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Abstract—Anomaly detection is the process of discovering 

some anomalous behaviour in the real-time operation of a 

system.  It is a difficult task, since in a general case 

(multivariate anomaly detection, an anomaly can be related to 

the behaviour of several parameters which are not necessarily 

behaving anomalously per se, but their (complex) relation is 

anomalous (not usual/normal). This implies the need for a very 

efficient modeling of the normal behavior in order to know 

what should be treated as anomalous/outlier/unusual.  

Consequently, classical model-driven approaches, due to their 

focusing on the selected parameters for creating models, are 

not able to model the behavior if the whole system. This is why 

data-driven approaches for anomaly detection are getting ever 

more important for the industry use cases where hundreds 

(thousands) of parameter should be taken into account. 

However, current approaches are usually focused on the 

univariate anomaly detection (or some variations of it), so 

without going into observing the entire space of relations 

(computation very difficult).  

In this paper we present a novel approach for the multivariate 

anomaly detection that is based on modeling and managing the 

streams of variations in a multidimensional space. The main 

advantage of this approach is the possibility to observe the 

relations between variations of a large set of parameters and 

create clusters of “normal/usual” variations. In order to ensure 

scaling, which is one of the most challenging requirements, the 

approach is based on the usage of the big data technologies for 

realizing data analytics tasks/calculations.   

The approach is realized as a part of D2Lab (Data Diagnostics 

Laboratory) framework and has been applied in several 

industrial use cases. In this paper we present a very interesting 

usage for the anomaly detection in the process of functional 

testing of home appliances devices (in particular case 

refrigerators) after manufacturing/assembling process. It has 

been done for a bug vendor (Whirlpool), who expects huge 

saving in testing and improved customer satisfaction from this 

approach.  
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I.  INTRODUCTION (HEADING 1) 

According to recent analyses 1 , the number of smart 
connected devices will grow beyond 50 billion by 2020 and 
Internet of Things (IoT) has the potential to represent 11% of 

                                                           
1 Big Data in Manufacturing: BDA and IoT Can Optimize Production Lines 
and the Bottom Line— but Much of the Industry Isn’t There Yet, Frost & 
Sullivan, Big Data & Analytics, December 2016 

 

the world’s economy over the same period. The 
manufacturing sector is expected to be one of the top 
adopters of IoT technologies. On the other hand, IoT has 
been considered as one of disruptive technologies that have 
the maximum potential for revolutionizing the landscape of 
manufacturing. While huge progress on making assets 
‘smarter’ and production more efficient have been made 
during last years, the full potential of using IIoT (Industrial 
IoT) has not yet been exploited sufficiently. Indeed, 
manufacturing generates a huge amount of data, but this data 
is still mainly used in the various types of the analytical 
processing (e.g. diagnostics, predictions) to improve some 
KPIs of a process, although the main benefit is related to the 
possibility to enable a continuous process improvement. One 
of the most promising advantages of IIoT is the possibility to 
realize a very efficient real-time monitoring and react in the 
case of some problems/anomalies detected, which is the 
main focus of this paper. 

Anomalies are abnormal events or patterns that do not 

conform to expected events or patterns [1]. Identifying 

anomalies is important in a broad set of disciplines; 

including, medical diagnosis, insurance and identity fraud, 

network intrusion, and programming defects. Anomalies are 

generally categorized into three types: point, or content 

anomalies; context anomalies, and collective anomalies [2]. 

Point anomalies occur for data points that are considered 

abnormal when viewed against the whole dataset. Context 

anomalies are data points that are considered abnormal 

when viewed against meta-information associated with the 

data points. Finally, collective anomalies are data points 

which are considered anomalies when viewed with other 

data points, against the rest of the dataset. 

Anomaly detection is the process of discovering some 

anomalous behaviour in the real-time operation of a system. 

