DpT2__
param_0[16],

.param .align 1 .b8 _ZN6alpaka4exec4
cuda6detail10cudaKernelISt17
integral_constantImLm2EEi22
GemmAlpakaSharedKernelJiiidPKdiS8_
idPdiEEEvNS_3VecIT_T0_EET1_DpT2__
param_1[1],

.param .u32 _Z59matmul_gemm_par_cuda_ .param .u32 _ZN6alpaka4exec4cuda6
dyn_block_size_1d_extern_shared_ detail10cudaKernelISt17integral_
kerneliiidPKdiS0_idPdi_param_0, constantImLm2EEi22

GemmAlpakaSharedKernelJiiidPKdiS8_
idPdiEEEvNS_3VecIT_T0_EET1_DpT2__
param_2,

.param .u32 _Z59matmul_gemm_par_cuda_ .param .u32 _ZN6alpaka4exec4cuda6
dyn_block_size_1d_extern_shared_ detail10cudaKernelISt17integral_
kerneliiidPKdiS0_idPdi_param_1, constantImLm2EEi22

94 APPENDIX A. CODE LISTINGS

GemmAlpakaSharedKernelJiiidPKdiS8_
idPdiEEEvNS_3VecIT_T0_EET1_DpT2__
param_3,

.param .u32 _Z59matmul_gemm_par_cuda_ .param .u32 _ZN6alpaka4exec4cuda6
dyn_block_size_1d_extern_shared_ detail10cudaKernelISt17integral_
kerneliiidPKdiS0_idPdi_param_2, constantImLm2EEi22

GemmAlpakaSharedKernelJiiidPKdiS8_
idPdiEEEvNS_3VecIT_T0_EET1_DpT2__
param_4,

.param .f64 _Z59matmul_gemm_par_cuda_ .param .f64 _ZN6alpaka4exec4cuda6
dyn_block_size_1d_extern_shared_ detail10cudaKernelISt17integral_
kerneliiidPKdiS0_idPdi_param_3, constantImLm2EEi22

GemmAlpakaSharedKernelJiiidPKdiS8_
idPdiEEEvNS_3VecIT_T0_EET1_DpT2__
param_5,

.param .u64 _Z59matmul_gemm_par_cuda_ .param .u64 _ZN6alpaka4exec4cuda6
dyn_block_size_1d_extern_shared_ detail10cudaKernelISt17integral_
kerneliiidPKdiS0_idPdi_param_4, constantImLm2EEi22

GemmAlpakaSharedKernelJiiidPKdiS8_
idPdiEEEvNS_3VecIT_T0_EET1_DpT2__
param_6,

.param .u32 _Z59matmul_gemm_par_cuda_ .param .u32 _ZN6alpaka4exec4cuda6
dyn_block_size_1d_extern_shared_ detail10cudaKernelISt17integral_
kerneliiidPKdiS0_idPdi_param_5, constantImLm2EEi22

GemmAlpakaSharedKernelJiiidPKdiS8_
idPdiEEEvNS_3VecIT_T0_EET1_DpT2__
param_7,

.param .u64 _Z59matmul_gemm_par_cuda_ .param .u64 _ZN6alpaka4exec4cuda6
dyn_block_size_1d_extern_shared_ detail10cudaKernelISt17integral_
kerneliiidPKdiS0_idPdi_param_6, constantImLm2EEi22

GemmAlpakaSharedKernelJiiidPKdiS8_
idPdiEEEvNS_3VecIT_T0_EET1_DpT2__
param_8,

.param .u32 _Z59matmul_gemm_par_cuda_ .param .u32 _ZN6alpaka4exec4cuda6
dyn_block_size_1d_extern_shared_ detail10cudaKernelISt17integral_
kerneliiidPKdiS0_idPdi_param_7, constantImLm2EEi22

GemmAlpakaSharedKernelJiiidPKdiS8_
idPdiEEEvNS_3VecIT_T0_EET1_DpT2__
param_9,

.param .f64 _Z59matmul_gemm_par_cuda_ .param .f64 _ZN6alpaka4exec4cuda6
dyn_block_size_1d_extern_shared_ detail10cudaKernelISt17integral_
kerneliiidPKdiS0_idPdi_param_8, constantImLm2EEi22

