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BXScatter PlotfiFEANANESHT, 525 (MRIGEXEFRBE7H
R, BSIRALTXE)

Wu, C. and Yu, J. Z.: Evaluation of linear regression techniques for atmospheric applications:
the importance of appropriate weighting, Atmos. Meas. Tech., 11, 1233-
1250, doi:10.5194/amt-11-1233-2018, 2018.

KT EFISEHE R LAERAIR L EHE:
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Scatter plotiszBA$H

0 Igor Pro iBE{THMRRIRER

FFPEZEIgor ProSFA3KiE TScatter PIOERF (pxpXf4) . XEUTFIREER
LR wordRKFTFdocxSHHIAE . A, EFEEEITEN _EZ % gor Pro,
Igor ProfiEWindows PCFIMachii A,

#ZiEFIgor Pro 6.xi)k, Scatter Plottia]LATEIgor Pro 7.x bimfT, {BfERF
FREERPFE—LEE, ELoTsE (%, TREkER) RtLFIRRE, THERE
& ERRFEEDPIRER,

1) M https://www.wavemetrics.com/support/versions.htm T&lgor Pro

2) Wilgor ProZedEsrit

setuplgorb.3/.exe

3) ZIRE T Z=Igor Pro

'_-—1 Welcome to the Igor 6.37 (6.3.7.2) Setup Program - June 15, 2015

Welcome to the lgor Pro Setup program. This program will install Igor Pro on
your computer.

It is strongly recommended that you exit all \Windows programs before
unning this Setup program.

Click Cancel to quit Setup and then close any programs you have running.
Click Next to continue with the Setup program.

WARNING: This program is protected by copyright law and intemational
treaties.

Unauthorized reproduction or distribution of this program, or any portion of it,
may result in severe civil and criminal penalties, and will be prosecuted to
the maximum extent possible under law.

< Back . Cancel


https://www.wavemetrics.com/support/versions.htm
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4) BhEERE, ESEALLARBpxpS 4 @0 N EEREME). tREEEIgor Pro
BORERD, JERhRAIgor Pros#F4e30K., 30KfE, FAFARE: a) SHEF
14 b) RIFIE

ScatterPlot201/7112
5.pxp

5) Eizf7Scatter Plot, RFEWN T pxpI4EIE], SNEREBRERIFTFFZ 1 pxpIis,
B trERFEpxpSEt, ARTE "Ctrl + Enter” .

i ScatterPlot20171125 - Igor Pro 6.37

File Edit Data Analysis Macros Windows Panel Misc Help Scatter Plot

Last Update:2017-11-25 | ClearBuffer = | Replot  Plot Hormal v | Email: wucheng vnp@foxmall com
Programed by We. eﬁ)yn? (Close all Graphs  Re-plot batch y google.
Input  Linearregression  Multiply Y time series  Percentile =~ Readme Data points 0 | Num columns loaded 0 Text columns loaded 0

himl.ln\.lseﬂ | I | | IBI Selsﬁﬂ\mysarj‘/

0 | | t " UncinXx&y_
Type single % v

RN 10 2 v unc (%) [signay -]

EXTEEIN 105 X Unc (%) [signax -

<

o 5 10 15 20 15‘10’
IS -3
Clearinput | Update List Time Tineline v BC88O AE33 ngm

Y axis X axis [] enable z

-3
BC880_28 ngm
T

12:00 AM
1/5/2018

-3
__ BCBS0_AE33 ngm
T

1200aM 12:00 AM 1200AM
1/a/2018 1/5/2018 1/6/2018

Settings

" = = —
Title = site | |+ Year/Month | | + Hour [ Font size BRI Decimal ERE 12 5 Y axis title OC Unit ugn-3 ﬂ

Regression Method | Dening |~ | Intercept|vith intercept|v| Fitting Unc 0ff v|[] Error Bar [ Refline Xaxis title EC Unit ugn-3 | v
maisronge puce | [N o [N RN EEEENeseecClos zasie  umes o
Trace Mode Harker |~ [Marker | O | [HIRSEOES s ~[NMSEDIM:  color [0 ~| [Exporttxt Scatter Matrix ScanX ScanY batch X label orientation 30 v
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1 XFHIREHEAIERIY

NEHARFIKR/IVNF 100 517, Excel HEINBTFEFHEEHUE. TN, BWYE
F.csv X4, WISRATRE, KATEEIESE—RREERME—KRIE LA
RUREER, BRECEREDBRIER, RAFETLUBETHiE. 2iXAY
YRRV TE 1.1 Fim. S—1TR%Fk XAV . S\ lgor [FFk
KR/ wave (Igor X TEFIRIELS, FRET Excel EY5l) BIRFR, Tk
HRZSIEFIEABIEESRT Igor fE0 wave BFREAAIT, BH"_"&ik. FUEDH

=35

1) HBJE& (BE)H)
2) HEHUE (NTZSSRYGRE)
3) MAEGE (BEFRES. WhEETR, SREEHTEER)

Recommended data structure in a sheet

’

Timestamp

Marker Marker
1 n

Species Species

timeline

o T —
i —

1
[}
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\

LT T ———_

~

Maker & label (numerical or text)
e.g. Site name, back trajectory cluster...

Data (numerical)

1.1 #EEETRRTPRISIESN
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Excel #iE (8k.csv M) BI—SERRGIFU0E 1.2 . ROZISHRIR, A&
FIRYEEESI (wave) HIFA—EZE 1.1 188, JLUBEFER=1E5,
FIRVIRIN R BREl, T4, DatelndexETHJEH, SamplelDFSite/&
FMarker (XAHHE) , ERFIBTHIES (SRKERE)

A | B | E [F G | H | | | J | K | L Il CL |
1 Datelndex SamplelD | TGC QGC NalC_C NH4_C KIC_.C CLIC_.C NO3_C SO4 C Site
2 | 1/13/11 MK110113 61.9167 69.2917 1.9802 6.4493 0.5765 0.8873 11.6865 10.2778 MK
3 | 1/25/11 MK110125 89.8333 101.3750 2.3110 10.9636 0.9455 0.9994  12.1388 22.2418 MK
4 1/27/11 MK110127 59.0417 66.6250 2.5072 5.8765 0.4537 0.8605 9.2997  10.7022 MK
5 1/31/11 MK110131 66.6667 | 73.9167 1 0.2254 7.7103 0.8675 0.4770 5.0206  16.8996 MK
6 | 2/5/11 MK110205 64.7500 73.0000 0.2102 8.3566 1.4050 0.1443 7.8915  17.7907 MK
7 | 2/9/11 MK110209 65.3333  72.7500 0.4780 9.0343 1.1588 0.4825 7.6093 19.9455 MK
8 | 2/11/11 MK110211 59.3750 65.8750 0.4283 6.6911 1.1546 0.1361 7.0313 13.4828 MK
9 | 2/15/11 MK110215 49,9583 52.3750 0.1801 6.4300 0.6436 0.6742 5.4804 13.6615 MK
10_ 2/23/11 MK110223 45.7083 48.7083 0.4691 4.6793 0.3861 0.2296 3.7037  10.7737 MK
11_ 2/25/11 MK110225 53.6667 63.6667 0.4837 6.7622 0.3832 0.3557 5.1990 15.1039 MK
12_ 3/1/11 MK110301 45.9167 53.5417 0.3452 5.0012 0.1890 0.29506 4.2997  10.6106 MK
13_ 3/10/11 MK110310 48.1667 53.3750 0.1575 3.2226 0.2605 0.2542 4.2285 11.9927 MK
14_ 3/13/11 MK110313 76.2500 79.7917 0.2476  10.6859 0.4086 0.1520 11.0401 20.7006 MK
15_ 3/25/11 MK110325 63.8750 70.8750 0.3131 7.1179 0.6857 0.2667 3.8859 17.7513 MK
16_ 3/29/11 MK110329 66.7500 74.0417 0.4628 6.7928 0.8272 0.2829 4,7515 15.8878 MK
"I?_ 3/31/11 MK110331 44,7917 50.7083 0.4477 42772 0.3880 0.2136 2.7727  10.1044 MK
'IB_ 4/9/11 MK110409 49,8750 56.9583 0.5887 6.7063 0.3916 0.3034 3.8906 14.8415 MK
19_ 4/12/11 MK110412 64.3333  74.2500 1.3417 7.3976 0.6255 0.1737 1.8103 21.5748 MK
207 4/18/11 MK110418 33.5417 44.2500 0.1214 3.0270 0.2772 0.0202 0.7076 8.1754 MK
21_ 4/24/11 MK110424 43.0417 54.2500 0.2250 4.8682 0.3361 0.0564 1.7277  13.0045 MK
227 4/30/11 MK110430 54,5833 61.6667 0.7725 6.1938 0.4845 0.0502 1.1593 20.6579 MK
23_ 5/6/11 MK110506 31.2917  41.9167 0.4799 3.4637 0.1624 0.0148 0.2584  10.8408 MK
247 5/18/11 MK110518 31.5000 38.9583 0.2331 3.0178 0.1924 0.0224 0.4353 8.6534 MK
25_ 5/20/11 MK110520 28.7083 34.8333 0.2930 2.7701 0.1236 0.0201 0.3417 8.0928 MK

1.2 Excel#dEAI—1SEPRAIF (Si.csv X)) .
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2 BREANRE RIS IARELER
TR AIZR(Scatter Plot) SEABRERAHTLLE

REEOLSEKMREIT, R32HF

Deming [E])3
Excel Rk TEERT(—BE R 1TEER)
ReeEEIERE
RZFFZHEE
RE‘EOLSIE%'TEIEI 3, AxxF
" . Deming [=]/3
SPSS SR YRR A B B RE
m
Sigma Plot Z¥5EDeming [HIF TR A SRR
movorBR
origin SEERABNER e
XIS ZhEn e
% # OLS, Deming,
Weighted orthogonal
distance and York [g]
3,
seatter FIOLIO0N Sty IgorE R RIS
program HIEEST LIS E R
SRECI]
SIS ZihEn e
HELE
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3 BAEUE

3.1 f£ MS excel RREYASEZETG]

SANZHI, #AREE excel B, [REIFTLURZAIERHRIEIVAI FRNA, HUESIH
KIRTIEN A SBELLAEZ"MM/DD/YY hh: mm", (IEXME"HE (EE)

", WE 3.1 Fis

Number ﬁlignmentl Font IBorderI Fill |Protection

Category:

General Sample

Mumber 1/1/39 0:30
Currency '

Percentage
Fraction
Scientific
;;’:cial 3/14/2012
Custom ESTIE ISP

Locale (location):
English (United States)

Date formats display date and time serial numbers as date values, Date formats that begin with
an asterisk [*] respond to changes in regional date and time settings that are specified for the
operating system. Formats without an asterisk are not affected by operating system settings,

E3.1 RJEtH5IAIMS ExcelPRIETTHEISECE

HCRAJIEAHS IRV BRTTRSS TV S B 1 kY28, SNlogrBiZRalE
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3.2 MExcel&Eil
FUETTLUBIT M Excel Excel EFIFIFMESN, W0EI3.2F 7R, ERIISHTEI4HAL
EE—5,

E"J"’ C"'%":

HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW Load Test T

ﬁ g{,cm |Arial Unicode M5 - AN =E=E ¥ BwepTes
EECOP)F -
Paste - E . AL B === &= .
- ¥ Format Painter B Il = o - A A === &35= & Merge& Center
Clipboard I Font P Alignment P
a | X v S| mime

