
Mass Loss from Cool Stars
prospects with ALMA and other radio interferometers 

● AGB stars and Red SupergiantsAGB stars and Red Supergiants

● How does matter leave the stellar surface?How does matter leave the stellar surface?

● Pulsation, spots, convectionPulsation, spots, convection
● Mapping the layersMapping the layers

● What's going on 2-5 What's going on 2-5 RR??

● Driving the windDriving the wind
● Dust formationDust formation
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~5 stellar radii~5 stellar radii

Stellar radiusStellar radius Pulsation  Pulsation  

How does star lose mass?       
● Pulsation levitates photosphere

– Parcels of gas move out more
than they fall back

● But pulsations damped before
wind reaches V

esc

● Radiation pressure on dust?
– Opaque O-rich dust destroyed 

close to star (Woitke+'06)
– Large grains (Norris+'12)? Scattering (Hofner+'12)?

● Local ejections?
– Heating - expansion? Cooling - dust enhancement?

● Interaction between convection and pulsation
– Chromosphere, magnetic fields?

● Evidence for all these presented here

??
Bowen'88



~5 stellar radii~5 stellar radii

Stellar radiusStellar radius Pulsation  Pulsation  

How does star lose mass?       
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close to star (Woitke+'06)
– Large grains (Norris+'12)? Scattering (Hofner+'12)?

● Local ejections?
– Heating - expansion? Cooling - dust enhancement?

● Interaction between convection and pulsation
– Chromosphere, magnetic fields?

● Evidence for all these presented earlier in this meeting



Imaging star spots

● ALMA super-resolution using 
absorption velocity gradient 
against hot-spots ?
– As shown for VLTI, Ohnaka

O'Gorman, Kervella+2017

ALMA  0.89 mm  
Betelgeuse

● Many maps show a few spots 
across optical/IR/mm discs
– Aggregates of small spots?

● Cycle 8? ALMA best 
resolution
– 935 GHz, 16km
– 5.5 mas beam

● 8 beams across 44 mas 
photosphere

● 3 ~100 K in a few hr

Vlemmings, Khouri +'16

W Hya



● e-MERLIN, 3 yr & 3 m apart
● 180-mas resolution disc (colour)

– Radius ~100 mas, 4.5 R
photosphere

 

● Subtract Gaussian from 70-mas 
resolution image

– Contours: ~7 residuals >6

Betelgeuse  5cm hot/cold spots

– Up to ±~10% 
avg. flux density

● Location errors 
≳(10, 15) mas

● Unresolved
– Maybe 

clustered 
smaller 
components



Betelgeuse rotation

● 5cm hot/cold spot positions change tens mas / 3 months

– >100 km/s? - so not rotation/bulk sideways motion 

● 18-mas resolution SiO v=2 J=8-7
– Absorption against stellar continuum

● V
eq

 sin i ~5.5 km/s at 29.5 mas radius
– Compared with UV lines shows solid-

body rotation to 2 R

 (optical 

photosphere)
● N. pole of axis at position angle ~48o

– Similar to Dupree axis orientation
Velocity wrt V



Kervella+2017



Timescales (Harper & Linsky 99)

● Uses old Betelgeuse R* but should scale OK

● ne ~ 3.8x10-4 nH

Radius (φ ∗ = 56 mas)  1.5 R∗ 2.0 R∗ 4.0 R∗

Hydrogen Density  (109 cm−3 ) 8 3 0.4

Electron temperature (K) 3805 3447 2072

Time-scales (days) for;

C II recombination to C I 5 13 67

Wind crossing of density scale-height 2000 2000 2900

Sound crossing of density scale-height 270 500 1700

CO formation ~40

Sound crossing of radio emission region 600 840 2200

Free-fall across radio emission region 180 280 800
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Compare 0.89 mm - 5 cm 
● Background e-MERLIN 5cm low-resolution 2015 Jun
● White: 5cm 60-mas beam
● Grey: 5cm hot/cold spots
● Blue: 0.089cm ALMA + x

