Mass Loss from Cool Stars

prospects with ALMA and other radio interferometers

Anita M.S. Richards, UK ARC, Manchester A. Baudry, L. Decin, S. Etoka, M.D. Gray, E.M.L. Humphreys, P. Kervella, E. O'Gorman, A. Sobolev, W. Vlemmings, J.A. Yates and many more

- AGB stars and Red Supergiants
- How does matter leave the stellar surface?
 - Pulsation, spots, convection
 - Mapping the layers
 - What's going on 2-5 R_{*}?
- Driving the wind

MANCHESTEF

MERLIN

adioNet

Dust formation

EUROPEAN ARC ALMA Regional Centre || UK

How does star lose mass?

- Pulsation levitates photosphere
 - Parcels of gas move out more than they fall back
 - But pulsations damped before wind reaches V_{esc}
- Radiation pressure on dust?
 - Opaque O-rich dust destroyed close to star (*Woitke*+'06)

– Large grains (Norris+'12)? Scattering (Hofner+'12)?

How does star lose mass?

- Pulsation levitates photosphere
 - Parcels of gas move out more than they fall back
 - But pulsations damped before wind reaches V_{esc}
- Radiation pressure on dust?
 - Opaque O-rich dust destroyed close to star (*Woitke*+'06)

- Large grains (*Norris*+'12)? Scattering (*Hofner*+'12)?
- Local ejections?
 - Heating expansion? Cooling dust enhancement?
 - Interaction between convection and pulsation
 - Chromosphere, magnetic fields?
- Evidence for all these presented earlier in this meeting

Imaging star spots

- Many maps show a few spots across optical/IR/mm discs
 - Aggregates of small spots?
- Cycle 8? ALMA best resolution
 - 935 GHz, 16km
 - 5.5 mas beam
 - 8 beams across 44 mas photosphere
 - $3\sigma \sim 100$ K in a few hr
- ALMA super-resolution using absorption velocity gradient against hot-spots ?
 - As shown for VLTI, Ohnaka

Betelgeuse λ 5cm hot/cold spots

55^m10^s.37 10^s.34 10^s.32 10^s.30

Betelgeuse rotation

- 18-mas resolution SiO v=2 J=8-7
 Absorption against stellar continuum
- V_{eq} sin *i* ~5.5 km/s at 29.5 mas radius
 - Compared with UV lines shows solidbody rotation to 2 R_{*} (optical photosphere)
- N. pole of axis at position angle ~48°
 Similar to Dupree axis orientation

Velocity wrt V *Kervella+2017*

5cm hot/cold spot positions change tens mas / 3 months

- >100 km/s? - so not rotation/bulk sideways motion

Timescales (Harper & Linsky 99)

1.5 R*	2.0 R*	4.0 R*
8	3	0.4
3805	3447	2072
5	13	67
2000	2000	2900
270	500	1700
	~40	
600	840	2200
180	280	800
	1.5 R* 8 3805 5 2000 270 600 180	1.5 R*2.0 R*83380534475132000200027050040-40180280

• Uses old Betelgeuse *R** but should scale OK

Timescales (Harper & Linsky 99)

Radius (φ * = 56 mas)	1.5 R*	2.0 R*	4.0 R*	
Hydrogen Density (10 ⁹ cm ⁻³)	8	3	0.4	
Electron temperature (K)	3805	3447	2072	
Time-scales (days) for;				
C II recombination to C I	5	13	67)
Wind crossing of density scale-height	2000	2000	2900	
Sound crossing of density scale-height	270	500	1700	
CO formation		~40		
Sound crossing of radio emission region	600	840	2200	
Free-fall across radio emission region	180	280	800	

• Uses old Betelgeuse *R** but should scale OK

Compare 0.89 mm - 5 cm λ

- Background e-MERLIN 5cm low-resolution 2015 Jun
- White: 5cm 60-mas beam
- Grey: 5cm hot/cold spots
- Blue: 0.089cm ALMA + x
 - Spectral index $\alpha \sim 1.7$
 - $\alpha \sim 1.3$ at cm wavelengths
- Yellow ring: photosphere
 - Alignment by eye
- No hotspot correlation
 - Depth difference 1.3- 4.5 R_{\star}
 - ~1.8 R_{\star} end of convection, pulsations damped

Constraining the inner few R_{\star}

• ALMA 0.89mm continuum ~1.3 R_{\star} - MOLsphere region

ALMA investigations of dust precursors

AIO around Mira

• Likeliest dust nucleator (refractory, Al abundance > Ti)

- 30-mas resolution clumps
 - Absorption, infall & outflow
- AlO predicted to be destroyed & reform 1-3 R*
 - Need <20-mas beam
 - Also proper motion?
- Complicated variability v. ϕ
 - Short spacings to ensure scales up to ~200-mas
 - Multiple transitions, species
 - Estimate depletion \rightarrow dust

SiO clumps follow field lines?