E3.2 MS ExcelpERIEFEMES (Ctrl + C) RITHI. BHIRIRLIGREIF
IgorshAwaveZ R,



Scatter plotijzAE+

3.3 BEIEHMEZlIgors
BYTBUELE LA, BEUERLRgorfEFRETHNRE (EEREXE) |
4NE3.3. 15

ESREEE %~

[ | ScatterPlot
Last Update:2017-03-01 _ Close all Graphs Re-plot | Plot |Normal v Email: wucheng.vip@foxmail.com
Programed by Weu. Cheng Close all Tables Re-plot batch Num columns loaded |0 Text columns loaded |0
Input : f : Clear Buffer Scatter Matrix Data points 0
T tomea [ ]| [ .
Point = ! N MK 3:/14’”15
1 ~ iﬁc‘ Season hcross years ™
n;m UncinX &y Type|single %[~
S = 9
;,,‘20 ’_101 VUn:(:u) Tear
8 _wv X Unc (%) |Tear
> 0
< P 0 5 10 15 20 25
Clear Input  Update List Time Mitineline ~ EC_ugCM3 Il.arr(3
Y axis X axis [ enablez 80 0C_ugCtM3 pgm”
Z axis JMJL“’ e TN PR YWY I tgunithi
3/1/2012 5/1/2012 7/1/2012 9/1/2012 11/1/2012 1/1/2013
25 _ EC_ugCM3 pgm .
03\.\».&‘]&} oo il it D e b e et 1 Ll
3/1/2012 5/1/2012 7/1/2012 9/1/2012 11/1/2012 1/1/2013
Settings
Title = Site + Year/Month + Hour - 16% - 2[5 Y axis title Unit| ugn—3 |
Regression Method | Weighted ODR | v | Intercept with interceg Fitting Une 0ff ~|[7] Error Bar Ref line X axis title unit| ugn-3 |~
Axisrange [suto | (AN EEEEz IR : EEE - - EEEE e Z axis title Unit ppb |~
Trace Mode | Harker |~ [Marker | & |~ | [N -5 NSRS : - EEEENc © [lexporttxt  batch X label orientation 50| v

El3.3.1 ¥NEEdEZRIIgor Prorh FIF REHYRAL.

RIFF#ERG (ctrl + V) 5, BRBEMERSXES, HIRIIEZHKIgor Prolk

HRal. MR, #ERIZES|Mgorhay0oFa.

ESREEE %

|» | ScatterPlot
Last Update:2017-03-01 Close all Graphs Re-plot ~ Plot Normal |~ Email: wucheng.vip@foxmail.com
Programed by W Cheng Close all Tables Re-plot batch Num columns loaded 0 Text columns loaded 0
Input : : : Clear Buffer Scatter Matrix Data points 0
/| 5093k x 193c [ [ [2/1/2012 00:00:00 [ =
Point i Sanple 1D EC_| MK 3:14ine
"Es0 4
~ - Season Across years
= R
2 UncinX &Y Type|single # v
) [ v une 1) ERAGICOREES
BI 20 TN 105 X unc () [Year
v 0
N < > 0 5 10 15 20 25
3
ClearInput  Update List Time Mktineline ~ EC_ugCM3 pugm
Y axis X axis [ enable 2 Wj 0C_ugtM3 pgm’
Zaxis 0 bt e i 2 et ot iine: L wninibi
3/1/2012 5/1/2012 7/1/2012 9/1/2012 11/1/2012 1/1/2013
K
253 EC_ugCM3 1g m ) R
F i . ; . 3 ' Lot H I T
DW}&‘E&”"‘ b i, ot st S e j;;‘é.g#‘k.
3/1/2012 5/1/2012 7/1/2012 5/1/2012 11/1/2012 1/1/2013
Settings
Title = Site + Year/Month +Hour [ Fon: size P [ Decimal B3E Y axis title unit ugn—3| v
Regression Method Veighted ODR |v| Intercept with intercerFitting Une O0ff v |[] Error Bar Ref line X axis title unit uzn-3 v
axis range [auco| | NS0 - EEEENo - NI os - RN - - EEEEN e | ZR unit e [
Trace Mode Marker [~ [Marker O v | [EEON 25 - EIOENI: - EETEE s |© Oexporttxt  batch Xlabel orientation 50| v

3.3.2 ¥MEEUERIgor Protr A~ RE~GI
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3.4 B#vIR

(@) miE‘Update List” #%ZfH(E3.4, BEErMIXiTHa)

(b) AIEYIREUEEIERS! (TEExcelpFR/FIFNIgor ProshfyiRk) 154 (F
24.1, BRETXED) .

(c) NNEEUERIFIHERUER 41 SRBTHIKIE AR, BFEHFT, XA
MRS (17) RIEE.

[® ] ScatterPlot
Last Update:2017-03-01

Close all Graphs Re-plot  Plot Hormal -
Programed by We Cheng Close all Tables Re-plot batch

Email: wucheng.vi

Num columns Igadeg 191 Text columns loaded 2
Input  Linearregression  Time Series  Readme = Cloov Buffer ScabsaMatyx (c) (IR IS fiad
5993R X 193¢ | | |2/1/2012 00:00:00 [ =
Point Date_ti Sanple_T0 Er_|

£/1/2012 00:00:00

3

2

Season Across years |V

UncinX &Y _Type|single % v

[ v unc (%) FRJERRUCCOMEEES
_ 10 & X Unc (%) |Tear

OC_ugCM3 jig m
] &

°

h 0 v
< ( U >

Clear Input

B
EC_ugCM3 pgm

-3
- - ; 60 OC_ugCM3 g m
Date_time_NC A gzle,lér;;,wc ~ Z axis o th dop . e . . e e L -
_ug —rr 7 U T T 7 T
e 3/1/2012 5/1/2012 7/1/2012 3/1/2012 11/1/2012 1/1/2013
gmi_oc EC_ugCM3
pti_| q 3
TC_ugeM3 Tc,u*»b) EEE;*EE( 253 . ‘ EC_ugCM3 pg m ) . .
ECTC £c i - ° Ud)ﬁo,f»*" ZAC AT SR WA W Y S L ikl
oc_EC oC_EC
\ Sample_Volume % | |Sample_Volume ¥ 3/1/2012 5/1/2012 7/1/2012 8/1/2012 11/1/2012 1/1/2013
Settings

Title = Site + YeariMonth + Hour [ Font size F3E | Decimal B3 Y axis title

Unit ugn-3 ~
Regression Method Veighted QDR |v| Intercept| with intercer Fitting Unc |0ff |~ |[] Error Bar Ref line X axis title unit uen-3 | v
Axisrange [auto v | [HuEc - EEEEe - ESo: - BB -y - B Z axis title Unit ppb |~

Trace Mode Narker |~ [Marker O || [IEEor 25 - SN+ : EEDEE e |¢ Cexporttxt  batch X label orientation 90|

E3.4 |gordhRYEFIFRRA,
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3.5 ¥RERIEH

TSR IZER. Er LB ek, E3.5

7.

1 ScatterPlot ==
Last Update:2017-03-01 Close all Graphs Re-plot | Plot Formal Email: wucheng.vip@foxmail.com
Programed by W Cheng Close all Tables Re-plot batch Num columns loaded [191 | Text columns loaded 2
Input  Linearregression  Time Series  Readme Clear Butfer Scatter Matrix Data points 5993
5093R X 193¢ | | [2/1/2012 00:00:00 [ =
Point Date_time_HC Sample_ID 0C_ugCH3 EC_|
~ 5050 Season Across years v
=< A
a0 UncinX &Yy Type|single %]+
‘é, ERTEEIETN 10 & v unc (%) [Year
glm _ 102 X Unc (%) |Tear
v 0
< >
B
Clear Input eflate_time_NC v EC_ugCM3 pugm
Y axis te tNC 0C_ugtM3 pgm-
iy S it X o e Agirioh ) L tinitbint
EC ugCM3 : - T - — ]
Opti_OC 012 5/1/2012 7/1/2012 9/1/2012 11/1/2012 1/1/2013
Opti_EC
3
ES#ECM3 EC_ugCM3 pgm
- OC_EC o e Ly
0c_EC 0C_EC =
Sompie_voume v | |ssmple_voumj | S2mple_Volume 012 5/1/2012 7/1/2012 9/1/2012 11/1/2012 1/1/2013
calibration_area
Settings Split_time_sec
e AEC ugC . = _
Title = Site .Y ocfu%Cms EEEl o-cimal FE ¥ axis title Unit|ugn-3 |~
Regression Method Weighted O chiungg 0ff v |[] Error Bar Ref line X axis title unit| ugn-3 |~
Axis range | futo |~ 0C3_ugtm3 |z min ERES - - [ Z axis title Unit ppb |~
0C4_ugCm2 = . .
Trace Mode Marker |~ |Marker PC Jggm3 1 5 _E ~ [JExport txt batch X label orientation| 90 |~
C uaCm3

3.5 fEScatter plot IgorfEFHisER E4HE7R~ Gl

10
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4 BRARENS

Scatter Plot IgorfEFFRI—ARIREINE4. 1F~, HPEIE,

Close all Graphs: XAFFEOFHRTEER

Close all Tables: XFEHBEOFTHFIEER

Clear Buffer: fIBRHANIREIRVEFENE, BREFHIX

Replot: fESRNGI~HEL

Plot option: Normal, REE4SENHET-K; New window, tBAEILAE—/NFEOH
LERAE, AILUSHIFREEEIMSTIAZ; Export PNG, AMNAERTEICFARS
B, R4ERPNGIZ{4; Export EMF, TIAZPNGX {4, EMFE—1MREXH,
ALATIRIK. ERAIPNGFIEMFIAER A IgorfZ R (.exp ) FHIER—1X
3k,

Title: RERRE, BE=1FER (RFuh, =/, AR | Re]
Bz XUFREBEEAEREmE, SNSERBFRARFR.
Regression method: g/N_3F;% (OLS), mINEMIEAREERE]T (WODR),
Deming B3, York [E])3. OLS{YERYFRBER, ME=&FFKYFIXFHIAH
EME.

Settings
Title = Site + Year/Season
Regression Method Weighted ODR |~ | Intercept wit
Axis range | Auto | OLS -25.1
Trace Mode | Narker WEIhtEd —
Deming
York

Intercept: QNEREEENo intercept, MIGBIIRRFTEIT (AEATFDemingfl
YorkEl3) . aNERIEE ‘with intercept”, NIFFAEIFF5EEBETA. WN5RERE keep
both”, NIEHITEFIZCEEIERIT (ANERFDeming#lYorkE3) .

Intercept |with intercept |~ | Fitting Un

Mo intercept

with intercept
keep both

Axis range: FJFERIAXYHBBrE

11
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Unit: JoREMEERTNIS R

Decimal: S7RJUA/NE=

Font Size: 8= K/

Trace Mode: 8l E + BREHE R0 AT LA R IRC Z (B TR,
Maker: FEEEYESIRCRIFTS

g
Opti_EC

TC_ugCM3

EC_TC

OC_EC
Sample_Volume W

+ Year/Season
1 Weizhted CDR |
- B

r |~ |Marker | O

Marker Size: IEEEUERIRCAFTSRT KN
Color: &&Emarkerfite ((R7EZ hXEIEN)

10 15 20 25 |
EC_ugCM3

W[/ [
I—IEEI—I—I—I—I—I—I—III;;

- F3E

Une 0Off |~ [

Engos:

* color[] v LI orient

Other. ..