GemmAlpakaSharedKernelJiiidPKdiS8_
idPdiEEEvNS_3VecIT_T0_EET1_DpT2__
param_10,

.param .u64 _Z59matmul_gemm_par_cuda_ .param .u64 _ZN6alpaka4exec4cuda6
dyn_block_size_1d_extern_shared_ detail10cudaKernelISt17integral_
kerneliiidPKdiS0_idPdi_param_9, constantImLm2EEi22

GemmAlpakaSharedKernelJiiidPKdiS8_
idPdiEEEvNS_3VecIT_T0_EET1_DpT2__
param_11,

.param .u32 _Z59matmul_gemm_par_cuda_ .param .u32 _ZN6alpaka4exec4cuda6
dyn_block_size_1d_extern_shared_ detail10cudaKernelISt17integral_
kerneliiidPKdiS0_idPdi_param_10 constantImLm2EEi22

GemmAlpakaSharedKernelJiiidPKdiS8_
idPdiEEEvNS_3VecIT_T0_EET1_DpT2__
param_12

))
{ {

.reg .pred %p<14>; .reg .pred %p<14>;

.reg .f32 %f<5>; .reg .f32 %f<5>;

.reg .s32 %r<35>; .reg .s32 %r<35>;

.reg .f64 %fd<34>; .reg .f64 %fd<34>;

.reg .s64 %rd<28>; .reg .s64 %rd<28>;

ld.param.u32 %r16, [_Z59matmul_ ld.param.u32 %r16, [_ZN6alpaka4
gemm_par_cuda_dyn_block_size_1d_ exec4cuda6detail10cudaKernelISt17
extern_shared_kerneliiidPKdiS0_ integral_constantImLm2EEi22
idPdi_param_0]; GemmAlpakaSharedKernelJiiidPKdiS8_

idPdiEEEvNS_3VecIT_T0_EET1_DpT2__

A.2. GENERALIZED MATRIX-MATRIX-MULTIPLICATION 95

param_2];
ld.param.u32 %r17, [_Z59matmul_ ld.param.u32 %r17, [_ZN6alpaka4

gemm_par_cuda_dyn_block_size_1d_ exec4cuda6detail10cudaKernelISt17
extern_shared_kerneliiidPKdiS0_ integral_constantImLm2EEi22
idPdi_param_1]; GemmAlpakaSharedKernelJiiidPKdiS8_

idPdiEEEvNS_3VecIT_T0_EET1_DpT2__
param_3];

ld.param.u32 %r18, [_Z59matmul_ ld.param.u32 %r18, [_ZN6alpaka4
gemm_par_cuda_dyn_block_size_1d_ exec4cuda6detail10cudaKernelISt17
extern_shared_kerneliiidPKdiS0_ integral_constantImLm2EEi22
idPdi_param_2]; GemmAlpakaSharedKernelJiiidPKdiS8_

idPdiEEEvNS_3VecIT_T0_EET1_DpT2__
param_4];

ld.param.f64 %fd10, [_Z59matmul_ ld.param.f64 %fd10, [_ZN6alpaka4
gemm_par_cuda_dyn_block_size_1d_ exec4cuda6detail10cudaKernelISt17
extern_shared_kerneliiidPKdiS0_ integral_constantImLm2EEi22
idPdi_param_3]; GemmAlpakaSharedKernelJiiidPKdiS8_

idPdiEEEvNS_3VecIT_T0_EET1_DpT2__
param_5];

ld.param.u64 %rd6, [_Z59matmul_ ld.param.u64 %rd6, [_ZN6alpaka4
gemm_par_cuda_dyn_block_size_1d_ exec4cuda6detail10cudaKernelISt17
extern_shared_kerneliiidPKdiS0_ integral_constantImLm2EEi22
idPdi_param_4]; GemmAlpakaSharedKernelJiiidPKdiS8_

idPdiEEEvNS_3VecIT_T0_EET1_DpT2__
param_6];