In general case, an anomaly can be related to the behaviour 

of several parameters (so called multivariate anomaly 

detection), which are not necessarily behaving anomalously 

per se, but their (complex) relation is anomalous. This 

implies the need for a very efficient calculation of the 

anomalies in the huge datasets, which makes the process of 

anomaly detection very difficult 2 . On the other hand, 

univariate anomaly detection is a much simpler methods but 

                                                           
2 In the theory this situation is related to detecting so called 

unknown unknowns/anomalies, i.e. not previously known 

anomalies. Most of the approaches is focused on detecting known 

unknowns/anomalies  



it is difficult to perform root cause analysis of an issue 

because “it is hard to see the forest for the trees”. It is easier 

to scale in terms of computation. Less data is needed to 

learn what is normal because the system looks at each 

metric/parameter by itself, as opposed to looking at 

combinations of metrics. Figure 1 illustrates the constraints 

of a univariate anomaly calculation. Let us consider a device 

to be monitored that is sensed with two parameters, 

presented on Figure 1 (in case of a machine these could be 

Power and Speed, for example).  

 
Figure 1. Device with two parameters – normal behavior of both 

parameters (univariate analysis) 

If we are observing values of both parameters at a 

certain moment, individually, we could conclude that there 

is no problem in a process, and that the device functions 

correctly. But this could be misleading, because even 

though these values are in range of normal values, if we 

consider both of them at the same time, the image we have 

about the device can become different. This is presented on 

Figure 2. 

 

 
Figure 2. Multivariate analysis enables an efficient anomaly detection 

process 

This shows that it is not enough to consider parameters 

in isolation (univariate anomaly detection, like to define 

outliers based on relational class attributes [3]), but rather 

there is a need to correlate them. By knowing correlations 

between parameters we can expect to identify anomalous 

behavior even in cases when values of individual parameters 

seem normal, but their relationship is not. However, this is 

one of the most challenging parts in the realization of the 

multivariate anomaly detection: computational complexity 

which requires novel and efficient big data driven methods. 

Indeed, a prevalent challenge in existing works in 

anomaly detection for industry is their scalability to large 

amounts of data, which is usually a case due to a huge 

expansion of the usage of sensors (IoT in general), as 

already mentioned. In most cases the algorithms have 

increased their complexity to overcome more naïve 

methods, but in doing so have limited their application 

scope to offline detection. Additionally, where an algorithm 

may have excelled in its serial elision, it is now necessary to 

view the algorithm in parallel; using concepts such as divide 

and conquer, or MapReduce [4]. Many common anomaly 

detection algorithms such as k-nearest neighbour, single 

class support vector machines, and outlier-based cluster 

analysis are designed for single machines [5]. 

Another approach that can be used for extending 

univariate anomaly detection is the model-based monitoring 

[6], driven by the set of predefined (in design time) models, 

based on some expert knowledge and theories. However, 

this approach is usually expensive/difficult to be developed 

and in general case it requires a continual 

maintenance/evolution. Indeed, due to some changes which 

might happen in the environment or in the internal structure, 

an evolution of the model is required (caused by so called 

model drift). An additional constraint in the model-based 

anomaly detection is the infeasibility of the models to 

capture the dependencies between all parameters which 

influence the behaviour of the system. There are two 

challenging cases:  

- when the behaviour of some parameters cannot be 

captured in the models created by experts, e.g. due to a 

large number of parameters (1000+) and no 

corresponding background knowledge 

- the influence of contextual parameters (like air 

temperature, pollution) which are not part of the models  

On the other hand, the industry requires ever more 
(scalable and affordable) approaches for analysing patterns 
of complex and heterogeneous data streams and looking for 
anomalies that can reveal something unexpected 
(anomalies).  

