Conference paper Open Access

System Architecture Optimization: An Open Source Multidisciplinary Aircraft Jet Engine Architecting Problem

Bussemaker, J.H.; De Smedt, T.; La Rocca., G.; Ciampa, P.D.; Nagel, B.


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/5735127</identifier>
  <creators>
    <creator>
      <creatorName>Bussemaker, J.H.</creatorName>
      <givenName>J.H.</givenName>
      <familyName>Bussemaker</familyName>
      <affiliation>DLR (German Aerospace Center), Institute of System Architectures in Aeronautics, Hamburg, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>De Smedt, T.</creatorName>
      <givenName>T.</givenName>
      <familyName>De Smedt</familyName>
      <affiliation>Delft University of Technology, The Netherlands</affiliation>
    </creator>
    <creator>
      <creatorName>La Rocca., G.</creatorName>
      <givenName>G.</givenName>
      <familyName>La Rocca.</familyName>
      <affiliation>Delft University of Technology, The Netherlands</affiliation>
    </creator>
    <creator>
      <creatorName>Ciampa, P.D.</creatorName>
      <givenName>P.D.</givenName>
      <familyName>Ciampa</familyName>
      <affiliation>DLR (German Aerospace Center), Institute of System Architectures in Aeronautics, Hamburg, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Nagel, B.</creatorName>
      <givenName>B.</givenName>
      <familyName>Nagel</familyName>
      <affiliation>DLR (German Aerospace Center), Institute of System Architectures in Aeronautics, Hamburg, Germany</affiliation>
    </creator>
  </creators>
  <titles>
    <title>System Architecture Optimization: An Open Source Multidisciplinary Aircraft Jet Engine Architecting Problem</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2021</publicationYear>
  <subjects>
    <subject>Model Based System Engineering</subject>
    <subject>Multidisciplinary Design Optimization</subject>
    <subject>Aircraft Jet Engine</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2021-07-28</date>
  </dates>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5735127</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.2514/6.2021-3078</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/agile4</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Decisions regarding the system architecture are important and taken early in the design&lt;br&gt;
process, however suffer from large design spaces and expert bias. Systematic design space&lt;br&gt;
exploration techniques, like optimization, can be applied to system architecting. Realistic engineering benchmark problems are needed to enable development of optimization algorithms&lt;br&gt;
that can successfully solve these black-box, hierarchical, mixed-discrete, multi-objective architecture optimization problems. Such benchmark problems support the development of more&lt;br&gt;
capable optimization algorithms, more suitable methods for modeling system architecture design space, and educating engineers and other stakeholders on system architecture optimization&lt;br&gt;
in general. In this paper, an engine architecting benchmark problem is presented that exhibits&lt;br&gt;
all this behavior and is based on the open-source simulation tools pyCycle and OpenMDAO.&lt;br&gt;
Next to thermodynamic cycle analysis, the proposed benchmark problem includes modules&lt;br&gt;
for the estimation of engine weight, length, diameter, noise and NOx emissions. The problem&lt;br&gt;
is defined using modular interfaces, allowing to tune the complexity of the problem, by vary-&lt;br&gt;
ing the number of design variables, objectives and constraints. The benchmark problem is&lt;br&gt;
validated by comparing to pyCycle example cases and existing engine performance data, and&lt;br&gt;
demonstrated using both a simple and a realistic problem formulation, solved using the multi-&lt;br&gt;
objective NSGA-II algorithm. It is shown that realistic results can be obtained, even though&lt;br&gt;
the design space is subject to hidden constraints due to the engine evaluation not converging&lt;br&gt;
for all design points.&lt;br&gt;
&amp;nbsp;&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/Horizon 2020 Framework Programme - Research and Innovation action/815122/">815122</awardNumber>
      <awardTitle>AGILE 4.0: Towards cyber-physical collaborative aircraft development</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
31
49
views
downloads
Views 31
Downloads 49
Data volume 335.9 MB
Unique views 27
Unique downloads 43

Share

Cite as