Recent Colors:

Ref Line: B2EE&MIY: XALLE

n | ScatterPlot E@
Last Update:2017-03-16 Close all Graphs| | Re-plot | Plot Normal v Email: wucheng.vip@foxmail.com
Programed by We Cheng Close all Tables| |Re-plot batch ites.google. i
Input | Linearregression  Multiply Y time series  Readme Clear Buffer  pata points 5993 Num cojimns loaded 191 Text columns loaded |2
5993R X 193¢ | | ]2/1/2012 00:00:00 [ =
Foint Date_tinedT | Sanple_TD | 0C_uetM3 | [ 3:14ine
0 2/1/2012 00:00:00 RT-3165 139398 ‘A "E60 A UncinXx &y
1| z/1/e012 01:00:00 HI-5165 16. 4868 @ Type single v
2| 2/1/2012 02:00:00 HI-5165 15,794 =
3 2/1/2012 03:00:00 RT-5165 17.2967 E 40 _ 10 5 Y Une (%) |Tear
4| 27172012 04:00:00 RI-3165 159632 =2
3 = o
s 2A/2012 050000 5165 17 3181 g WODR
7| z/znz 07o0:00 RI-5165 16,9446
gl 2a/e012 ti0000 HI-3165 14.8749 v [
< > 0 5 10 15 20 25
2
Clear Input | Update List Time | Date_tine NC |~ EC ugCM3 pgm
. . El
Y axis X axis O anlahla z mj ) OC_ugCM3 g m
~ Zads P VY A R B I VOV JRPPN LY
TC_ugcm3
e 3/1/2012 5/1/2012 7/1/2012 8/1/2012 11/1/2012 1/1/2013
)
253 EC_ugCM3 pgm .
PETELEN fo it sl it ey o o) b £ bl
T T T T T T
somole voiune |2 3/1/2012 5/1/2012 7/1/2012 9/1/2012 11/1/2012 1/1/2013

( Settings )
Title = site +Year/Season +Hour [Font size FEJER Decimal EYEN mick size ERECERET X T unit ugn-3 [~

Regression Method | Weizhted ODR || Intercept ¥ith intercept|v| Fitting Unc Off | |[] Error Bar Refline Xaxis title EC unit ugn—3 |~
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Scatter plotifBB$

In Deming regression, the key parameter A is the ratio of the weights:
_ wX)
w(Y;)

and the weights are:
1 1
w(X;) = ox? yw(Yy) = or
ox, and oy, are the standard deviations of the error in measurement of Xi and
Yi respectively. For example, say data point Xi has a +m% uncertainty, which
follow a uniform distribution (in the range of [a,b]). the variance of the uniform
distribution becomes

Uniform

1
oy’ = ' (b — a)?

Probability density function

f(x) 1 2
=E(Xi+m><Xi— (XXl —mXXl-))
1 N2
b-a T =L (2 xmx x)? ="
| I As a result, the standard deviation of the
0 a b x  error can be written as
Usi . . le-
smg maximum convention O—X- —
L3

In "Input Data" mode, oy, and oy, are required as measurement error input
for WODR and YR. oy, and oy, are also used to calculate A for Deming
regression.
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Abstract. Linear regression techniques are widely used in at-
mospheric science, but they are often improperly applied due
to lack of consideration or inappropriate handling of mea-
surement uncertainty. In this work, numerical experiments
are performed to evaluate the performance of five linear re-
gression techniques, significantly extending previous works
by Chu and Saylor. The five techniques are ordinary least
squares (OLS), Deming regression (DR), orthogonal dis-
tance regression (ODR), weighted ODR (WODR), and York
regression (YR). We first introduce a new data generation
scheme that employs the Mersenne twister (MT) pseudoran-
dom number generator. The numerical simulations are also
improved by (a) refining the parameterization of nonlinear
measurement uncertainties, (b) inclusion of a linear measure-
ment uncertainty, and (c) inclusion of WODR for compari-
son. Results show that DR, WODR and YR produce an ac-
curate slope, but the intercept by WODR and YR is overesti-
mated and the degree of bias is more pronounced with a low
R? XY dataset. The importance of a properly weighting pa-
rameter XA in DR is investigated by sensitivity tests, and it is
found that an improper A in DR can lead to a bias in both
the slope and intercept estimation. Because the A calculation
depends on the actual form of the measurement error, it is es-
sential to determine the exact form of measurement error in
the XY data during the measurement stage. If a priori error
in one of the variables is unknown, or the measurement error
described cannot be trusted, DR, WODR and YR can provide

the least biases in slope and intercept among all tested regres-
sion techniques. For these reasons, DR, WODR and YR are
recommended for atmospheric studies when both X and Y
data have measurement errors. An Igor Pro-based program
(Scatter Plot) was developed to facilitate the implementation
of error-in-variables regressions.

1 Introduction

Linear regression is heavily used in atmospheric science to
derive the slope and intercept of XY datasets. Examples
of linear regression applications include primary OC (or-
ganic carbon) and EC (elemental carbon) ratio estimation
(Turpin and Huntzicker, 1995; Lin et al., 2009), MAE (mass
absorption efficiency) estimation from light absorption and
EC mass (Moosmiiller et al., 1998), source apportionment
of polycyclic aromatic hydrocarbons using CO and NO,. as
combustion tracers (Lim et al., 1999), gas-phase reaction
rate determination (Brauers and Finlayson-Pitts, 1997), inter-
instrument comparison (Bauer et al., 2009; Cross et al., 2010;
von Bobrutzki et al., 2010; Zieger et al., 2011; Wu et al.,
2012; Huang et al., 2014; Zhou et al., 2016), inter-species
analysis (Yu et al., 2005; Kuang et al., 2015), analytical pro-
tocol comparison (Chow et al., 2001, 2004; Cheng et al.,
2011; Wu et al., 2016), light extinction budget reconstruc-
tion (Malm et al., 1994; Watson, 2002; Li et al., 2017), com-
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parison between modeling and measurement (Petdja et al.,
2009), emission factor study (Janhill et al., 2010), retrieval
of shortwave cloud forcing (Cess et al., 1995), calculation
of pollutant growth rate (Richter et al., 2005), estimation of
ground-level PM» 5 from MODIS data (Wang and Christo-
pher, 2003), distinguishing OC origin from biomass burning
using K* as a tracer (Duan et al., 2004) and emission type
identification by the EC / CO ratio (Chen et al., 2001).

Ordinary least squares (OLS) regression is the most widely
used method due to its simplicity. In OLS, it is assumed that
independent variables are error-free. This is the case for cer-
tain applications, such as determining a calibration curve of
an instrument in analytical chemistry. For example, a known
amount of analyte (e.g., through weighing) can be used to
calibrate the instrument output response (e.g., voltage). How-
ever, in many other applications, such as inter-instrument
comparison, X and Y (from two instruments) may have com-
parable degrees of uncertainty. This deviation from the un-
derlying assumption in OLS would produce biased slope and
intercept when OLS is applied to the dataset.

To overcome the drawback of OLS, a number of error-in-
variables regression models (also known as bivariate fittings;
Cantrell, 2008) or total least-squares methods (Markovsky
and Van Huffel, 2007) arise. Deming (1943) proposed an ap-
proach by minimizing sum of squares of X and Y residu-
als. A closed-form solution of Deming regression (DR) was
provided by York (1966). Method comparison work of vari-
ous regression techniques by Cornbleet and Gochman (1979)
found significant error in OLS slope estimation when the rel-
ative standard deviation (RSD) of measurement error in “X”
exceeded 20 %, while DR was found to reach a more ac-
curate slope estimation. In an early application of the EC
tracer method, Turpin and Huntzicker (1995) realized the
limitation of OLS since OC and EC have comparable mea-
surement uncertainty and thus recommended the use of DR
for (OC /EC)py (primary OC to EC ratio) estimation. Ay-
ers (2001) conducted a simple numerical experiment and
concluded that reduced major axis regression (RMA) is more
suitable for air quality data regression analysis. Linnet (1999)
pointed out that when applying DR for inter-method (or inter-
instrument) comparison, special attention should be paid to
the sample size. If the range ratio (max / min) is relatively
small (e.g., less than 2), more samples are needed to obtain
statistically significant results.

In principle, a best-fit regression line should have greater
dependence on the more precise data points rather than
the less reliable ones. Chu (2005) performed a comparison
study of OLS and DR specifically focusing on the EC tracer
method application and found that the slope estimated by DR
is closer to the correct value than OLS but may still over-
estimate the ideal value. Saylor et al. (2006) extended the
comparison work of Chu (2005) by including a regression
technique developed by York et al. (2004). They found that
the slope overestimation by DR in the study of Chu (2005)
was due to improper configuration of the weighting parame-
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ter, A. This A value is the key to handling the uneven errors
between data points for the best-fit line calculation. This ex-
ample demonstrates the importance of appropriate weighting
in the calculation of best-fit line for error-in-variables regres-
sion model, which is overlooked in many studies.

In this study, we extend the work by Saylor et al. (2006)
to achieve four objectives. The first is to propose a new data
generation scheme by applying the Mersenne twister (MT)
pseudorandom number generator for evaluation of linear re-
gression techniques. In the study of Chu (2005), data gen-
eration is achieved by a varietal sine function, which has
limitations in sample size, sample distribution, and nonad-
justable correlation (R?) between X and Y. In comparison,
the MT data generation provides more flexibility, permitting
adjustable sample size, XY correlation and distribution. The
second is to develop a nonlinear measurement error parame-
terization scheme for use in the regression method. The third
is to incorporate linear measurement errors in the regression
methods. In the work by Chu (2005) and Saylor et al. (2006),
the relative measurement uncertainty (yync) is nonlinear with
concentration, but a constant yyyc is often applied on atmo-
spheric instruments due to its simplicity. The fourth is to in-
clude weighted orthogonal distance regression (WODR) for
comparison. Abbreviations and symbols used in this study
are summarized in Table B1 for quick reference.

2 Description of regression techniques compared in
this study

Ordinary least squares (OLS) method

OLS only considers the errors in dependent variables (Y).
OLS regression is achieved by minimizing the sum of
squares (S) in the Y residuals (i.e., distance of AB in Fig. S1
in the Supplement):

N
S=>"(vi—Y)* (1
i=1

where Y; are observed Y data points, while y; are regressed
Y data points of the regression line. N represents the number
of data points that is used for regression.

Orthogonal distance regression (ODR)
ODR minimizes the sum of the squared orthogonal distances

from all data points to the regressed line and considers equal
error variances (i.e., distance of AC in Fig. S1):

“
I

[ = X024+ G = ¥ @)
i=1
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Weighted orthogonal distance regression (WODR)

Unlike ODR, which considers even error in X and Y, weight-
ings based on measurement errors in both X and Y are con-
sidered in WODR when minimizing the sum of squared or-
thogonal distance from the data points to the regression line
(Carroll and Ruppert, 1996) as shown by AD in Fig. S1:

S= z,Nzl [(xi — X%+ (i — Yi)z/n] : A3)

where 7 is the error variance ratio, which determines the an-
gle 0 shown in Fig. S1. Implementation of ODR and WODR
in Igor Pro (WaveMetrics, Inc. Lake Oswego, OR, USA) was
done by the computer routine ODRPACK95 (Boggs et al.,
1989; Zwolak et al., 2007).

Deming regression (DR)

Deming (1943) proposed the following function to minimize
both the X and Y residuals as shown by AD in Fig. S1,

S=Z?]:1 [a)(Xi)(xi—Xi)2+a)(Y,-)(y,-—Yi)z], 4)

where X; and Y; are observed data points and x; and y; are
regressed data points. Individual data points are weighted
based on errors in X; and Y;,

o(Xi))=—, o) = &)

where oy, and oy, are the standard deviation of the error
in measurement of X; and Y;, respectively. The closed-form
solutions for slope and intercept of DR are shown in Ap-
pendix A.