In this paper we present such an (scalable and 
affordable) approach. The main idea is in handling 
contextual anomaly detection by excessive computation of 
the co-relations using all the data concurrently 
(multidimensional space), using a very efficient big data 
analytics infrastructure. The main advantage of this 
approach is the possibility to observe the relations between 
variations of a large set of parameters and create clusters of 
“normal/usual” variations. The benefits are high, especially 
when the context of the data cannot be broken into discrete 
categories, or when new records cannot easily be placed 
within one of the given contexts. This approach generally 
requires a higher computational complexity than a 
univariate or model-based anomaly detection, as the 
underlying algebra in calculating multivariate anomalies is 
computationally expensive. 

The approach is realized as a part of D2Lab (Data 
Diagnostics Laboratory, d2lab.nissatech.com) framework 



and has been applied in several industrial use cases. In this 
paper we present a very interesting usage for the anomaly 
detection in the process of functional testing of home 
appliances devices (in particular case refrigerators), done 
after manufacturing/assembling process. The existing 
approach for anomaly detection is based on the univariate 
analysis of the measured data from the testing process, 
which doesn’t allow to detect complex anomalies that are a 
huge challenge for the quality engineers. The approach has 
been realized for a big vendor (Whirlpool), who expects 
huge saving in the testing process and an improved 
customer satisfaction from this approach.  

The paper is organized in the following way: in the 
second section we describe our approach for data-driven 
multivariate contextualized anomaly detection, whereas 
Section III presents the results from the use case study. In 
Section IV we give the details about the implementation and 
the deployment. In Section VI we present the most 
important related work. Section V contains concluding 
remarks. 

II. D2LAB APPROACH FOR MULTIVARIATE CONTEXTUAL 

ANOMALY DETECTION 

We use the notion of anomalies as something that is 

“significantly different than the past” [7] without pretending 

that an anomaly is a mistake, but rather an outlier. 

Consequently, the detection process is related to comparing 

the real-time status of a system with a model of its normal 

behaviour, whereas the creation of this model is the most 

challenging task. Indeed, since there are, usually, many 

parameters influencing a process it is difficult to 

design/create (by an expert) the model of the normal 

behavior of the process (which enables model-based 

anomaly detection), as discussed in the previous section. 

Our approach is based on the fact that modern industrial 

processes, esp. those driven by IIoT, usually generate 

MB/GB of data. Since this data reflects the real-time 

behavior of the process, it represents a very valuable source 

for deriving (model of) normal behavior of the process, 

which is the crucial task in the anomaly detection. However, 

this task, which is in the nutshell of D2Lab approach, has 

two main requirements: 

R1: It has to scale properly in order to enable 

multivariate anomaly detection, even in the cases of 

thousands of parameters and GB of past data 

R2: It has to enable observation of the co-relations 

between all parameters, incl. contextual ones, altogether 

In the following two subsections we provide more 

details about the realization of these requirements. 

A. Scalability 

Regarding the first requirement, our approach relies on 

the big data technologies. In the nutshell of the approach is a 

novel highly scalable clustering based method, 

KmedoidsUsingFAMES described in [9, 10], which 

represents a combination of several algorithms – K-medoids 

[11], FAMES [12], K-means|| (K-means parallel) [13] and 

uses DTW [14, 15] as a distance measure. The main 

advantages of clustering based anomaly detection methods 

are that they are a) unsupervised (which means affordable 

since the inclusion of domain experts is limited) and b) 

scalable (R1). K-medoids is a clustering algorithm which 

represents the basis of our solution as it is very flexible 

about the data it clusters and allows to use any distance 

measure. FAMES (Fast MEdoid Selection) represents a 

special technique of medoid selection which is very fast, 

while for the initialization we use a modification of K-

means|| algorithm, which allows selection of good initial 

medoids, improving the quality of final clusters and 

reducing the number of iterations needed, at the same time. 

DTW is used as a distance measure, as it enables to compare 

sequences of different length by finding the optimal 

alignment of the two.  

The approach is implemented in D2Lab framework, 

which also allows that a sequence of transformations is 

performed prior to clustering (e.g. filtering, windowing, 

padding, standardization), to create most adequate features 

(see Section IV). This solution is implemented as a 

sequence of MapReduce jobs [16], making a very scalable, 

distributed, parallel solution. The algorithm runs on a 

YARN cluster, with a number of machines which belong to 

the commodity hardware group. 