ld.param.u32 %r19, [_Z59matmul_ ld.param.u32 %r19, [_ZN6alpaka4
gemm_par_cuda_dyn_block_size_1d_ exec4cuda6detail10cudaKernelISt17
extern_shared_kerneliiidPKdiS0_ integral_constantImLm2EEi22
idPdi_param_5]; GemmAlpakaSharedKernelJiiidPKdiS8_

idPdiEEEvNS_3VecIT_T0_EET1_DpT2__
param_7];

ld.param.u64 %rd7, [_Z59matmul_ ld.param.u64 %rd7, [_ZN6alpaka4
gemm_par_cuda_dyn_block_size_1d_ exec4cuda6detail10cudaKernelISt17
extern_shared_kerneliiidPKdiS0_ integral_constantImLm2EEi22
idPdi_param_6]; GemmAlpakaSharedKernelJiiidPKdiS8_

idPdiEEEvNS_3VecIT_T0_EET1_DpT2__
param_8];

ld.param.u32 %r20, [_Z59matmul_ ld.param.u32 %r20, [_ZN6alpaka4
gemm_par_cuda_dyn_block_size_1d_ exec4cuda6detail10cudaKernelISt17
extern_shared_kerneliiidPKdiS0_ integral_constantImLm2EEi22
idPdi_param_7]; GemmAlpakaSharedKernelJiiidPKdiS8_

idPdiEEEvNS_3VecIT_T0_EET1_DpT2__
param_9];

ld.param.f64 %fd11, [_Z59matmul_ ld.param.f64 %fd11, [_ZN6alpaka4
gemm_par_cuda_dyn_block_size_1d_ exec4cuda6detail10cudaKernelISt17
extern_shared_kerneliiidPKdiS0_ integral_constantImLm2EEi22
idPdi_param_8]; GemmAlpakaSharedKernelJiiidPKdiS8_

idPdiEEEvNS_3VecIT_T0_EET1_DpT2__
param_10];

ld.param.u64 %rd8, [_Z59matmul_ ld.param.u64 %rd8, [_ZN6alpaka4
gemm_par_cuda_dyn_block_size_1d_ exec4cuda6detail10cudaKernelISt17
extern_shared_kerneliiidPKdiS0_ integral_constantImLm2EEi22
idPdi_param_9]; GemmAlpakaSharedKernelJiiidPKdiS8_

idPdiEEEvNS_3VecIT_T0_EET1_DpT2__
param_11];

ld.param.u32 %r21, [_Z59matmul_ ld.param.u32 %r21, [_ZN6alpaka4
gemm_par_cuda_dyn_block_size_1d_ exec4cuda6detail10cudaKernelISt17
extern_shared_kerneliiidPKdiS0_ integral_constantImLm2EEi22
idPdi_param_10]; GemmAlpakaSharedKernelJiiidPKdiS8_

idPdiEEEvNS_3VecIT_T0_EET1_DpT2__
param_12];

mov.u32 %r1, %ntid.x; mov.u32 %r1, %ntid.y;
mov.u32 %r22, %ctaid.x; mov.u32 %r22, %ctaid.y;
mov.u32 %r2, %tid.x; mov.u32 %r2, %ntid.x;
mad.lo.s32 %r3, %r1, %r22, %r2; mov.u32 %r23, %ctaid.x;
mov.u32 %r4, %ntid.y; mov.u32 %r3, %tid.y;
mov.u32 %r23, %ctaid.y; mad.lo.s32 %r4, %r1, %r22, %r3;
mov.u32 %r5, %tid.y; mov.u32 %r5, %tid.x;
mad.lo.s32 %r6, %r4, %r23, %r5; mad.lo.s32 %r6, %r2, %r23, %r5;
mul.lo.s32 %r24, %r4, %r1; mul.lo.s32 %r24, %r1, %r2;
cvt.s64.s32 %rd1, %r24; cvt.s64.s32 %rd1, %r24;