York regression (YR)

The York method (York et al., 2004) introduces the correla-
tion coefficient of errors in X and Y into the minimization
function.

s=21 [0 @i - X0)? - 2 /o XD w ()

(i = XD (i = Y+ (¥) (3 = V)] ©)

21
1 —r;

where r; is the correlation coefficient between measurement
errors in X; and Y;. The slope and intercept of YR are calcu-
lated iteratively through the formulas in Appendix A.

Summary of the five regression techniques is given in Ta-
ble S1 in the Supplement. It is worth noting that OLS and DR
have closed-form expressions for calculating slope and inter-
cept. In contrast, ODR, WODR and YR need to be solved
iteratively. This need to be taken into consideration when
choosing regression algorithm for handling huge numbers of
data.
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A computer program (Scatter Plot; Wu, 2017a) with a
graphical user interface (GUI) in Igor Pro (WaveMetrics, Inc.
Lake Oswego, OR, USA) was developed to facilitate the im-
plementation of error-in-variables regression (including DR,
WODR and YR). Two other Igor Pro-based computer pro-
grams, Histbox (Wu, 2017b) and Aethalometer data proces-
sor (Wu, 2017c), are used for data analysis and visualization
in this study.

3 Data description

Two types of data are used for regression comparison. The
first type is synthetic data generated by computer programs,
which can be used in the EC tracer method (Turpin and
Huntzicker, 1995) to demonstrate the regression application.
The true “slope” and “intercept” are assigned during data
generation, allowing quantitative comparison of the bias of
each regression scheme. The second type of data comes from
ambient measurement of light absorption, OC and EC in
Guangzhou for demonstration in a real-world application.

3.1 Synthetic XY data generation

In this study, numerical simulations are conducted in Igor Pro
(WaveMetrics, Inc. Lake Oswego, OR, USA) through custom
codes. Two types of generation schemes are employed: one
is based on the MT pseudorandom number generator (Mat-
sumoto and Nishimura, 1998) and the other is based on the
sine function described by Chu (2005).

The general form of linear regression on XY data can be
written as

Y =kX +b, (7

where k is the regressed slope and b is the intercept. The
underlying meaning is that, ¥ can be decomposed into two
parts. One part is correlated with X, and the ratio is defined
by k. The other part of Y is constant and independent of X
and regarded as b.

To make the discussion easier to follow, we intentionally
avoid discussion using the abstract general form and instead
opt to use a real-world application case in atmospheric sci-
ence. Linear regression had been heavily applied on OC and
EC data, here we use OC and EC data as an example to
demonstrate the regression application in atmospheric sci-
ence. In the EC tracer method, OC (mixture) is ¥ and EC
(tracer) is X. OC can be decomposed into three components
based on their formation pathway:

OC = POC¢omp +POChon-comb + SOC, (8)

where POC.omp is primary OC from combustion.
POChon-compb is primary OC emitted from non-combustion
activities. SOC is secondary OC formed during atmospheric
aging. Since POCqnp is co-emitted with EC and well corre-
lated with each other, their relationship can be parameterized
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as
POComb = (OC /EC)pri x EC. )

By carefully selecting an OC and EC subset when SOC is
very low (considered as approximately zero), the combina-
tion of Egs. (8) and (9) becomes

POC = (OC/EC) i X EC 4+ POCon-comb- (10)

The regressed slope of POC (Y) against EC (X) represents
(OC/EC)pi (k in Eq. 7). The regressed intercept become
POChon-comb (b in Eq. 7). With known (OC /EC),; and
POCh0n-combs SOC can be estimated by

SOC = OC — ((OC /EC)pri X EC+POChoncomb).  (11)

The data generation starts from EC (X values). Once EC is
generated, POC¢omp (the part of Y that is correlated with
X) can be obtained by multiplying EC by a preset con-
stant, (OC / EC)pyi (slope k). Then the other preset constant
POC0n-comb 18 added to POComp and the sum becomes POC
(Y values). To simulate the real-world situation, measure-
ment errors are added on X and Y values. Details of syn-
thesized measurement error are discussed in the next section.
Implementation of data generation by two types of mathe-
matical schemes is explained in Sect. 3.1.2 and 3.1.3, respec-
tively.

3.1.1 Parameterization of synthesized measurement
uncertainty

Weighting of variables is a crucial input for errors-in-
variables linear regression methods such as DR, YR and
WODR. In practice, the weights are usually defined as the
inverse of the measurement error variance (Eq. 5). When
measurement errors are considered, measured concentrations
(Conc.measured) are simulated by adding measurement uncer-
tainties (€conc.) to the true concentrations (Conc.yye):

Conc.measured = Conc.yue + EConc. » (12)

where £conc. is the random error following an even distribu-
tion with an average of 0, the range of which is constrained
by

—¥Une X ConcC.que < EConc. < +¥YUune X Conc.grye. 13)

The yunc is a dimensionless factor that describes the frac-
tional measurement uncertainty relative to the true concen-
tration (ConcC.yyue). Yunc could be a function of Conc.yye
(Thompson, 1988) or a constant. The term yypc X Conc.yye
defines the boundary of random measurement errors.

Two types of measurement error are considered in this
study. The first type iS YUnc—nonlinear- In the data genera-
tion scheme of Chu (2005) for the measurement uncertain-
ties (epoc and €EC), YUnc—nonlinear 1S Nonlinearly related to
Conc.qrye:

1

YUnc—nonlinear = ————, (14)
nc—nonlinear mtrue
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and thus Eq. (13) for POC and EC becomes

1
—— X POCipe < epoc <+ X POCyrye, (15)

1
~/POCtrue ~/POCirye

X BCirue < €pc <+ X ECyye.  (16)

1 1
\/ﬁtrue \/Etrue

In Eq. (14), the yyn decreases as concentration increases,
since low concentrations are usually more challenging to
measure. As a result, the YUnc—nonlinear defined in Eq. (14)
is more realistic than the constant approach, but there are
two limitations. First, the physical meaning of the uncer-
tainty unit is lost. If the unit of OC is pgm™3, then the
unit of goc becomes /ugm—3. Second, the concentra-
tion is not normalized by a consistent relative value, mak-
ing it sensitive to the X and Y units used. For exam-
ple, if POCyye =0.9 ug m~3, then epoc = £ 0.95 ug m—3 and
yunc = 105 %, but by changing the concentration unit to
POCue =900ngm 3, eoc ==+ 30ngm™3 and yyne =3 %.
To overcome these deficiencies, we propose to modify
Eq. (14) to

LOD

YUnc = 4| =~ X<, a7
Conc.rue

where LOD (limit of detection) is introduced to generate a
dimensionless yunc. o is a dimensionless adjustable factor to
control the position of yyyc curve on the concentration axis,
which is indicated by the value of yync at LOD level. As
shown in Fig. 1a, at different values of & (« =1, 0.5 and 0.3),
the corresponding yunc at the same LOD level would be 100,
50 and 30 %, respectively. By changing «, the location of the
YUnc curve on x axis direction can be set, using the yync at
LOD as the reference point. Then Eq. (7) for POC and EC
becomes

|LODpoc
— | —x X POCipye < & <
POCirue aPOC true = €POC =

LODpoc
_— POCirue, 18
+ POCyue X apoC X true (18)

LODgc
— / X agc X ECyrue < €gc <
ECyrue EC true = ¢EC =

LODgc
ECtrue

+

x ogc X ECtrue. (19)

With the modified YUnc—nonlinear parameterization, concen-
trations of POC and EC are normalized by a corresponding
LOD, which maintains unit consistency between POCye and
epoc and ECyye and egc and eliminates dependency on the
concentration unit.

Uniform distribution has been used in previous studies
(Cox et al., 2003; Chu, 2005; Saylor et al., 2006) and is
adopted in this study to parameterize measurement error. For
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Figure 1. (a) Example yync—nonlinear curves by different « val-
ues (Eq. 17). The x axis is concentration (normalized by LOD)
in log scale and the y axis is yypc. Black, blue and green line
represents o equal to 1, 0.5 and 0.3, respectively, corresponding
to the YUnc—nonlinear at LOD level equals to 100, 50 and 30 %,
respectively. The red line represents Yync—_linear of 10 %. (b) Ex-
ample of measurement uncertainty generation of YyUnc—nonlinear
and YUnc—linear- The blue circles represent Yync—nonlinear follow-
ing Eq. (17) (LODgc =1, agc =1). The red circles represent
YUnc—linear (30 %).

a uniform distribution in the interval [a, b], the variance is
% (a — b)z. Since epoc and egc follow a uniform distribution
in the interval as given by Eqgs. (18) and (19), the weights in
DR and YR (inverse of variance) become

1 3
w(X;)=—= , 20
X0 0% ECie x LODgC X @ 20
(1) : > ey
wlY;)=—= .
" 02 POCyue X LODpoc X @3c

The parameter A in Deming regression is then determined:

_ o(X;) _ POCyye x LODpoc X 03¢
w(Y;) ECirue X LODEgC % oe%c '

(22)

Besides the yyUnc—nonlinear discussed above, a second type
measurement uncertainty parameterized by a constant pro-
portional factor, Yunc—linear> 1S VEry common in atmospheric
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applications:

— ¥PoCunc X POCue < epoc < +¥pocunc X POCrye,  (23)
— ¥ECunc X ECue < €EC < +¥ECunc X ECrye.- (24)

where ypocunc and Ygcunc are the relative measurement
uncertainties, e.g., for relative measurement uncertainty of
10 %, yunc =0.1. As a result, the measurement error is lin-
early proportional to the concentration. An example compar-
ison of YUnc—nonlinear a0d YUnc—linear 18 Shown in Fig. 1b. For
YUnc—linear, the weights become

1 3
o(X) = — = : (25)
l o )2(1. (¥ECunc X Ectrue)2
(Yi) : ) (26)
w )= — = .
l o )%l (¥PoCunc X POCtrue)2
and A for Deming regression can be determined:
_ o(Xi) _ (¥pocunc X POCirue)? N

B o (Y;) B (YECunc XECtrue)2 .

3.1.2 XY data generation by the Mersenne twister
generator following a specific distribution

The Mersenne twister (MT) is a pseudorandom num-
ber generator (PRNG) developed by Matsumoto and
Nishimura (1998). MT has been widely adopted by main-
stream numerical analysis software (e.g., MATLAB, SPSS,
SAS and Igor Pro) as well as popular programing languages
(e.g., R, Python, IDL, C4++ and PHP). Data generation us-
ing MT provides a few advantages: (1) frequency distribution
can be easily assigned during the data generation process, al-
lowing straightforward simulation of the frequency distribu-
tion characteristics (e.g., Gaussian or lognormal) observed in
ambient measurements; (2) the inputs for data generation are
simply the mean and standard deviation of the data series and
can be changed easily by the user; (3) the correlation (R?)
between X and Y can be manipulated easily during the data
generation to satisfy various purposes; and (4) unlike the sine
function described by Chu (2005), which has a sample size
limitation of 120, the sample size in MT data generation is
highly flexible.