B. Contextualization 

The realization of this requirement is the main 

contribution of this paper. We emphasize that the role of 

contextualization is critical for the IIoT systems due to the 

possibility to generate a false positive anomaly when 

context such as the time of day, time of year, or type of 

location is missing. For example, hydro sensor readings in 

the winter may fluctuate outside the acceptable anomaly 

identification range, but this could be due to varying 

external temperatures influencing how a building manages 

their heating and ventilation. The problem is that there are 

many contextual parameters and their influence on the 

behavior of the system (that can be depending on thousands 

of parameters) should be checked in an efficient and 

scalable (systematic) way. This is the reason why we have 

developed a separate set of methods for dealing with 

contextualization, described in the following text. 

We make a distinction between contextual and 

behavioral parameters [8]. Contextual parameters define the 

context of an instance. Behavioral parameters represent non-

contextual instance characteristics. For example, if we are 

talking about a location-based use case, where certain 

parameters are measured at a certain location, coordinates of 

that location would make the contextual parameters, while 

the parameters measured at the point would be behavioral 

parameters. As already illustrated, it is crucial to include the 

contextual parameters into analysis, as an instance might be 

anomalous in one context and normal in another one. 



Form of contextual parameters might be different than 

behavioral ones. For that reason a method to include them 

into analysis (with the rest of parameters) is needed. 

Through concrete industry use cases we were able to 

identify the following types of contextual parameters, used 

as the basis for realizing our approach (and ensuring the 

advantages): 

• grouping contextual parameters – contextual 

parameters which define a group, for example – id 

of a location where measurements were performed 

• single value contextual parameters – contextual 

parameters which have a single value during the 

whole period of observation (parameters 

measurement), for example – temperature 

measured once during whole period of observation 

• time series contextual parameters – parameters 

which are measured for the whole time during 

period of observation, for example – temperature 

measured at a certain frequency 

The first case “grouping contextual parameters” is 

easiest to handle, as there is a limited number of groups we 

can perform separate analysis for each of the groups.  

We treat “time series contextual parameters” in the same 

way as behavioral parameters which are time series by 

nature.  

The main challenge is the “single value contextual 

parameters” group, which requires special treatment to be 

included in our clustering algorithm, as the algorithm works 

with time series parameters. In order to use this data for the 

training of a machine learning algorithm we develop a novel 

technique, called context boosting. Briefly, it 1) creates time 

series parameter out of single value parameter by repeating 

the value N times (where N corresponds to the length of 

other time series parameters) and 2) performs boosting of 

values, to make contextual parameters equally important as 

behavioral ones (as in most cases number of contextual 

parameters is much smaller than the number of behavioral 

ones). One of the main advantages is the scalability of this 

approach since it relies on the D2Lab computation model, as 

mentioned previously.  

The importance of contextual parameters in the analysis 

and the results of approach are further explained through the 

use case. 

III. USE CASE 

A. Introduction 

In order to illustrate the approach, in this section we 

present the details from the industry use case, which has 

been performed for Whirlpool in the domain of the ZHQ 

(Zero Hour Quality), a quality management approach that 

aims in having a valid product (high quality) from the 

beginning of the usage (zero hour) of a product/device. In 

order to achieve this, there is a very strict process of 

functional testing after assembling process that consists of 

10+ measurement stations where different parameters of the 

operation of the assembled devices are checked.  

The quality control process is done using a traditional 

threshold-based process, producing so called out-of-limits 

OOL alarms. It consists of defining an upper and lower 

threshold so that when a measurement goes above the upper 

limit or below the lower one, an alarm is triggered. Then 

engineers will inspect the parameter that is out of limits and 

determine whether it is an anomaly or not and decide which 

action to take (for example, run a procedure). 

