# **Googling The CAncer Genome**



**UMC Utrecht** 

Carl Shneider<sup>1</sup>, Jeroen de Ridder<sup>1</sup>, Wigard Kloosterman<sup>1</sup>, Marleen Nieboer<sup>1</sup>, Sonja Georgievska<sup>2</sup>, Arnold Kuzniar<sup>2</sup>

Human chromosome

A E B C

A A B C

A B A C

A A A B C

A B C

A C

Reference

Deletion

Insertion

Inversion

Tandem

duplication

Dispersed

duplication

variant

Copy-number

<sup>1</sup>Department of Genetics, UMC Utrecht <sup>2</sup>Netherlands eScience Center, Amsterdam Science Park

## Introduction

Cancer affects millions of people worldwide. With the advent of novel DNA sequencing technologies, whole-genome sequencing (WGS) has become part of cancer diagnostics workflow that can potentially enable tailored treatments of individual patients. Processing WGS data from thousands of cancer patients is a major eScience challenge that has not been attempted before.

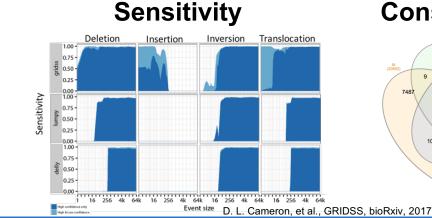
Structural Variations (SVs) are variants > 50 bp and occur in many forms and sizes. The analysis of SVs in cancer genome sequencing data is the next frontier in cancer genomics and our methods will serve as an important component in future genome-first-based clinical-decision making for cancer patients. Moreover, SVs underlie other human diseases.

С

Courtesy Alessio Marcoz

## **Benchmarking SV Callers**

#### **Break Point Junctions**

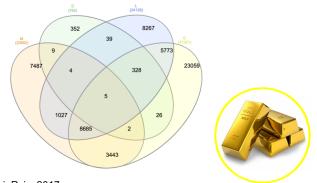

Reference

Insertion

Reference

Intersp. Dup.

5'-

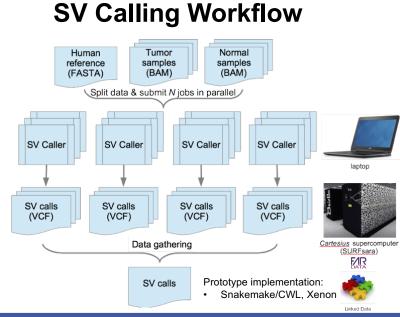



#### **Consensus Problem**

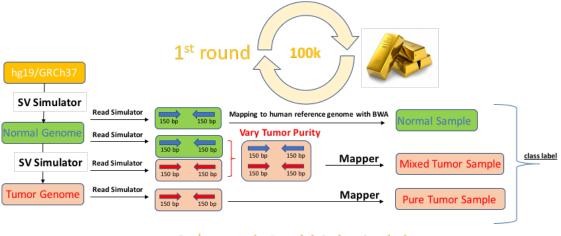
Reads

M. Baker, Structural variation: the genome's hidden architecture, Nature Methods, 2012.


Discordant reads




Integrative Genomics Viewer (IGV) screen shot


mcfl

## **Two Complementary SV Caller Integration Strategies**





### **Genomic Variants Simulation Workflow**



 $\times$ 

2<sup>nd</sup> round: Real biological data



c.shneider@umcutrecht.nl