In this section, we will use POC as Y and EC as X as an
example to explain the data generation. Procedure of apply-
ing MT to simulate ambient POC and EC data can be found
in our previous study (Wu and Yu, 2016). Details of the data
generation steps are shown in Fig. 2 and described below.
The first step is generation of ECye by MT. In our previous
study, it was found that ambient POC and EC data follow a
lognormal distribution in various locations of the Pearl River
Delta (PRD) region. Therefore, lognormal distributions are
adopted during ECy. generation. A range of average con-
centration and relative standard deviation (RSD) from am-
bient samples is considered in formulating the lognormal
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distribution. The second step is to generate POCcomp. AS
shown in Fig. 2, POC¢onp is generated by multiplying ECypye
with (OC / EC)py. Instead of having a Gaussian distribution,
(OC / EC)ypyi in this study is a single value, which favors di-
rect comparison between the true value of (OC / EC)p;; and
(OC /EC)pyi estimated from the regression slope. The third
step is generation of POCyye by adding POCpop-comp Onto
POCcomb. Instead of having a distribution, POCpon-comb in
this study is a single value, which favors direct compari-
son between the true value of POCpon-comb and POChon-comb
estimated from the regression intercept. The fourth step is
to compute epoc and egc. As discussed in Sect. 3.1.1, two
types of measurement errors are considered for epoc and
egc calculation: yUnc—nonlinear and YUnc—linear- In the last
step, POCeasured and ECpeasured are calculated following
Eq. (12), i.e., applying measurement errors on POCye and
ECirue. Then POCheasured and ECeasured can be used as Y
and X, respectively, to test the performance of various re-
gression techniques. An Igor Pro-based program with a GUI
was developed to facilitate the MT data generation for OC
and EC. A brief introduction is given in the Supplement.

3.1.3 XY data generation by the sine function of
Chu (2005)

Besides MT, inclusion of the sine function data generation
scheme in this study mainly serves two purposes. First, the
sine function scheme was adopted in two previous studies
(Chu, 2005; Saylor et al., 2006), the inclusion of this scheme
can help to verify whether the codes in Igor for various re-
gression approaches yield the same results from the two pre-
vious studies. Second, the crosscheck between results from
sine function and MT provides circumstantial evidence that
the MT scheme works as expected.

In this section, XY data generation by sine functions is
demonstrated using POC as Y and EC as X. There are
four steps in POC and EC data generation as shown by the
flowchart in Fig. S2. Details are explained as follows. (1) The
first step is to generate POC and EC (Chu, 2005):

POCeomb = 14+ 12 (sin (’f) sin (x — ¢)) , (28)

ECiue = 3.5+ 3 (sin (;) +sin(x — qs)) : (29)

where x is the elapsed hour (x = 1,2,3...n; n <120), 7 is
used to adjust the width of each peak, and ¢ is used to ad-
just the phase of the sine wave. The constants 14 and 3.5
are used to lift the sine wave to the positive range of the
y axis. An example of data generation by the sine func-
tions of Chu (2005) is shown in Fig. 3. Dividing Eq. (28)
by Eq. (29) yields a value of 4. In this way the exact relation
between POC and EC is defined clearly as (OC / EC)p =4.
(2) With POComp and ECyye generated, the second step is
to add POCpop-comb t0 POCcomp to compute POCye. As
for POCpon-comb, @ single value is assigned and added to all
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Figure 2. Flowchart of data generation steps using MT.

POC following Eq. (10). Then the goodness of the regres-
sion intercept can be evaluated by comparing the regressed
intercept with preset POCpon-comb- (3) The third step is to
compute epoc and egc, considering both yUnc—nonlinear and
YUnc—linear- (4) The last step is to apply measurement errors
on POCpye and ECyye following Eq. (12). Then POCpeasured
and ECpeasured can be used as Y and X, respectively, to eval-
uate the performance of various regression techniques.

3.2 Ambient measurement of 0,5 and EC

Sampling was conducted from Feb 2012 to Jan 2013
at the suburban Nancun (NC) site (23°0'11.82”N,
113°21'18.04” E), which is situated on top of the high-
est peak (141 ma.s.l.) in the Panyu district of Guangzhou.
This site is located at the geographic center of Pearl River
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Figure 3. POCymp and ECyrye data generated by the sine functions
of Chu (2005). (a) Time series of the 120 data points for POC¢qmp
and ECypye. (b) Scatter plot of POC¢omp VS. ECtrye-

Delta region (PRD), making it a good location for rep-
resenting the average atmospheric mixing characteristics
of city clusters in the PRD region. Light absorption mea-
surements were performed by a 74 Aethalometer (AE-31,
Magee Scientific Company, Berkeley, CA, USA). EC
mass concentrations were measured by a real time ECOC
analyzer (model RT-4, Sunset Laboratory Inc., Tigard,
Oregon, USA). Both instruments utilized inlets with a
2.5um particle diameter cutoff. The algorithm of Wein-
gartner et al. (2003) was adopted to correct the sampling
artifacts (aerosol loading, filter matrix and scattering effect;
Collaud Coen et al., 2010) in Aethalometer measurement.
A customized computer program with GUI, Aethalometer
data processor (Wu et al., 2018), was developed to perform
the data correction and detailed descriptions can be found
in https://sites.google.com/site/wuchengust. More details of
the measurements can be found in Wu et al. (2018).

4 Comparison study using synthetic data

In the following comparisons, six regression approaches are
compared using two data generation schemes (Chu sine
function and MT) separately, as illustrated in Fig. 4. Each
data generation scheme considers both yync—nonlinear and
YUnc—linear 1N Measurement error parameterization. In total,
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Figure 4. Overview of the comparison study design.

18 cases are tested with different combination of data genera-
tion schemes, measurement error parameterization schemes,
true slope and intercept settings. In each case, six regres-
sion approaches are tested, i.e., OLS, DR (A =1), DR

(A = %) , ODR, WODR and YR. In commercial software

(e.g., OriginPro®, SigmaPlot®, GraphPad Prism®), A in DR
is set to 1 by default if not specified. As indicated by Saylor
et al. (2006), the bias observed in the study of Chu (2005)
is likely due to A =1 in DR. The purpose of including DR
(A =1) in this study is to examine the potential bias using
the default input in many software products. The six regres-
sion approaches are considered to examine the sensitivity of
regression results to various parameters used in data genera-
tion. For each case, 5000 runs are performed to obtain sta-
tistically significant results, as recommended by Saylor et
al. (2006). The mean slope and intercept from 5000 runs is
compared with the true value assigned during data genera-
tion. If the difference is <5 %, the result is considered unbi-
ased.

4.1 Comparison results using the dataset of Chu (2005)

In this section, the scheme of Chu (2005) is adopted for
data generation to obtain a benchmark of six regression ap-
proaches. With different setup of slope, intercept and yyyc,
six cases (Cases 1-6) are studied and the results are discussed
below.
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Table 1. Summary of six regression approaches comparison with 5000 runs for 18 cases.

Data generation

Results by different regression approaches

@(X;)

oLS | DRA=1 | DR i = 2444 | ODR | WODR | YR
Case Data True True R2 Measurement slope intercept Slope Intercept Slope Intercept Slope Intercept Slope Intercept Slope Intercept
scheme Slope Intercept X, Y) error
1 4 0 0.67£0.03 LODpoc =1, 294+0.14 584+0.78 | 427+£0.27 —145+1.36 | 401+£025 —0.04+128 | 427+£027 —145+£1.36 | 3.98+0.22 1.12£1.02 | 3.98+0.22 1.12+£1.02
LODgc =1,
2 4 3 0.67+0.04 apoc=1, 295+0.15 8.83+0.80 | 4.32+0.28 128+1.43 | 4.01£0.26 2944134 | 432+£0.28 1284143 | 3.9940.23 3.984+1.05 | 3.9940.23 3.98+1.05
agc = 1.
3 Chu 4 0 0.954+0.01 LODpoc =0.5, 3.83+0.08 0.95+040 | 403+0.09 —0.18+0.44 440.09 04+044 | 403+£0.09 —0.18+0.44 440.08 0.124+0.37 440.08 0.124+0.37
LODgc =0.5,
apoc =0.5,
agc =0.5.
4 4 0 0.78+0.02 LODpoc =1, 3394015 3.34+0.75 43+0.21 —-1.66+1.06 4+£0.19 —-0.03+£0.99 43+021 —1.66+1.06 4+0.17 0.33+0.81 4+£0.17 0.33+0.81
LODgc =0.5,
apoc = 1,
agc = 1.
5 4 0 0.69+0.04  yync =30% 3324020 3.77+£0.90 | 475+£0.30 —4.14+136 | 401+£025 —0.04+1.13 | 475+£030 —4.14+1.36 4+0.18 —0.01£0.59 4+£0.18 —-0.01£0.59
6 4 3 0.66 +0.04 3314022 679+£1.02 | 495+£0.31 —226+£1.48 | 3.99+0.26 3.05+£1.22 | 495+031 —2.26+1.48 | 4.01+0.20 2.72+£0.74 | 401£0.20 2.72+0.74
7 4 0 0.76 +0.01 3.2240.03 4340.14 | 4174£0.04 —0.94+0.18 4+0.03 0£0.17 | 417£0.04 —-0.94+£0.18 | 3.96+0.03 1.21+0.13 | 3.9640.03 1.214+0.13
8 4 3 0.7540.01 3224003 729+0.14 42+0.04 1.88+0.18 4£0.03 3+0.18 42+0.04 1.88+0.18 | 3.97+0.03 411£0.13 | 3.97+0.03 4.11£0.13
9 0.5 0 0.76+0.01 LODpoc =1, 0.43+£0.00 0.3640.02 | 0.4640.01 0.23+£0.03 0.5+0.01 0£0.03 | 0.46+0.01 0.23+£0.03 0.5+£0.00 0£0.01 0.5+0.00 0£0.01
LODgc =1,
10 0.5 3 0.56+0.01 apoc =1, 0.43+£0.01 3.3640.03 0.5+0.01 3.0240.04 | 0.4940.01 3.05+£0.04 0.5+0.01 3.024+0.04 | 0.5140.01 2.73+£0.03 | 0.5140.01 2.734+0.03
agc = 1.
11 1 0 0.76 +0.01 0.87+£0.01 0.7240.05 1£0.01 0+£0.06 1+0.01 0£0.06 1£0.01 0£0.06 1£0.01 0£0.02 14+0.01 0£0.02
12 MT 1 3 0.66+0.01 0.87+£0.01 3.72+£0.05 | 1.09+0.01 2.5240.07 | 0.99+0.01 3.074+0.06 | 1.09+0.01 2.524+0.07 | 1.01£0.01 2.71+0.04 | 1.01£0.01 2.74+0.04
13 4 0 0.76+0.01  yypc =30% 348+0.04 287+0.18 | 453+0.05 —294+0.24 4£0.05 0£0.22 | 453£0.05 —294+0.24 440.03 0£0.09 4+0.03 0£0.09
14 4 3 0.734+0.01 348+0.04 587+0.19 | 467+£0.05 —0.67+£0.26 | 3.98+0.05 3.08+£0.23 | 4.67+£0.05 —0.67+£0.26 | 4.02+0.03 2.68+0.11 | 4.02+0.03 2.68+0.11
15 0.5 0 0.54+0.01 04+£0.01 0.55+0.03 | 0.45+0.01 0.26 £0.03 0.5+0.01 0.01+£0.03 | 0.45+0.01 026+£0.03 | 0.52+£0.01 —023+£0.02 | 0.52+0.01 —0.23+0.02
16 0.5 3 0.40+0.01 04+£0.01 3.54+0.04 0.5+0.01 2.98+0.04 0.5+0.01 3+0.04 0.5+£0.01 2.98+0.04 | 0.5240.01 2.65+0.04 | 0.52+0.01 2.65+0.04
17 1 0 0.65+0.01 0.8+0.01 1.07+0.04 1+0.01 0+0.05 1+0.01 0£0.05 1+0.01 0+£0.05 1+0.01 0+0.04 1+0.01 0£0.04
18 1 3 0.59+0.01 0.8+0.01 4.07+0.05 | 1.07+0.01 2.62+0.07 1+0.01 3+0.06 | 1.07+0.01 2.62+0.07 | 1.02+0.01 2.84+£0.05 | 1.02+0.01 2.84+0.05
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4.1.1 Results with Yync—nonlinear

A comparison of the regression techniques results with
YUnc—nonlinear (following Egs. 18 and 19) is summarized in
Table 1. LODpoc , LODgc, apoc and agc are all set to
1 to reproduce the data studied by Chu (2005) and Saylor
et al. (2006). Two sets of true slope and intercept are con-
sidered (Case 1: slope =4, intercept = 0; Case 2: slope =4,
intercept = 3) to examine if any results are sensitive to the
nonzero intercept. The R? (POC, EC) from 5000 runs for
both Case 1 and 2 are 0.67 & 0.03.