Therefore, this is a “traditional” univariate (threshold-

based) anomaly detection process, which suffers from all the 

drawbacks we mentioned in the first section. Our task was 

to develop a novel approach for the anomaly detection in the 

functional testing process, which should 1) exploit the value 

of past measurement data  for the detection of complex 

anomalies and 2) include the influence of the contextual 

parameters, i.e. to develop a multivariate contextualized 

anomaly detection approach. The approach should be tested 

on the functional testing of refrigerators. 

B. Use case settings and preliminary analysis 

We briefly list the most important elements from the 

Whirlpool use case: 

• For each refrigerator that Whirlpool produces, a 

functional test is performed by attaching sensors 

and measuring a number of parameters 

• Functional tests validate that a refrigerator works 

as it should and represent one of basic measures of 

quality control 

• For the dataset provided following 6 (behavioral) 

parameters are measured (see Figure 3 for an 

example): 

◦ Temp. Destra (Rossa), Temp. Sinistra (Nera), 

T EV Cap Fz., T EV Cap. Fr., Cos Fi, Potenza  

• As it was previously explained, there was a need to 

include contextual parameters into analysis as well. 

Following contextual parameters were provided: 

◦ Time when the functional test was performed 

◦ Temperature of the environment in which 

functional test was performed 

◦ Location (part of the factory) where the 

functional test was performed 

• Data is delivered as a database containing 

compressed content (decompression was first 

needed) 

• The dataset was too large to be processed on a 

single machine (measurements for 44165 

functional tests) and that is why we needed a 

scalable, distributed solution which is able to bare 

with Big data. 

• A certain number of instances contained missing 

values (missing parameters, to be more exact) and 

needed special treatment 

Length of time series parameters differs for a number of 

tests (see Figure 4 for an example of the histograms for one 



parameter). However, this issue can be easily resolved using 

DTW as a distance measure and padding as a preprocessing 

technique, as we designed in D2Lab. DTW allows us to 

compare functional tests of different length, while we use 

padding to get all parameters of a single functional test to 

the same length. 

 
Figure 3. Temp. Destra (Rossa) 

 

  
Figure 4. Length of Temp. Sinistra parameter for instances in the 

dataset 
 

In order to get a better overview of the distribution of 

data we performed PCA (Principal Component Analysis) to 

be able to visualize it in 3D (cf. Figure 5). Each point on the 

plot represents a functional test determined by its six 

parameters. We can notice one large group and a certain 

number of points deviating from it. It means that the 

functional tests are performed in an unified way, but there 

are (not a few) cases which appear like outliers.  

 

 
Figure 5. Scatter plot (3D) of dataset instances after performing PCA 

C.  Contextualized anomaly detection 

The main goal of this paper is to explain the influence of 

contextual parameters, based on the approach described in 

previous section. We have examined the influence of 

contextual parameters before including them into further 

analysis. The results for each contextual parameter are the 

following: 

- Time when the functional test was performed 

Influence of time of the year when the functional test 

was performed is given on Figure 6. We have tried different 

number of groups and at the decided to split the dataset into 

four groups: 

Light blue – Summer,  

Dark blue – Spring 

Red – Winter,  

Yellow – Autumn 

 

 
Figure 6. Influence of time when the functional tests were performed 

 

We have concluded that time of testing has some 

influence on refrigerator behavior during functional tests, 

but only to a certain measure, as these periods are not 

separated clearly and there is some amount of overlapping 

and mixing of functional tests from different periods. 

 

- Temperature of the environment in which functional 

test was performed 

 

Temperatures of the environment in which functional 

tests were performed were given as single measurements. 

We can observe how this temperature changed during time, 

for the whole dataset, on Figure 7. 



 
Figure 7. Environment temperature change during time 

 

Then we observe the temperature influence on Figure 8. 

In this case our analysis showed that it is best to split the 

temperature into 5 ranges. 