– Spectral index ~1.7 
● ~1.3 at cm wavelengths

● YellowYellow ring: photosphere
– Alignment by eye

● No hotspot correlation
– Depth difference 1.3- 4.5 R

● ~1.8 Rend of convection, pulsations damped



● ALMA 0.89mm continuum ~1.3 R- MOLsphere region 

Constraining the inner few R

 

ALMA

MOLsphere

● Temperature <T7mm

● Measures free 
electron density & 
temperature
– Mix of cool 

MOLsphere & 
chromosphere-or 
shock-influenced 
peak?

– Hotspots heated by 
convection in 
presence of 
magnetic field? O'Gorman et al. '15, '17



ALMA investigations of dust precursors
● R Dor , IK Tau [AlX/H] <1.1x10-7

– X=O, OH, Cl
– Extend beyond R

dust
– Enough likely to have 

condensed into (Al
2
O

3
)

n
 to 

explain 11 m feature
Decin+'18

R Dor [FeO/H] 

~1.5x10-8



AlO around Mira
● Likeliest dust nucleator (refractory, Al abundance > Ti)

BB
AA

● 30-mas resolution clumps

– Absorption, infall & outflow

● AlO predicted to be 
destroyed & reform 1-3 R✷

– Need <20-mas beam
● Also proper motion?

● Complicated variability v. 
– Short spacings to ensure 

scales up to ~200-mas

– Multiple transitions, species
● Estimate depletion → dust

Kaminski, Wong + 2016 



SiO clumps follow field lines?
● TX Cam proper motions not 

consistently radial (Kemball+11) 

– Non-ballistic?

– Polarization vectors B follow 
direction of motion 

TX Cam

– Are masers 
tracing matter 
accelerated 
along field lines?

● Or dragging the 
field in masing 
clumps? 
(Hartquist+96)



Or ballistic proper motions?
● IK Tau SiO shell asymmetries vary between epochs

– Not rotation (VERA multi-epoch, Matsumoto+08)
– Spoke-like SiO masers seen around several stars

IK Tau

– Ballistic trajectories fitted to IK 
Tau radial streamers 

● Including deceleration due to 
star's gravity



Larger-scale
streamers   

● Many RSG 22-GHz 
clumps persist > 5 yr

● Most patterns 
randomly-oriented

● A few of the longest-
lived are radial e.g. B 

RSG S Per 
22 GHz 
MERLIN

● Many RSG 22-GHz 
clumps persist > 5 yr

● Most patterns 
randomly-oriented

● A few of the longest-
lived are radial 

1994
1999

B

2000           -           2007   

VLBA 
Asaki+
2010

● Seen, but rarely



Larger-scale
streamers   

● AGB 22-GHz clumps 
smaller, 1-2 yr lifetime

AGB U Her 

22 GHz MERLIN

● Most patterns randomly-oriented or 
tangential

● U Her radial streamers in persistent 
direction if not exact same clump



R Cas SiO  0.1 - 1.8

Assaf+ 2010

R

 12.6 mas 

=2.2 au
Ring=
average R

maser

 V
exp 

< 10 km/s
mostly 
< 7 km/s



R Cas polarization 
23 epochs
VLBA 
43 GHz
Assaf+ 2013

Magnetic 
energy 
density ~  
thermal & 
kinetic energy 
densities

Mean linear 
pol 10-60%

Few >100%
Smaller-scale 
pol. structure 
than tot. I

brown:EVPA 



R Cas 
proper motions

– At least 1 series re-appears
– Average expansion consistent 

with R
shell

 evolution

● Net V
exp

 0.4 km/s

– 67 yr to cross shell
– Implies Ṁ ~4x10-7 M⊙ /yr

● (Gray, Ireland n models)

● 38 series of features 
matched ≥3 epochs
– 20% of all features

– All masers fade >0.6



Polarization alignment?
● 17 pairs of features have EVPA approx. 

orthgonal to proper motions
● Assume B perpendicular to EVPA

– Most popular (2) alignment but:
● Only 10 pairs have radial motion
● Most motions far more complex

Assaf 2018
(submitted)



R Cas SiO



What forces act on 
SiO at 2-5 R


 ?