As shown in Fig. 5, for the zero-intercept case (Case
1), OLS significantly underestimates the slope (2.95 £0.14),
while it overestimates the intercept (5.84 0.78). This re-
sult indicates that OLS is not suitable for errors-in-variables
linear regression, consistent with similar analysis results
from Chu (2005) and Saylor et al. (2006). With DR, if

the A is properly calculated by weights (A = ‘;(é’))), unbi-
ased slope (4.01 & 0.25) and intercept (—0.04 & 1.28) are ob-
tained; however, results from DR with A =1 show obvious
bias in the slope (4.27 & 0.27) and intercept (—1.45 4= 1.36).
ODR also produces biased slope (4.27 +0.27) and inter-
cept (—1.45=+1.36), which are identical to results of DR
when A = 1. With WODR, unbiased slope (3.98 +0.22) is
observed, but the intercept is overestimated (1.12+£ 1.02).
Results of YR are identical to WODR. For Case 2 (slope =4,
intercept = 3), slopes from all six regression approaches are
consistent with Case 1 (Table 1). The Case 2 intercepts are
equal to the Case 1 intercepts plus 3, implying that all the
regression methods are not sensitive to a nonzero intercept.

For Case 3, LODpoc =0.5, LODgc =0.5, apoc =0.5,
apc =0.5 are adopted (Table 1), leading to an offset to the
left of YUnc—nonlinear (blue curve) compared to Case 1 and
2 (black curve) in Fig. 1. As a result, for the same con-
centration of EC and OC in Case 3, the YUnc—nonlinear 15
smaller than in Cases 1 and 2 as indicated by a higher R>
(0.95 +£0.01 for Case 3, Table 1). With a smaller measure-
ment uncertainty, the degree of bias in Case 3 is smaller than
in Case 1. For example, OLS slope is less biased in Case 3
(3.83+0.08) compared to Case 1 (2.94 £0.14). Similarly,
the slope (4.03 £0.09) and intercept (—0.18 &= 0.44) of DR
(A =1) exhibit a much smaller bias with a smaller measure-
ment uncertainty, implying that the degree of bias by improp-
erly weighting in DR, WODR and YR is associated with the
degree of measurement uncertainty. A higher measurement
uncertainty results in larger bias in slope and intercept.

An uneven LODpoc and LODgc is tested in Case 4 with
LODpoc =1, LODgc =0.5, apoc =0.5, agc =0.5, which
yield an R2(POC, EC) of 0.78 - 0.02. The results are similar

to Case 1. For DR (A = Z))(();l’))) unbiased slope and intercept
are obtained. For WODR and YR, unbiased slopes are re-
ported with a small bias in the intercepts. Large bias values
are observed in both the slopes and intercepts in Case 4 using

OLS, DR (% = 1) and ODR.
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Figure 5. Regression results on synthetic data, Case 1 (Slope =4,
Intercept =0, LODpgoc =1, LODgc =1, apoc =1, agc =1, R?
(POC, EC) =0.67 £ 0.03). The scatter plots demonstrate regression
examples from a single run. The box plots show the distribution of
regressed slopes and intercepts from 5000 runs of six regression ap-
proaches. The dashed lines in orange and pink represent true slope
and intercept, respectively.

4.1.2 Results with yync—iinear

Cases 5 and 6 represent the results from using YUnc—linear
and are shown in Table 1. yypc is set to 30 % to achieve
an R2 (POC, EC) of 0.7, a value close to the R? in stud-
ies of Chu (2005) and Saylor et al. (2006). In Case 5
(slope =4, intercept = 0), unbiased slopes and intercepts are

determined by DR (A = 242), WODR and YR. OLS un-

derestimates the slope (3.32£0.20) and overestimates in-
tercept (3.77 £ 0.90), while DR (A = 1) and ODR overesti-
mate the slopes (4.75 % 0.30) and underestimate the inter-
cepts (—4.14 £ 1.36). In Case 6 (slope =4, intercept = 3), re-
sults similar to Case 5 are obtained. It is worth noting that al-

though the mean intercept (3.05 £ 1.22) of DR (A = %)

Atmos. Meas. Tech., 11, 1233-1250, 2018
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(b) Test A intercepts
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Figure 6. Slope and intercept biases by different regression schemes in two test scenarios (A and B) in which the assumed error for one
of the regression variables deviates from the actual measurement error. In Test A data generation, yypc_x is fixed at 30 % and yypc_vy is
varied between 1 and 50 %. In Test B, yypc_x varies between 1 and 50 % and yync_y is fixed at 30 %. The assumed measurement error for
regression is 10 % for both X and Y. (a) Slope biases as a function of yyyc_y in Test A. (b) Intercept biases as a function of yypc_y in Test
A. (¢) Slope biases as a function of yyyc_x in Test B. (d) Intercept biases as a function of yyy¢_x in Test B.

is closest to the true value (intercept = 3), the deviations are
much larger than for WODR (2.72 4 0.74).

4.2 Comparison results using data generated by MT

In this section, MT is adopted for data generation to obtain a
benchmark of six regression approaches. Both yunc—nonlinear
and YUnc—linear are considered. With different configuration
of slope, intercept and yync, 12 cases (Cases 7-18) are stud-
ied and the results are discussed below.

4.2.1  YUnc—nonlinear results

Cases 7 and 8 use data generated by MT and yYunc—nonlinear
with results shown in Table 1. In Case 7 (slope =4, in-
tercept =0, LODpoc =1, LODgc =1, apoc =1, agc = 1),
unbiased slope (4.00£0.03) and intercept (0.00 £0.17) is

estimated by DR ()\ - %) WODR and YR yield un-
biased slopes (3.96 +0.03) but overestimate the intercepts
(1.21£0.13). DR (A =1) and ODR report slightly biased
slopes (4.17 £0.04) with biased intercepts (—0.94 £0.18).
OLS underestimates the slope (3.22 +0.03) and overesti-
mates the intercept (4.30 £0.14). In Case 8 (slope =4, in-

tercept =3, LODpoc = 1, LODgc =1, apoc = 1, agc = 1),

Atmos. Meas. Tech., 11, 1233-1250, 2018

o(X;)

DR (k = w(Y,-)) provides unbiased slope (4.00 £ 0.03) and
intercept (3.00 £0.18) estimations. WODR and YR report
unbiased slopes (3.97 £0.03) and overestimate intercepts
(4.114£0.13). OLS, DR (L =1) and ODR report biased
slopes and intercepts.

To test the overestimation/underestimation dependency
on the true slope, Case 9 (slope=0.5, intercept=0,
LODpoc =1, LODgc =1, apoc =1, agc =1) and Case
10 (slope =0.5, intercept=3, LODpoc =1, LODgc =1,
apoc = 1, agc = 1) are conducted and the results are shown
in Table 1. Unlike the overestimation observed in Cases 1-8,
DR (1 = 1) and ODR underestimate the slopes (0.46 £ 0.01)

in Case 9. In Case 10, DR (A =1), DR (x = %) and
ODR report unbiased slopes and intercepts. Cases 11 and
12 test the bias when the true slope is 1, as shown in Ta-
ble 1. In Case 11 (intercept =0), all regression approaches
except OLS can provide unbiased results. In Case 12, all re-
gression approaches report unbiased slopes except OLS, but
DR (A = [:)8%)) ) is the only regression approach that reports
unbiased intercept.

These results imply that if the true slope is less than 1, the
improper weighting (A = 1) in Deming regression and ODR
without weighting tends to underestimate slope. If the true

www.atmos-meas-tech.net/11/1233/2018/
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slope is 1, these two estimators can provide unbiased results.
If the true slope is larger than 1, the improper weighting (A =
1) in Deming regression and ODR without weighting tends
to overestimate slope.

4.2.2  YUnc—linear results

Cases 13 and 14 (Table 1) represent the results from using
YUnc—linear (30 %) and data generated from MT. For Case 13

(slope = 4, intercept = 0), DR (k = ‘;’)(é”)) ), WODR and YR

provide the best estimation of slopes and intercepts. DR (A =
1) and ODR overestimate slopes (4.53 £0.05) and under-
estimate intercepts (—2.94 = 0.24). For Case 14 (slope =4,

intercept = 3), DR (A - %) WODR and YR provide

w(Y;)
the only regression approach reporting unbiased intercept
(3.08 £0.23). Cases 15 and 16 are tested to investigate
whether the results are different if the true slope is smaller
than 1. As shown in Table 1, the results are similar to Cases

13 and 14, i.e., that DR (k = %) can provide unbiased
slope and intercept while WODR and YR can provide unbi-
ased slopes but biased intercepts. Cases 17 and 18 are tested
to see if the results are the same for a special case when the
true slope is 1. As shown in Table 1, the results are similar to
Cases 13 and 14, implying that these results are not sensitive

to the special case when the true slope is 1.

an unbiased estimation of slopes. But DR (A = ‘“(X")) is

4.3 The importance of appropriate A input for Deming
regression

As discussed above, inappropriate A assignment in the Dem-
ing regression (e.g., A =1 by default for much commercial
software) leads to biased slope and intercept. Besides A =1,
inappropriate A input due to improper handling of measure-
ment uncertainty can also result in bias for Deming regres-
sion. An example is shown in Fig. S3. Data are generated
by MT with following parameters: slope =4, intercept =0,
and YUnc—linear (30 %). Figure S2a and b demonstrate that
when an appropriate A is provided (following yunc—linears
A= Pé)c(';z ), unbiased slopes and intercepts are obtained. If an
improper A is used due to a mismatched measurement uncer-

. . P
tainty assumption (VUnc—nonlinear, A= %), the slopes are

overestimated (Fig. S3c, 4.37 £ 0.05) and intercepts are un-
derestimated (Fig. S3, —2.01 &£ 0.24). This result emphasizes
the importance of determining the correct form of measure-
ment uncertainty in ambient samples, since A is a crucial pa-
rameter in Deming regression.

In the A calculation, different representations for POC and
EC, including mean, median and mode, are tested as shown
in Fig. S4. The results show that when X and Y have a similar
distribution (e.g., both are lognormal), any of mean, median
or mode can be used for the A calculation.
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Figure 7. Regression results using ambient 0,500 and EC data
from a suburban site in Guangzhou, China.

4.4 Caveats of regressions with unknown X and Y
uncertainties

In atmospheric applications, there are scenarios in which a
priori error in one of the variables is unknown, or the mea-
surement error described cannot be trusted. For example, in
the case of comparing model prediction and measurement
data, the uncertainty of model prediction data is unknown.
A second example is the case in which measurement uncer-
tainty cannot be determined due to the lack of duplicated or
collocated measurements and as a result, an arbitrarily as-
sumed uncertainty is used. Such a case was illustrated in
the study by Flanagan et al. (2006). They found that in the
Speciation Trends Network (STN), the whole-system uncer-
tainty retrieved by data from collocated samplers was differ-
ent from the arbitrarily assumed 5 % uncertainty. Addition-
ally, the discrepancy between the actual uncertainty obtained
through collocated samplers and the arbitrarily assumed un-
certainty varied by chemical species. To investigate the per-
formance of different regression approaches in these cases,
two tests (A and B) are conducted.