 

 
Figure 8. Environment temperature influence onto functional tests 

 

We can see that functional tests are very well grouped if 

we consider the temperature at which they were performed. 

This indicates that this parameter may have great influence, 

as it will show later. 

 

- Location (part of the factory) where the functional 

test was performed 

 

It was interesting to see whether the location where the 

functional tests were performed has any influence on the 

results of the functional tests. The results are given on 

Figure 13. Two locations are colored in red in blue.  

 
Figure 9. Location influence onto functional tests 

 

We have concluded that the location where the 

functional tests were performed had no influence onto 

functional tests result. 

D. Interpretation of results 

In communication with domain experts we were able to 

validate our conclusion about the influence of environment 

temperature on results of functional tests. Domain experts 

stated that they were not aware of this influence and that 

they plan to use this information for future tests as it is of 

great importance. Namely, tests are performed for a 

refrigerator, a device whose main and only purpose is to 

cool, hence a lot of measured parameters are actually 

different temperatures measured inside the refrigerator 

(Temp. Destra (Rossa), Temp. Sinistra (Nera), T EV Cap. 

Fz. and  T EV Cap. Fr.). The temperature inside the 

refrigerator is correlated to the temperature of the 

environment, hence, the temperature of the environment 

needs to be taken into consideration when performing 

functional tests. We have done another experiment to prove 

this. We took two functional tests: 

- functional test of refrigerator performed in 

environment with low temperature 

- functional test of refrigerator performed in 

environment with high temperature 

 
Figure 10. Testing the data-driven model: successful detection of an 

artificial (anomalous) instance 



We took environment temperature (contextual 

parameter) of one refrigerator and behavioral parameters of 

the other refrigerator and combined them as they come from 

a single functional test. Then we run PCA on this artificial 

test like on all the others and visualized it (Figure 10). We 

can see that such a functional test represents an outlier, 

being far from the central group. 

After concluding that out of the three contextual 

parameters environment temperature is to be included, we 

performed D2Lab clustering (see Section 2) to detect 

existing anomalies and to generate a model which can be 

used in real time. Clustering results are presented in Figure 

11. The number of clusters is six, which is at the same time 

the number of medoids included in the model. Number of 

clusters was determined using combination of Elbow and 

Silhouette methods [17, 18]. 

 
Figure 11. D2Lab clustering results 

 

 
Figure 12. Detected anomalies 

 

The smallest cluster containing only two points 

represents a cluster of anomalies, while other five clusters 

contain mostly normal functional tests with a smaller 

number of anomalies on the boundary of those clusters. 

Identified anomalies are marked on Figure 12. 

 

IV. IMPLEMENTATION AND DEPLOYMENT 

In this section we give the most important details about 

the implementation and deployment of the presented 

approach in the Whirlpool environment. 

A. Technical architecture 

Core D2Lab components modified for the purpose of 

specific, Whirlpool use case, are given on Figure 13.  

 

 
Figure 13.  D2Lab architecture – Whirlpool instance 

 

D2Lab represents a highly scalable system, based on Big 

data technologies such as Hadoop, HBase and Kafka. In this 

case all components are deployed inside Whirlpool facility 

(private cloud) with no need for external communication. 

Core features of the system, specific to this use case are: 

1. Remote Client 

Represents the entry point for anomaly detection. When 

a functional test is finished the remote client receives a 

request to analyze the functional test saved in the functional 

test database.  It reads the measurements for the database, 

transforms the data according to specified format and 

contacts the local client. After it receives answer from the 

local client it returns the result to the component which 

initiated the procedure. 

2. Local Client 

Local client has access to a database which contains 

mapping between different types (models) of devices. It 

determines the model of the machine tested by the 

functional test and contacts D2Lab service, passing the 

functional test and information about the model. 

3. Model to project mappings database 



Contains mappings for different kinds of devices 

(machines). 