96 APPENDIX A. CODE LISTINGS

mul.lo.s32 %r7, %r5, %r1; mul.lo.s32 %r7, %r3, %r2;
cvt.rn.f32.s32 %f1, %r1; cvt.rn.f32.s32 %f1, %r2;
cvt.rn.f32.s32 %f2, %r18; cvt.rn.f32.s32 %f2, %r18;
div.approx.f32 %f3, %f2, %f1; div.approx.f32 %f3, %f2, %f1;
cvt.rpi.f32.f32 %f4, %f3; cvt.rpi.f32.f32 %f4, %f3;
cvt.rzi.s32.f32 %r8, %f4; cvt.rzi.s32.f32 %r8, %f4;
mov.f64 %fd28, 0d mov.f64 %fd28, 0d

0000000000000000; 0000000000000000;
setp.lt.s32 %p3, %r8, 1; setp.lt.s32 %p3, %r8, 1;
@%p3 bra BB6_9; @%p3 bra BB6_9;

cvta.to.global.u64 %rd2, %rd7; cvta.to.global.u64 %rd2, %rd7;
cvta.to.global.u64 %rd3, %rd6; cvta.to.global.u64 %rd3, %rd6;
add.s32 %r26, %r7, %r2; add.s32 %r26, %r7, %r5;
mul.lo.s32 %r9, %r6, %r19; mul.lo.s32 %r9, %r4, %r19;
setp.ge.s32 %p1, %r6, %r16; setp.ge.s32 %p1, %r4, %r16;
cvt.s64.s32 %rd9, %r26; cvt.s64.s32 %rd9, %r26;
mul.wide.s32 %rd10, %r26, 8; mul.wide.s32 %rd10, %r26, 8;
mov.u64 %rd11, pBlockSharedA; mov.u64 %rd11, _ZN6alpaka3acc5

shMemE;
add.s64 %rd4, %rd11, %rd10; add.s64 %rd4, %rd11, %rd10;
setp.ge.s32 %p2, %r3, %r17; setp.ge.s32 %p2, %r6, %r17;
add.s64 %rd12, %rd9, %rd1; add.s64 %rd12, %rd9, %rd1;
shl.b64 %rd13, %rd12, 3; shl.b64 %rd13, %rd12, 3;
add.s64 %rd5, %rd11, %rd13; add.s64 %rd5, %rd11, %rd13;
mov.f64 %fd13, 0d mov.f64 %fd13, 0d

0000000000000000; 0000000000000000;
mov.u32 %r33, 0; mov.u32 %r33, 0;
mov.f64 %fd33, %fd13; mov.f64 %fd33, %fd13;

BB6_2: BB6_2:
mov.f64 %fd29, %fd33; mov.f64 %fd29, %fd33;
mad.lo.s32 %r11, %r33, %r1, %r2; mad.lo.s32 %r11, %r33, %r2, %r5;
setp.ge.s32 %p4, %r11, %r18; setp.ge.s32 %p4, %r11, %r18;
or.pred %p5, %p4, %p1; or.pred %p5, %p4, %p1;
mov.f64 %fd32, %fd13; mov.f64 %fd32, %fd13;
@%p5 bra BB6_4; @%p5 bra BB6_4;

add.s32 %r27, %r11, %r9; add.s32 %r27, %r11, %r9;
mul.wide.s32 %rd14, %r27, 8; mul.wide.s32 %rd14, %r27, 8;
add.s64 %rd15, %rd3, %rd14; add.s64 %rd15, %rd3, %rd14;
ld.global.nc.f64 %fd2, [%rd15]; ld.global.f64 %fd2, [%rd15];
mov.f64 %fd32, %fd2; mov.f64 %fd32, %fd2;