Atmos. Meas. Tech., 11, 1233-1250, 2018
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In Test A, the actual measurement error for X is fixed
at 30 %, while pype for Y varies from 1 to 50 %. The as-
sumed measurement error for regression is 10 % for both X
and Y. Results of Test A are shown in Fig. 6a and b. For
OLS, the slopes are underestimated (—14 to —12 %) and
intercepts are overestimated (90-103 %) and the biases are
independent of variations in yypc_y. ODR and DR (A =1)
yield similar results with overestimated slopes (0-44 %) and
underestimated intercepts (—330-0 %). The degree of bias
in slopes and intercepts depends on the yy,c_ y. WODR, DR

(A = Z(é’))) and YR perform much better than other regres-
sion approaches in Test A, with a smaller bias in both slopes
(—8-12 %) and intercepts —98-55 %).

In Test B, yunc_v is fixed at 30 % and yypc_x varies be-
tween 1 and 50 %. The results of Test B are shown in Fig. 6¢
and d. The assumed measurement error for regression is 10 %
for both X and Y. OLS underestimates the slopes (—29 to
—0.2 %) and overestimates the intercepts (2—209 %). In con-
trast to Test A in which slope and intercept biases are inde-
pendent of variations in yunc_y, the slope and intercept bi-
ases in Test B exhibit dependency on yypnc_x. The reason for
this is that OLS only considers errors in Y and X is assumed
to be error-free. ODR and DR (A = 1) yield similar results
with overestimated slopes (11-18 %) and underestimated in-
tercepts (—144 to —87 %). The degree of bias in slopes and
intercepts is relatively independent on the yync x. WODR,

DR (A = %) and YR performed much better than the
other regression approaches in Test B, with a smaller bias
in both slopes (—14-8 %) and intercepts (—59—-106 %).

The results from these two tests suggest that, if one of
the measurement errors described cannot be trusted or a pri-

ori error in one of the variables is unknown, WODR, DR

(A = 2%’))) and YR should be used instead of ODR and DR

(A =1) and OLS. This conclusion is consistent with results
presented in Sect. 4.1 and 4.2. This analysis, albeit crude,
also suggests that, in general, the magnitude of bias in slope
estimation by these regression approaches is smaller than
those for intercept. In other words, slope is a more reliable
quantity compared to intercept when extracting quantitative
information from linear regressions.

5 Regression applications to ambient data

This section demonstrates the application of the six regres-
sion approaches on a light absorption coefficient and EC
dataset collected in a suburban site in Guangzhou. As men-
tioned in Sect. 4.4, measurement uncertainties are crucial in-
puts for DR, YR and WODR. The measurement precision of
Aethalometer is 5 % (Hansen, 2005), while EC by the RT-
ECOC analyzer is 24 % (Bauer et al., 2009). These measure-
ment uncertainties are used in DR, YR and WODR calcu-
lation. The dataset contains 6926 data points with an R? of
0.92.

Atmos. Meas. Tech., 11, 1233-1250, 2018

As shown in Fig. 7, the y axis is light absorption at
520 nm (o4pss520) and the x axis is EC mass concentration.
The regressed slopes represent the mass absorption efficiency
(MAE) of EC at 520 nm, ranging from 13.66 to 15.94 m? g~!
by the six regression approaches. OLS yields the lowest
slope (13.66 as shown in Fig. 7a) among all six regres-
sion approaches, consistent with the results using synthetic
data. This implies that OLS tends to underestimate regression
slope when mean Y to X ratio is larger than 1. DR (A = 1)
and ODR report the same slope (14.88) and intercept (5.54);
this equivalency is also observed for the synthetic data. Sim-
ilarly, WODR and YR yield identical slope (14.88) and in-
tercept (5.54), in line with the synthetic data results. The re-

gressed slope by DR (A = 1) is higher than DR (k = %),
and this relationship agrees well with the synthetic data re-
sults.

Regression comparison is also performed on hourly OC
and EC data. Regression on OC / EC percentile subset is a
widely used empirical approach for primary OC / EC ratio
determination. Figure S5 shows the regression slopes as a
function of OC /EC percentile. OC / EC percentile ranges
from 0.5 to 100 %, with an interval of 0.5 %. As the percentile
increases, SOC contribution in OC increases as well, result-
ing in decreased R? between OC and EC. The deviations be-
tween six regression approaches exhibit a dependency on R?.
When percentile is relatively small (e.g., < 10 %), the differ-
ences between the six regression approaches are also small
due to the high R? (0.98). The deviations between the six
regression approaches become more pronounced as R? de-
creases (e.g., <0.9). The deviations are expected to be even
larger when R? is less than 0.8. These results emphasize the
importance of applying error-in-variables regression, since
ambient XY data more likely has an R? less than 0.9 in most
cases.

As discussed in this section, the ambient data confirm the
results obtained in comparing methods with the synthetic
data. The advantage of using the synthetic data for regression
approaches evaluation is that the ideal slope and intercept are
known values during the data generation, so the bias of each
regression approach can be quantified.

6 Recommendations and conclusions

This study aims to provide a benchmark of commonly used
linear regression algorithms using a new data generation
scheme (MT). Six regression approaches are tested, i.e.,

OLS, DR (= 1), DR (%= %34, ODR, WODR and YR.

The results show that OLS fails to estimate the correct slope
and intercept when both X and Y have measurement errors.
This result is consistent with previous studies. For ambient
data with R? less than 0.9, error-in-variables regression is
needed to minimize the biases in slope and intercept. If mea-
surement uncertainties in X and Y are determined during
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Figure 8. The user interface of the Scatter Plot Igor program. The program and its operation manual are available from https://doi.org/10.

5281/zenodo.832417.

the measurement, measurement uncertainties should be used
for regression. With appropriate weighting, DR, WODR and
YR can provide the best results among all tested regression
techniques. Sensitivity tests also reveal the importance of the
weighting parameter A in DR. An improper XA could lead to
biased slope and intercept. Since the A estimation depends
on the form of the measurement errors, it is important to de-
termine the measurement errors during the experimentation
stage rather than making assumptions. If measurement errors
are not available from the measurement and assumptions are
made on measurement errors, DR, WODR and YR are still
the best option that can provide the least bias in slope and
intercept among all tested regression techniques. For these
reasons, DR, WODR and YR are recommended for atmo-
spheric studies when both X and Y data have measurement
errors.

Application of error-in-variables regression is often over-
looked in atmospheric studies, partly due to the lack of a
specified tool for the regression implementation. To facili-
tate the implementation of error-in-variables regression (in-
cluding DR, WODR and YR), a computer program (Scatter
Plot) with a GUI in Igor Pro (WaveMetrics, Inc. Lake Os-
wego, OR, USA) was developed (Fig. 8). It is packed with
many useful features for data analysis and plotting, includ-
ing batch plotting, data masking via GUI, color coding in
the z axis, data filtering and grouping by numerical values
and strings. The Scatter Plot program and user manual are
available from https://sites.google.com/site/wuchengust and
https://doi.org/10.5281/zenodo.832417.
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Data availability. OC, EC and o, data used in this study are
available from the corresponding authors upon request. The com-
puter programs used for data analysis and visualization in this study
are available in Wu (2017a—c).
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Appendix A: Equations of regression techniques

Ordinary least squares (OLS) calculation steps.
First calculate average of observed X; and Y;.

e
¥ = izt Xi (A1)
N
N .
7= 2zl (A2)
N
Then calculate Sy, and Syy.
N <\ 2
See= . (Xi—X) (A3)

Syy = Z,N:l (¥i _ﬂz (A4)

OLS slope and intercept can be obtained from

S

k= S_W (A5)
XX

b=Y —kX. (A6)

Deming regression (DR) calculation steps (York, 1966).
Besides Sy and Sy, as shown above, Sy can be calculated
from

S =D (% -T) (v~ T), (a7

DR slope and intercept can be obtained from

2
Suy = 2Sux A/ (Syy = 2S0) +4182,
k= , (AS)
255

b=Y —kX. (A9)

York regression (YR) iteration steps (York et al., 2004).
Slope by OLS can be used as the initial k£ in W; calculation.

w (X)) w(Y;)
= (A10)
o (X;) + k2w (Y;) = 2kriv/o (X)) o (Y;)
N
N WX
U,_Xi—XzX,—# (A11)
i1 Wi
N
— N WY,
V=¥ - T =y, - 2 (A12)
i1 Wi

Atmos. Meas. Tech., 11, 1233-1250, 2018

Then calculate 5;.

U; kV; i :|
i =W; + —|kU; + V| ———=| (Al3
fi=Wi| oo+ s~ Uil =l | A1)
Slope and intercept can be obtained from
N
N W B:V:
kz—zjfl ih - (Al4)
2 im1WiBiUi
b=Y —kX. (A15)

Since W; and B; are functions of k, kK must be solved iter-
atively by repeating Eqs. (All) to (A15). If the difference
between the k obtained from Eq. (A15) and the k used in
Eq. (A11) satisfies the predefined tolerance (% <e by,
the calculation is considered as converged. The calculation is
straightforward and usually converged in 10 iterations. For
example, the iteration count on the dataset of Chu (2005) is

around 6.

www.atmos-meas-tech.net/11/1233/2018/



C. Wu and J. Z. Yu: Evaluation of linear regression techniques

Appendix B: Summary of abbreviations and symbols

Abbreviation/symbol

o

b
Bi, Ui, Vi, W;
YUnc

DR

EEC, EPOC
EC
ECtrue

ECmeasured
A

k

LOD

MT

oC

OC /EC
(OC / EC)pi
OChon-comb
ODR

OLS

POC
POCcomb

POCnon»comb

POCire

POcmeasured
0X;,0v;

ri
N
SOC
T

¢

WODR
XY

YR

o (Xi),w (i)

www.atmos-meas-tech.net/11/1233/2018/

Definition

a dimensionless adjustable factor to control the position
of yunc curve on the concentration axis

intercept in linear regression

intermediates in York regression calculations
fractional measurement uncertainties

relative to the true concentration (%)

Deming regression

absolute measurement uncertainties of EC and POC
elemental carbon

numerically synthesized true EC concentration
without measurement uncertainty

EC with measurement error (ECiyye + €gC)

o (X;) to o (Y;)

ratio in Deming regression

slope in linear regression

limit of detection

Mersenne twister pseudorandom number generator
organic carbon

OC to EC ratio

primary OC / EC ratio

OC from non-combustion sources

orthogonal distance regression

ordinary least squares regression

primary organic carbon

numerically synthesized true POC from combustion
sources (well correlated with ECypye),

measurement uncertainty not considered
numerically synthesized true POC from non-combustion
sources (independent of ECiyye)

without considering measurement uncertainty

sum of POC¢omp and POCpon-comb

without considering measurement uncertainty

POC with measurement error (POCyye + £poc)

the standard deviation of the error in

measurement of X; and Y;

correlation coefficient between errors in X; and Y; in YR
sum of squared residuals

secondary organic carbon

parameter in the sine function of Chu (2005)

that adjusts the width of each peak

parameter in the sine function of Chu (2005)

that adjusts the phase of the curve

weighted orthogonal distance regression

average of X; and Y;

York regression

inverse of ox, and oy,

used as weights in DR calculation.
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This document contains three supporting tables, nine supporting figures.