4. Training procedure 

Training procedure had to be extended to support 

analysis which includes contextual parameters. Specific 

steps were needed to determine the influence of contextual 

parameters and to emphasize it. This steps have already 

been described in the previous sections. 

5. Real time anomaly detection 

Influence of contextual parameters also had to be 

included in real time anomaly detection. Similar steps need 

to be performed during both phases, to have an identical 

workflow for a functional test, regardless of whether it 

comes for training, or in real time, for anomaly detection. 

B. Hardware requirements 

In this part we specify minimal hardware requirements 

for D2Lab deployment. D2Lab requires a cluster of 

machines to exist, for Hadoop, HBase and Kafka 

components. Additionally, there is a need for at least 

another machine, central server, on which all the other 

components will be deployed. Hardware requirements for 

the central server and cluster components are as follows: 

• central server: 12GB RAM, 8 cores, 500GB HDD 

• cluster master 12GB RAM, 8 cores, 300GB HDD 

• 3 slaves 12GB RAM, 8 cores, 400GB HDD 

C. Processing pipeline 

D2Lab processing pipeline is depicted on Figure 14. 

These are only the phases of analysis and for each phase 

there is a certain number of possibilities which can be used 

depending on the use case and concrete data. For example, 

in case of Whirlpool refrigerator use case data was stored in 

a relational database, from which it needed to be extracted 

using SQL queries, to be imported into D2Lab system for 

training. We performed exploratory analysis to find out 

about the influence of contextual parameters and to 

conclude that we will need a special learning method as the 

instances in dataset may differ in length. A lot of instances 

had missing values, which needed to be dealt with. Data was 

transformed using standardization method. There was no 

need to create windows as the data was not in a streaming 

form. PCA was selected as dimensionality reduction 

method, while Fast Fourier Transform (FFT) and statistical 

features were also considered. Similarly, Elbow method 

gave better results when trying to determine the optimal 

number of clusters than the Silhouette method. The whole 

procedure was unsupervised due to lack of labels, so we 

used our scalable clustering algorithm 

KmedoidsUsingFAMES during training. We inspected the 

clusters, cluster representatives and anomalies found during 

training. We compared clusters and anomalies to try to 

identify the root cause of anomalies. Along the way we 

produced a lot of 2D/3D plots (scatter plots, silhouette plots, 

box plots, histograms), and at the end produced a report 

called “Process Data Atlas”. Model produced during 

training (containing cluster representatives) was then used in 

real-time to detect new anomalies between functional tests, 

as they are performed. 

 

 
 

Figure 14. D2Lab processing pipeline 

V. RELATED WORK 

Little work has been performed in providing context-

aware anomaly detection algorithms. 

Srivastava and Srivastava [17], proposed an approach to 

bias anomaly detectors using functional and contextual 

constraints. Their work provides meaningful anomalies in 

the same way as a post-processing algorithm would, 

however, their approach requires an expensive 

dimensionality reduction step to flatten the semantically 

relevant data with the content data.  

Mahapatra et al. [18] propose a contextual anomaly 

detection framework for use in text data. Their work focuses 

on exploiting the semantic nature and relationships of 

words, with case studies specifically addressing tags and 

topic keywords. They had some promising results, including 

a reduction in the number of false positives identified 

without using contextual information. Their approach was 

able to use well-defined semantic similarity algorithms 

specifically for identifying relationships between words.  