BB6_4: BB6_4:
mov.f64 %fd3, %fd32; mov.f64 %fd3, %fd32;
st.shared.f64 [%rd4], %fd3; st.shared.f64 [%rd4], %fd3;
mad.lo.s32 %r12, %r33, %r4, %r5; mad.lo.s32 %r12, %r33, %r1, %r3;
setp.ge.s32 %p6, %r12, %r18; setp.ge.s32 %p6, %r12, %r18;
or.pred %p7, %p6, %p2; or.pred %p7, %p6, %p2;
mov.f64 %fd31, %fd13; mov.f64 %fd31, %fd13;
@%p7 bra BB6_6; @%p7 bra BB6_6;

mad.lo.s32 %r28, %r12, %r20, %r3; mad.lo.s32 %r28, %r12, %r20, %r6;
mul.wide.s32 %rd16, %r28, 8; mul.wide.s32 %rd16, %r28, 8;
add.s64 %rd17, %rd2, %rd16; add.s64 %rd17, %rd2, %rd16;
ld.global.nc.f64 %fd31, [%rd17]; ld.global.f64 %fd31, [%rd17];

BB6_6: BB6_6:
st.shared.f64 [%rd5], %fd31; st.shared.f64 [%rd5], %fd31;
bar.sync 0; bar.sync 0;
mov.u32 %r34, 0; mov.u32 %r34, 0;
setp.lt.s32 %p8, %r1, 1; setp.lt.s32 %p8, %r2, 1;
mov.f64 %fd30, %fd29; mov.f64 %fd30, %fd29;
@%p8 bra BB6_8; @%p8 bra BB6_8;

BB6_7: BB6_7:
add.s32 %r30, %r34, %r7; add.s32 %r30, %r34, %r7;
mul.wide.s32 %rd18, %r30, 8; mul.wide.s32 %rd18, %r30, 8;
add.s64 %rd20, %rd11, %rd18; add.s64 %rd20, %rd11, %rd18;
mad.lo.s32 %r31, %r34, %r4, %r2; mad.lo.s32 %r31, %r34, %r1, %r5;

A.2. GENERALIZED MATRIX-MATRIX-MULTIPLICATION 97

cvt.s64.s32 %rd21, %r31; cvt.s64.s32 %rd21, %r31;
add.s64 %rd22, %rd21, %rd1; add.s64 %rd22, %rd21, %rd1;
shl.b64 %rd23, %rd22, 3; shl.b64 %rd23, %rd22, 3;
add.s64 %rd24, %rd11, %rd23; add.s64 %rd24, %rd11, %rd23;
ld.shared.f64 %fd16, [%rd24]; ld.shared.f64 %fd16, [%rd24];
ld.shared.f64 %fd17, [%rd20]; ld.shared.f64 %fd17, [%rd20];
fma.rn.f64 %fd29, %fd17, %fd16, %fd fma.rn.f64 %fd29, %fd17, %fd16, %fd

29; 29;
add.s32 %r34, %r34, 1; add.s32 %r34, %r34, 1;
setp.lt.s32 %p9, %r34, %r1; setp.lt.s32 %p9, %r34, %r2;
mov.f64 %fd30, %fd29; mov.f64 %fd30, %fd29;
@%p9 bra BB6_7; @%p9 bra BB6_7;

BB6_8: BB6_8:
mov.f64 %fd33, %fd30; mov.f64 %fd33, %fd30;
bar.sync 0; bar.sync 0;
add.s32 %r33, %r33, 1; add.s32 %r33, %r33, 1;
setp.lt.s32 %p10, %r33, %r8; setp.lt.s32 %p10, %r33, %r8;
mov.f64 %fd28, %fd33; mov.f64 %fd28, %fd33;
@%p10 bra BB6_2; @%p10 bra BB6_2;

BB6_9: BB6_9:
setp.lt.s32 %p11, %r6, %r16; setp.lt.s32 %p11, %r4, %r16;
setp.lt.s32 %p12, %r3, %r17; setp.lt.s32 %p12, %r6, %r17;
and.pred %p13, %p12, %p11; and.pred %p13, %p12, %p11;
@!%p13 bra BB6_11; @!%p13 bra BB6_11;
bra.uni BB6_10; bra.uni BB6_10;