1 Comparison of three York regression implementations

A variety of York regression implementations are compared using the Pearson’s data with
York’s weights according to York (1966) (abbreviated as “PY data” hereafter). The dataset
is given in Table S2.Three York regression implementations are compared using the PY
data, including spreadsheet by Cantrell (2008), Igor program by this study and a
commercial software (OriginPro™ 2017). The three York regression implementations
yield identical slope and intercept as shown in the highlighted areas (in red) in Figure S6.
These crosscheck results suggest that the codes in our Igor program can retrieve consistent

slopes and intercepts as other proven programs did.
2 Impact of two primary sources in OC/EC regression

A sampling site is often influenced by multiple combustion sources in the real atmosphere.
In section 1 and 2 of the main text we evaluate the performance of OLS, DR, WODR and
YR in scenarios of two primary sources and arbitrarily dictate that the (OC/EC)yri of source
1 is lower than that of source 2. By varying feci (proportion of source 1 EC to total EC)
from test to test, the effect of different mixing ratios of the two sources can be examined.
Two scenarios are considered (Wu and Yu, 2016): two correlated primary sources and two
independent primary sources. Common configurations include: ECwon=2 ugC m?; fec
varies from 0 to 100%; ratio of the two OC/ECpri values (y pri) vary in the range of 2~8.
Studies by Chu (2005) and Saylor et al. (2006) both suggest ratio of averages (ROA) being
the best estimator of the expected primary OC/EC ratio when SOC is zeroed. Since the
overall OC/ECpri from the two sources varies by v _pri, ROA is considered as the reference
OC/ECypii to be compared with slope regressed by of OLS, DR, WODR and YR. The

abbreviations used for the two primary sources study are listed in Table S3.

2.1 Impact of two correlated primary sources

Simulations considering two correlated primary sources are performed, to examine the

effect on bias in the regression methods. The basic configuration is: (OC/EC)ui1=0.5,

(OC/EC)pri2=5, Yync=30%, N=8000, intercept=0, and the following terms are compared:
S-2



ratio of averages (ROA here refers to the ratio of averaged OC to averaged EC, which is
considered as the true value of slope when intercept=0), DR, WODR, WODR’ (through
origin) and OLS. As shown in Figure S7, when R? (EC1 vs. EC2) is very high, DR, WODR
and WODR’ can provide a result consistent with ROA. If the R? decreases, the bias of the
slope and intercept in DR and WODR is larger. OLS constantly underestimates the slope.

2.2 Impact of two independent primary sources

Simulations of two independent primary sources are also conducted. If RSDec1i=RSDgc2,
slopes and intercepts may be either overestimated or underestimated (Figure S8), and the
degree of bias depends on the magnitude of RSDeci and RSDec2. Larger RSD results in
larger bias. Uneven RSD between two sources leads to even more bias (Figure S8 a and b).
The degree of bias also shows dependence on y_pri. If y_pri decreases, the bias becomes
smaller (FigureS8 c~f). These results indicate that the scenario with two independent

primary sources poses a challenge to (OC/EC)yri estimation by linear regression.

For the EC tracer method, if EC comes from two primary sources and contribution of the
two sources is comparable, the regression slope is no longer suitable for (OC/EC)pri
estimation and the subsequent SOC calculation, and making EC a mixture that violates the
property of a tracer. For such a situation, pre-separation of EC into individual sources by
other tracers (if available) by the Minimum R Squared (MRS) method can provide unbiased
SOC estimation results (Wu and Yu, 2016).

3 Igor programs for error in variables linear regression and simulated OC

EC data generation using MT

An Igor Pro (WaveMetrics, Inc. Lake Oswego, OR, USA) based program (Scatter plot)
with graphical user interface (GUI) is developed to make the linear regression feasible and
user friendly (Figure 8). The program includes Deming and York algorithm for linear
regression, which considers uncertainties in both X and Y, that is more realistic for
atmospheric applications. It is packed with many useful features for data analysis and
plotting, including batch plotting, data masking via GUI, color coding in Z axis, data

filtering and grouping by numerical values and strings.



Another program using MT can generate simulated OC and EC concentration through user

defined parameters via GUI as shown in Figure S9.

Both Igor programs and their operation manuals can be downloaded from the following

links:

https://sites.google.com/site/wuchengust

https://doi.org/10.5281/zenodo.832417
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Table S1. Summary of the five linear regression techniques.

Approach Sum of squared residuals (SSR) Calculation
N
Ordinary least
Ss= Z(y,- -Y)? closed form
squares (OLS) =
N
Orth 1 dist:
rthogonal distance S= [(xi - Xi)z + (YL - Yi)z] iteration
regression (ODR) i=1
N
Weighted S= ) [(x; = X)*+ (y; = Y)?/n]
orthogonal distance =t iteration
regression (WODR)

Deming regression

N , i
(DR) 5= ZiZI[w(X,-)(x,- - X)* + o)y —Y)?]

N

v . 5= [0 - X0 - 2rifeXe ) (x ~ XD
ork regression i=1

(YR) 1

1-r?

-Y)+ o)y - Yi)z]

closed form

iteration

Table S2. Pearson’s data with York’s weights according to York (1966).

X; w(X;) Y; w(¥)
0 1000 5.9 1
0.9 1000 5.4 1.8

1.8 500 4.4 4
2.6 800 4.6 8
3.3 200 3.5 20
4.4 80 3.7 20
5.2 60 2.8 70
6.1 20 2.8 70
6.5 1.8 2.4 100
7.4 1 1.5 500
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Table S3. Abbreviations used in two primary sources study.

Abbreviation Definition
EC,EC, EC from source 1 and source 2 in the two sources scenario
frci fraction of EC from source 1 to the total EC
ROA ratio of averages (Y to X, e.g., averaged OC to averaged EC)
y_pri ratio of the (OC/EC), of source 2 to source 1
RSD relative standard deviation
RSDgc RSD of EC
€EC, €0C measurement uncertainty of EC and OC
Yunc relative measurement uncertainty
Y_RSD the ratio between the RSD values of (OC/EC),; and EC




Figure S1. Relationships between data point A and fitting line L. Fitting line by OLS
minimizes the distance of AB (AB is perpendicular to the x axis). Fitting line by ODR and
DR (A = 1) minimizes the distance of AC (AC is perpendicular to L). Fitting line by

WODR, DR (1 = 240
w(Y;)

relative to AB and the 6 depends on the weights of measurement errors in Y and X.

) and YR minimizes the distance of AD. AD has a 0 degree angle



Data generation steps by the sine functions of Chu (2005)

(1) Generate POC_,,,, and EC,,,.
POCeomp = 14 +12(sin(5) + sin(x — ¢))
ECirye = 3.5+ 3(sin() + sin(x — ¢))

(2) Compute POC,,,.
POCtrue = POCcomb + POCnon—comb

(3-a) Compute pc and &g With Yypnc-nontinear

LODpoc LODpoc
_\/; X apoc X POCtrue < epoc <+ |7 X @poc X POCirye
true true

LODgc e . o LODgc e
— Xa X - < & < Xa X -
E Ctrue EC true EC E Ctrue EC true

(3-b) Compute ¢ and ez With Yync—iinear
—YpocuncPOCtrue < €poc < +VpPocuncPOCtrue

—YecuncECtrue < €ec < +YecuncECrrue

4) ComPUte I:’oc'measured and Ecmeasured
POCeasurea = POCtrye + €poc
ECneasured = ECtrue + €rc

Figure S2. Flowchart of data generation steps using the sine functions of Chu (2005).
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Figure S3. Example of bias in slope and intercept due to improper A assignment. Data

generation: Slope=4, Intercept=0; linear yy,. (30%). (a)&(b) Slopes and intercepts when

2
proper A is input following linear yy,, (4 = %); (c)&(d) Slopes and intercepts when
improper A is input following non-linear yy,. (4 = % .
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A by median
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Figure S4. Sensitivity tests of A calculated by mean, median and mode.
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OC/EC Ratio
1.88 2.13 2.36 2.58 2.81 3.04 3.31 3.63 4.17 11.12

1.00 | | | | | | | | | | _ 3.5
/
— 3.0
0.95
— 2.5 @
~ o
%.90 - 3
— 2.0
oLs ODR .
0.85 DR /1=1 w(X.) WODR .
—— DRA=—X —-- YR
w(Y;)
I I I I I I I I I 1— 1.0

10 20 30 40 50 60 70 80 90 100
OC/EC percentile (%)

Figure S5. Regression slopes as a function of OC/EC percentile. OC/EC percentile range
from 0.5% to 100%, with an interval of 0.5%.

S-12



Bivariate:

m
b
std errm
stderrb
Goodness of fit

-0.480533407446
5.479910224033
0.070620269529
0.359246522551
1.483294149258

n

(a) Cantrell, C. A 2008 ACP Supplement spreadsheet

(b

~—

Wu and Yu 2017 AMT Scatterplot Igor program

@3 scatterplot
Last Update:2017-06-13
Programed by Wo Chang
Input  Linear regression Multi
X6 70
pEmy w

T

Replot | Plot lev Windor v
ny

Email: wucheng.vip@foxmail.com
i

[Sle]rE=]

[E=SEcE )

n columns loaded &

__UncinX&Y

Text columns loaded [0

Season sane year v

Type input data v
IR - v e () [sionat
IR - Unc (%) sianat

0o
Lo
26
E¥)
s
52
1
s

74
< >

Clearinput  Update List| Time Date_|

Y axis X axis
2-  y=-0.480533x+5.479910
2 H : 7
| R=095
N=10
o-L_York B H 7
T T T T T
] 2 4 6 8
X axis e ¥ unitnone 7]
— X Unit none
[ 2 aus it Precipiations unit aa ~

- o I -
Trace Mods tarker ~|viarker O |- (SRS s = EYPRCCSEATON :

 Color [ | [(Export txt Seattar Matrix| ScanX |Scan ¥, batch X label orientation 50/

(c) OriginPro® 2017, York Regression

6 "y
York Linear Fit of Sheet1 E"y"
44
>
24
—a—
0 T T T T T
0 2 4 6 8
- Parameters X
Value Standard Error  t-Value Prob>|t| 95% LCL  95% UCL
Intercept  5.47991 0.35925 15.2539 3.38302E-7 4.65149  6.30833
Slope -0.48053 0.07062 -6.80447 1.37197E-4 -0.64338 -0.31768

Figure S6. York regression implementations comparison using data shown in Table S2, including

(a) spreadsheet by Cantrell (2008), (b) Igor program by this study and (c) a commercial software
(OriginPro® 2017).
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Figure S7. Study of two correlated sources scenario by different R? between the two
sources. (a) RZ= 1 (b) R>= 0.86 (c) R?= 0.75 (d) R = 0.49.
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Figure S8. Study of two independent sources scenario by different parameters. (a)
v_pri=10, RSDgc1=0.2, RSDec2=0.2 (b) y_pri=10, RSDec1=0.1, RSDrc2=0.2 (¢) y_pri=10,
RSDEc1=0.1, RSDEc2=0.1 (d) y_pri=8, RSDeci1=0.1, RSDEc2=0.1(e) y_pri=6, RSDrci=0.1,
RSDEc2=0.1 (f) y_pri=4, RSDec1=0.1, RSDgc2=0.1.

S-15



OC EC dtat generator for linear regression study Generate
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Figure S9. MT Igor program. OC and EC data following log-normal distribution can be
generated for statistical study purpose (no time series information). User can define mean
and RSD of EC, (OC/EC)pi, SOC/OC ratio, measurement uncertainty, sample size, etc.
MT Igor program can be downloaded from the following link:

https://sites.google.com/site/wuchengust.
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