Conference paper Open Access
Bussemaker, J.H.; De Smedt, T.; La Rocca., G.; Ciampa, P.D.; Nagel, B.
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Model Based System Engineering</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Multidisciplinary Design Optimization</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Aircraft Jet Engine</subfield> </datafield> <controlfield tag="005">20211201014850.0</controlfield> <controlfield tag="001">5735127</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Delft University of Technology, The Netherlands</subfield> <subfield code="a">De Smedt, T.</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Delft University of Technology, The Netherlands</subfield> <subfield code="a">La Rocca., G.</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">DLR (German Aerospace Center), Institute of System Architectures in Aeronautics, Hamburg, Germany</subfield> <subfield code="a">Ciampa, P.D.</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">DLR (German Aerospace Center), Institute of System Architectures in Aeronautics, Hamburg, Germany</subfield> <subfield code="a">Nagel, B.</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">6855402</subfield> <subfield code="z">md5:7b23e3a4493ff99ece2dc48a8354f53f</subfield> <subfield code="u">https://zenodo.org/record/5735127/files/6.2021-3078.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2021-07-28</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="p">user-agile4</subfield> <subfield code="o">oai:zenodo.org:5735127</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">DLR (German Aerospace Center), Institute of System Architectures in Aeronautics, Hamburg, Germany</subfield> <subfield code="a">Bussemaker, J.H.</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">System Architecture Optimization: An Open Source Multidisciplinary Aircraft Jet Engine Architecting Problem</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-agile4</subfield> </datafield> <datafield tag="536" ind1=" " ind2=" "> <subfield code="c">815122</subfield> <subfield code="a">AGILE 4.0: Towards cyber-physical collaborative aircraft development</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Decisions regarding the system architecture are important and taken early in the design<br> process, however suffer from large design spaces and expert bias. Systematic design space<br> exploration techniques, like optimization, can be applied to system architecting. Realistic engineering benchmark problems are needed to enable development of optimization algorithms<br> that can successfully solve these black-box, hierarchical, mixed-discrete, multi-objective architecture optimization problems. Such benchmark problems support the development of more<br> capable optimization algorithms, more suitable methods for modeling system architecture design space, and educating engineers and other stakeholders on system architecture optimization<br> in general. In this paper, an engine architecting benchmark problem is presented that exhibits<br> all this behavior and is based on the open-source simulation tools pyCycle and OpenMDAO.<br> Next to thermodynamic cycle analysis, the proposed benchmark problem includes modules<br> for the estimation of engine weight, length, diameter, noise and NOx emissions. The problem<br> is defined using modular interfaces, allowing to tune the complexity of the problem, by vary-<br> ing the number of design variables, objectives and constraints. The benchmark problem is<br> validated by comparing to pyCycle example cases and existing engine performance data, and<br> demonstrated using both a simple and a realistic problem formulation, solved using the multi-<br> objective NSGA-II algorithm. It is shown that realistic results can be obtained, even though<br> the design space is subject to hidden constraints due to the engine evaluation not converging<br> for all design points.<br> &nbsp;</p></subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.2514/6.2021-3078</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">conferencepaper</subfield> </datafield> </record>
Views | 31 |
Downloads | 49 |
Data volume | 335.9 MB |
Unique views | 27 |
Unique downloads | 43 |