A different approach for contextual detection is that 

work of AlEroud et al. [19], who apply contextual anomaly 

detection to uncover zero-day cyber attacks. Their work 

involves two distinct steps, similar to the modules described 

in this paper: contextual misuse module, and an anomaly 

detection technique. There are other minor modules, such as 

data pre-processing, and profile sampling. The first major 

component, contextual misuse, utilizes a conditional 

entropy-based technique to identify those records that are 

relevant to specific, useful, contexts. The second 

component, anomaly detection, uses a 1-nearest neighbour 

approach to identify anomalies based on some distance 

measure. This component is evaluated over the records 

individually to determine whether connections between 

records indicate anomalous values. This work is similar to 

the work presented in this paper in that the detection is 

composed of two distinct modules. However, the content 

component of their work involves calculating difficult 

distance measures that are not always easily definable. For 

example, when faced with many features that each have 

different data types or domains, it is difficult to calculate 

suitable distance metrics as finding a common method to 



aggregate the features is also difficult. Another drawback is 

that each module is normally evaluated for all new incoming 

values. While the authors do say that the first component 

aims to reduce the dimensionality required for the second 

component, they go on to mention that both the contextual 

component and anomaly detection component are calculated 

individually to evaluate the anomaly detection prowess of 

the approach. 

Miller et al. [20] discuss anomaly detection in the 

domain of attributed graphs. Their work allows for 

contextual data to be included within a graph structure. One 

interesting result is that considering additional metadata 

forced the algorithm to explore parts of the graph that were 

previously less emphasized. A drawback of this work is that 

their full algorithm is difficult for use in real-time analytics. 

To compensate, they provide an estimation of their 

algorithm for use in real-time analytics, however the 

estimation is not explored in detail and so it is difficult to 

determine its usefulness in the real-time detection domain. 

Other work has been done in computationally more 

expensive algorithms, such as support vector machines 

(SVMs) and neural networks. In general, these algorithms 

require a large amount of training time, and little testing 

time. In most cases this is acceptable as models can be 

trained in an offline manner, and then evaluated in real-time. 

One disadvantage to using these classification-based 

algorithms is that many require accurate labels for normal 

classes within the training data. This is difficult in scenarios 

such as environmental sensor networks where there is little 

to no labelling for each sensor value. Shilton et al. [21] 

propose a SVM approach to multiclass classification and 

anomaly detection in wireless sensor networks. Their work 

requires data to have known classes to be classified into, and 

then those data points which cannot be classified are 

considered anomalous. One issue that the authors present is 

the difficulty in setting one of the algorithm’s parameters.  

To reduce the effect of the computational complexity of 

these algorithms, Lee et al. [22] have proposed work to 

detect anomalies by leveraging Hadoop. Hadoop is an open-

source software framework that supports applications to run 

on distributed machines. Their work is preliminary in nature 

and mostly addresses concerns and discussion related to 

anomaly detection in Big Data.  

Another online anomaly detection algorithm has been 

proposed by Xie et al. [23]. Their work uses a histogram-

based approach to detect anomalies within hierarchical 

wireless sensor networks. A drawback to their approach is 

their lack of consideration for multivariate data. That is, 

their work focuses strictly on developing histograms for the 

data content but not the context of the data. 

VI. CONCLUSION 

In this paper we presented a method for data driven 
quality control using highly scalable clustering based 
anomaly detection. We introduced the notion of contextual 
and behavioral parameters and extended existing methods to 

include contextual parameters during analysis to get more 
accurate results.  

In this paper we presented the results from a large case 

study that has been done for Whirlpool in the domain of the 

ZHQ (Zero Hour Quality), a quality management approach 

that aims in having a valid product (high quality) from the 

beginning of the usage (zero hour) of a product/device. We 

tested this approach in a case related the anomaly detection 

in the functional testing use case, proving the value of our 

approach to the domain experts by finding causalities that 

they were not aware of. As a result of this research a model 

of normal (usual) behavior was created, which will be used 

in real time to detect anomalous refrigerators, to reduce 

scrap and improve the quality of the products. 
We argue that this approach can be very useful for an 

efficient and affordable anomaly detection in a wide set of 
cases related to IIoT. The main advantage is that the 
approach offer a scalable data-driven development of 
complex models in order to enable real-time multiparametar 
monitoring of processes. This will enable a transformation of 
manufacturing systems from reactive into proactive, i.e. they 
will be able not only to react on a problem at hand, but rather 
to sense the problem (in advance) and proactively resolve the 
situation/anomaly (ahead of time).  
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