4.7au

Temperature    Density            Entropy            ~streamlines   opt. intensity

7au3.2 R

2.7R Freytag+' 17

● Heating⇨expansion⇨convection
– Fails once NIR <1

● But + pulsation = waves
● Flow mostly not along B lines?

– (or data too messy...)
● Scattering by heat-resistant grains?
● Magnetic buoyancy?

– Obs. evidence for small-scale field complexity; Lopez Ariste model 



Masers trace 
clumpy outflow
● 'Well-behaved' VX Sgr

● Lower Tex - further out - faster

– Some overlap/inhomogeneities

cm  spectra (sub-)mm  H2O spectra



22 GHz maser clouds over-dense

● Birth size 5-10% R 

– If clouds expand 
radially in outflow 
Richards+ 2012

● Filling factor (<1%), mass 
loss rate and quenching 
density suggest 22-GHz 
clouds are 30 - 80 x 
average wind density 

VY CMa



Escape velocity @10-15 R


● 22-GHz H
2
O maser 

acceleration zone
● Wind reaches V

esc
 in 

22-GHz shell
● Continued 

acceleration implies 
dust absorptivity 
increases to 
10s/100s R



AGB V
esc

RSG V
esc



ALMA sensitivity: high thermal V
max

Some fast high-E
U
 lines in 

pulsation/shocked region 
near R

photosphere

Most high-Vexp lines low 
E

U
 in cool regions, large R

IK TauR Dor

Decin+2018



ALMA sci. verification (sub-)mm masers

● Model predictions for maser optical depth/brightness:
– 183-GHz masers furthest from star
– SiO and 658-GHz closest
– 321 GHz crossing dust formation zone?
– 22 and 325 GHz just outside?

● All complicated by clumping
● White lines: loci of predicted conditions in RSG CSE 

Gray et al. 2016                                                         Higher number density →

M
as

er
 

 →

T k →

Line GHz 2222 183183 321321 325325 658658
E

u
 K 521521 200200 18611861 454454 23602360



ALMA SV VY CMa multi- water masers

183 GHz masers over
HST contours/grey 
Smith+2001

● 183 GHz masers very extended as predicted
– Distribution similar to/within HST scattered light (as are OH)

● Follows small, cool dust grains/extends to low densities  

● HST proper 
motions of 
clumps 
(scattered lines) 
– Does VY CMa 

fling out clumps 
ballistically?

● R Humphreys 
et al 2007 



658 GHz

C

Star, VY

321 GHz

~180 mas beam

VY CMa sub-mm H2O 
masers

325 GHz

~180 mas beam

~90 mas beam

● 658-GHz 
surprisingly 
extended round 
cold clump C
– Shock?

● OGorman+15

● Masers centre on VY
– 325 GHz furthest 

– 658 GHz closest

– 321 GHz between
● Clearest strong 

acceleration
● Richards+14 



Gradual acceleration

● Inner and outer radii 
from masers 

+SO2 thermal example

● V(r) reasonable fit but 
acceleration more 
gradual



VY CMa maser model (Gray)
● 658658, , 321321, , 

325325 GHz 
deeper 
shade = 
stronger 
maser 

● Also for 2222, , 
183183 GHz 
contour at 
50% max 

● Lowest 
contour at 
crude 
estimate of 
sensitivity 
limit



Maser cloud overlap
● 'Match' 2 

transition 
features if 
within 
– Half max. 