BB6_10: BB6_10:
cvta.to.global.u64 %rd25, %rd8; cvta.to.global.u64 %rd25, %rd8;
mad.lo.s32 %r32, %r6, %r21, %r3; mad.lo.s32 %r32, %r4, %r21, %r6;
mul.wide.s32 %rd26, %r32, 8; mul.wide.s32 %rd26, %r32, 8;
add.s64 %rd27, %rd25, %rd26; add.s64 %rd27, %rd25, %rd26;
ld.global.f64 %fd18, [%rd27]; ld.global.f64 %fd18, [%rd27];
mul.f64 %fd19, %fd18, %fd11; mul.f64 %fd19, %fd18, %fd11;
fma.rn.f64 %fd20, %fd28, %fd10, %fd fma.rn.f64 %fd20, %fd28, %fd10, %fd

19; 19;
st.global.f64 [%rd27], %fd20; st.global.f64 [%rd27], %fd20;

BB6_11: BB6_11:
ret; ret;

} }

Figure A.9: Native CUDA DGEMM PTX code Figure A.10: alpaka CUDA DGEMM PTX code

98 APPENDIX A. CODE LISTINGS

99

B Additional Measurements

B.1 Generalized Vector Addition

Figure B.1: Comparison of the time to solution of the vectorized and non-vectorized alpaka sequential
and the native sequential generalized vector addition.

100 APPENDIX B. ADDITIONAL MEASUREMENTS

Figure B.2: Comparison of the execution time of the alpaka OpenMP and the native OpenMP generalized
vector addition.

Figure B.3: Comparison of the time to solution of generalized vector addition variants.

B.2. GENERALIZED MATRIX-MATRIX-MULTIPLICATION 101

Figure B.4: Comparison of alpaka CUDA versions with varying element per thread counts relative to the
native CUDA generalized vector addition.

B.2 Generalized Matrix-Matrix-Multiplication

Figure B.5: Comparison of the NVIDIA cuBLAS and the alpaka CUDA relative to the native CUDA
generalized matrix-matrix-multiplication.

102 APPENDIX B. ADDITIONAL MEASUREMENTS

103

Copyright Information

PIConGPU is dual-licensed under the GPLv3 and LGPLv3.

The alpaka library is licensed under the LGPLv3.

The vecadd library is licensed under the LGPLv3.

The matmul library is licensed under the LGPLv3.

The HASEonGPU code is licensed under the GPLv3.

104 Copyright Information

	Introduction
	Motivation
	Problems in Porting Performant HPC Codes
	Related Works
	Distinction of the alpaka Library
	Comparison
	Structure of this Thesis

	Abstraction
	Task Parallelism
	Data Parallelism
	Thread
	Block
	Warp
	Element
	Summary

	Implementation
	Mapping Redundant Hierarchical Parallelism onto Specific Hardware Architectures
	CUDA GPUs
	x86 CPUs
	Thread
	Warp
	Block
	Threading Mechanisms
	Intel Xeon Phi

	Structure and Implementation of the alpaka Interface
	Structure
	User Interface
	Thread Function
	Function Execution Domain Specifications
	Accelerator Executable Functions
	Kernel Definition
	Index and Work Division
	Interface Properties
	Memory Management
	Kernel Execution

	Implementation in C++
	Concept Implementations
	Template Specialization Selection on Arbitrary Conditions

	Evaluation
	Methodology
	Generalized Vector Addition
	CPU Sequential Execution
	CPU Parallel Execution
	CUDA Parallel Execution

	Generalized Matrix-Matrix-Multiplication
	GEMM on CUDA capable GPUs
	GEMM on x86 CPUs

	HASEonALPAKA

	Summary and Outlook
	Summary
	Outlook

	Bibliography
	List of Figures
	List of Tables
	Code Listings
	Generalized Vector Addition
	Direct Comparison of SAXPY Host and Kernel Codes
	Direct comparison of assembler code snippets generated for sequential DAXPY implementations
	Direct comparison of the PTX code generated for CUDA DAXPY implementations
	Vectorized alpaka CUDA DAXPY PTX Code

	Generalized Matrix-Matrix-Multiplication
	Direct Comparison of the native CUDA and alpaka CUDA DGEMM Kernels
	Direct Comparison of the PTX code generated from native CUDA and alpaka CUDA DGEMM

	Additional Measurements
	Generalized Vector Addition
	Generalized Matrix-Matrix-Multiplication

