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Introduction

Cancer affects millions of people worldwide. With the advent of novel
DNA sequencing technologies, whole-genome sequencing (WGS) has
become part of cancer diagnostics workflow that can potentially enable
tailored treatments of individual patients. Processing WGS data from
thousands of cancer patients is a major eScience challenge that has not
been attempted before.
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Structural Variations (SVs) are variants > 50 bp and occur in many forms
and sizes. The analysis of SVs in cancer genome sequencing data is the
next frontier in cancer genomics and our methods will serve as an
important component in future genome-first-based clinical-decision
making for cancer patients. Moreover, SVs underlie other human

diseases.

Reference 8 B G
Deletion 88 4Ch

Insertion S50 E wABMEGH
Inversion ®m C B

Tandem

duplication s e B C
Dispersed P ——
duplication

Copy-number

variant AR §AB @8 B C

ji

Deletion
—

Coverage

Reads

Discordant reads

Alignment

B A
_— =)

Integrative Genomics Viewer (IGV) screen shot

M. Baker, Structural variation: the genome’s hidden architecture, Nature Methods, 2012.

Benchmarking SV Callers
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Ensemble Learning
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Consensus Problem
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Two Complementary SV Caller Integration Strategies

Deep Learning Methodology

SV Calling Workflow
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