VLSR span
– Half sum of 

angular 
size

● i.e. touch
● Assumes 

spherical 
● Series of 

matches may 
not all match 
individually

● Features within 500 mas of VY CMa, V ±12 km/s
● Compare Decin+'06, Matsuura+'13 1D models 



Surprisingly few 
line overlaps

● ~70 - 170 features per line

● 14 regions of line overlap or 
close association

– Probably more if 22 GHz 
contemporaneous included

● Size of symbol proportional to 
estimated feature peak  
– Too crudely estimated: 

● Apparent highest  have small 
angular size

– Probably from clouds 
elongated along line of sight

● Saturation, shocks ignorred

Components
making up
overlapping
clumps



Temperature constraints

658-only

325-183

658-only
658-321- 
325-183

321-325

● Roughly supports 
Decin model (which 
includes dust 
formation feedback & 
variable mass loss 
rate)

22
G

H
z 

in
ne

r 
ra

di
us

 ~
 

du
st
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or

m
at

io
n 

zo
ne

321-only

658- 325



Number density constraints
658-only

658- 325

325-183

● Number density 50 or 
more x higher often 
needed

– Dense clumps?

658-321- 
325-183

321-325

321-only



M. D. Gray et al. MNRAS 2016

o-H2O

n(H2O)

Tk

n(H
2
O)

m
aser –

p-H2O

Maser optical depths for some of ~50 H
2
O lines in bands 3–10 as 

functions of kinetic temperature & o-H
2
O number density 

321 GHz321 GHz

658 GHz658 GHz

183 GHz183 GHz

325 GHz325 GHz



PI: S. Ramstedt, Uppsala university
DEATHSTAR is a project to map the winds around nearby (< 500 
pc) AGB stars and improve the accuracy of  previously published 
models of the wind properties of the Galactic AGB stars (Schöier et 
al. 2001 for carbon stars; Gonzalez-Delgado 2003 for M-type stars; 
Ramstedt et al. 2009 for S-type stars).

Currently close to 50 AGB have already been observed using band 
6 and 7 at ALMA. Around 20 different molecular emission lines are 
detected within the wide bandwidth covered by the observations.

For more information see www.astro.uu.se/deathstar and
Ramstedt et al. 2018 (soon to be submitted)



Nearby Evolved Stars Survey

NESS:  Lead Peter Scicluna
team from China, Taiwan, South 
Korea, Japan, Canada, UK 
http://www.eaobservatory.org/jcmt/sc
ience/large-programs/ness/

Sensitivity to 
dust production 
rate v. distance

● Volume-limited JCMT survey
● Approved Large Program

– ~300 stars, large range Ṁ

– CO and dust continuum
● Constrain:

– Total gas+dust returned to Galactic ISM

– Dust to gas ratios

– Physics of mass loss

– Mass loss history

– 13CO/12CO
● Large-scale complement to stellar surface studies



e-MERLIN
VLA
ALMA

Resolution - - -

0.1                      0.7    1.3  2   3.5  5 6   (cm)  

Betelgeuse continuum monitoring
● Observe from sub-mm to cm at sub-R


 resolution

● ~weekly for 1 or a few months at increasing 

● Probe 1.5-6 R


– Variability/ 
motions like 
SiO in this 
region round 
later stars? 

● Per epoch 
multi- obs.
– Spectral 

indices
● Test energy 

transport 
mechanisms

Ideas for MOB



ALMA

MOLsphere

Transport across radio photosphere
● Inside ~2 R strong convection and pulsation

– W Hya (etc.) CO v=1 velocities ±20 km/s

– AGB SiO masers 2 to ≥ 5 R, Vexp < 10 km/s

● Shock damping ~1.8  R(O'Gorman; Harper; Reid&Menten) 

–  What is (non-linear) 

R dependence on  

between 0.4 - 7 mm?

– Image ALMA 

star+lines 
● In all bands

Ideas for MOB



Transport across radio photosphere
● 2~5+ R radio photosphere 

–  1 - 6+ cm

● Compare VLBA/KVN  
monitoring of SiO masers  

– VLA/e-MERLIN stellar 
continuum

● ? 6 GHz size ?? 6 GHz size ?

– Optical/IR interferometry &/or 
ALMA dust formation?

● As done with SiO masers + 
VLTI in S Ori

– Wittkowski et al. 2007

W Hya
Color Vlemmings et al. 338 GHz
Reid & Menten 22 GHz disc
Contours Cotton et al. 43 GHz 
SiO masers



>5 R

: the acceleration zone

● Starspots lead to wind plumes, streamers, clumps? 

– Locally-concentrated mass loss 
● Just a few maser/dust clumps formed per stellar period?

– Correlated with large-scale star spots 
● Masers fade, re-appear further out with similar structure

● Masing beaming fluctuates (months-yrs), clumps survive
● Dusty clumps accelerated more than less dense surroundings?

● Multi- (sub-)mm H2O masers would give physical 
conditions 10x finer scale than thermal lines

– Do 658 GHz/SiO maser clumps evolve into 22/321/325 GHz ?
● Can any instrument resolve few-au dust clumps at ≫ 5 R?

● Also: hunting low-mass close compansions; polarization....    



ALMA 16 km baselines and more
● c. 50 predicted H2O maser transitions in ALMA bands

– Tb ≳ few 104 K (representative , good & bad transmission)
● Detectable at 10-20 mas resolution in 30-60 min

– Resolve all maser emission, model physical conditions
– GMVA/EHT-type baselines for proper motions of peaks
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Continuum

● Stellar/dust continuum extremely valuable, including:

– Register masers

– Self-calibration across the band in 20 sec solint
● Sufficient S/N simultaneous with masers at same resoln

Ideas for MOB



cm-wave continuum

● Sensitivity depends on elevation, e-MERLIN with or without 
Lovell, weighting of combined arrays...

– e-MERLIN/VLBI ~12 hr on-source; VLA ~1 hr or less

● Maybe masers: SiO 0.7 cm, H2O 1.3 cm, OH 18 cm

–  Often bright enough to self-cal especially SiO, H2O

 
(cm)

Array Resolution 
(mas)

LAS 
(mas)

Tb sensitivity
(3, K)

0.7 VLA 45 1200 120

1.3 e-MERLIN (winter) 12-25 160 1000-2000

1.3 e-MERLIN+VLA ~50 2400 few 100

5 e-MERLIN 40-70 600 250-500

18 e-MERLIN 180 2200 300-600

18 e-MERLIN+EVN 50-70 2200 100s-1000+

Ideas for MOB



Dream on....

● ALMA sub-mm ALMA sub-mm  on 16-km baselines on 16-km baselines

– Self-calibrate on bright stars/masers; thermal absorptionSelf-calibrate on bright stars/masers; thermal absorption
● Spectral line mm VLBI - masers Spectral line mm VLBI - masers 

– ALMA + 20-50+ km baselines high res. for mm ALMA + 20-50+ km baselines high res. for mm 
● SKA Phase 1: SKA Phase 1: ≥≥5 cm, low resolution, v. sensitive5 cm, low resolution, v. sensitive

– SKA Phase 2 (+ Global/African VLBI Network) high-resSKA Phase 2 (+ Global/African VLBI Network) high-res  
● EVN/VLBA/VLBI phase referencing (align maser epochs/star)EVN/VLBA/VLBI phase referencing (align maser epochs/star)

● e-MERLIN 2 GHz b/w : double sensivitye-MERLIN 2 GHz b/w : double sensivity

– Correlate with Goonhilly, EVN,Correlate with Goonhilly, EVN,  AVN ...  superb resolution AVN ...  superb resolution 

– 2-4 and 15 cm receivers: high resolution2-4 and 15 cm receivers: high resolution
● ngVLA / (SKA high?):  ideal few mm - cmngVLA / (SKA high?):  ideal few mm - cm  

Sooner                                                            Later
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