625

620

615

610

605

600

595

590

285

- TX Cam proper motions not consistently radial (*Kemball*+11)
 - Non-ballistic?
 - Polarization vectors <u>B</u> follow direction of motion
 - Are masers tracing matter accelerated along field lines?
 - Or dragging the field in masing clumps? (Hartquist+96)

Or ballistic proper motions?

- IK Tau SiO shell asymmetries vary between epochs
 - Not rotation (VERA multi-epoch, Matsumoto+08)
 - Spoke-like SiO masers seen around several stars
 - Ballistic trajectories fitted to IK Tau radial streamers
 - Including deceleration due to star's gravity

R Cas SiO \$\$\op\$ 0.1 - 1.8

R Cas ³⁰ proper motions²⁰

- 38 series of features matched ≥3 epochs
 - 20% of all features
 - All masers fade $\phi > 0.6$

Assaf 2018 (submitted)

150

30 28 26 24 22 20 18 16 Iatched pairs difference between average proper motion and polarization PAs, degrees

What forces act on SiO at 2-5 R_* ?

- Heating \Rightarrow expansion \Rightarrow convection
 - Fails once $\tau_{_{NIR}}$ <1
 - But + pulsation = waves
- Flow mostly not along B lines?
 - (or data too messy...)
- Scattering by heat-resistant grains?²⁰
- Magnetic buoyancy?

- Obs. evidence for small-scale field complexity; Lopez Ariste model

(sub-)mm λ H2O spectra

22 GHz maser clouds over-dense

Escape velocity @10-15 R*

ALMA sci. verification (sub-)mm masers

Line GHz	22	183	<u>321</u>	325	<mark>658</mark>
E _u K	521	200	1861	454	2360

- Model predictions for maser optical depth/brightness:
 - 183-GHz masers furthest from star
 - SiO and 658-GHz closest
 - 321 GHz crossing dust formation zone?
 - 22 and 325 GHz just outside?
 - All complicated by clumping
 - White lines: loci of predicted conditions in RSG CSE

ALMA SV VY CMa multi- λ water masers

- 183 GHz masers very extended as predicted
 - Distribution similar to/within HST scattered light (as are OH)
 - Follows small, cool dust grains/extends to low densities

Gradual acceleration

VY CMa maser model (Gray)

658, 321, 325 GHz deeper shade = stronger maser τ

- Also for 22, 183 GHz contour at 50% max τ
- Lowest contour at crude estimate of sensitivity limit

Maser cloud overlap

- Features within 500 mas of VY CMa, $V_* \pm 12$ km/s
- Compare *Decin*+'06, *Matsuura*+'13 1D models

- 'Match' 2 transition features if within
 - Half max. $V_{\rm LSR}$ span
 - Half sum of angular size
 - i.e. touch
- Assumes spherical
- Series of matches may not all match individually

Surprisingly few line overlaps

- \sim 70 170 features per line
- 14 regions of line overlap or close association
 - Probably more if 22 GHz contemporaneous included
- Size of symbol proportional to estimated feature peak $\,\tau$
 - Too crudely estimated:
 - Apparent highest τ have small angular size
 - Probably from clouds elongated along line of sight
 - Saturation, shocks ignorred

Temperature constraints

Number density constraints

Maser optical depths for some of ~50 H₂O lines in bands 3–10 as functions of kinetic temperature & o-H₂O number density o-H2O p-H2O

M. D. Gray et al. MNRAS 2016

DEATHSTAR

alma investigation of cool giants

PI: <u>S. Ramstedt, Uppsala university</u>

DEATHSTAR is a project to map the winds around nearby (< 500 pc) AGB stars and improve the accuracy of previously published models of the wind properties of the Galactic AGB stars (*Schöier et al. 2001* for carbon stars; *Gonzalez-Delgado 2003* for M-type stars; *Ramstedt et al. 2009* for S-type stars).

Currently close to 50 AGB have already been observed using band 6 and 7 at ALMA. Around 20 different molecular emission lines are detected within the wide bandwidth covered by the observations.

For more information see www.astro.uu.se/deathstar and Ramstedt et al. 2018 (soon to be submitted)

Nearby Evolved Stars Survey

- Volume-limited JCMT survey
 - Approved Large Program
 - ~300 stars, large range \dot{M}
 - CO and dust continuum
- Constrain:

Nearby Evolved Stars Survey

- Total gas+dust returned to Galactic ISM
- Dust to gas ratios
- Physics of mass loss
- Mass loss history
- ¹³CO/¹²CO

NESS: Lead Peter Scicluna team from China, Taiwan, South Korea, Japan, Canada, UK http://www.eaobservatory.org/jcmt/sc ience/large-programs/ness/

Large-scale complement to stellar surface studies

Betelgeuse continuum monitoring

Ideas for MOB

- Observe from sub-mm to cm at sub-R_{*} resolution
- ~weekly for 1 or a few months at increasing λ

Ideas for MOB

Transport across radio photosphere

- Inside ~2 R_{*} strong convection and pulsation
 - W Hya (etc.) CO v=1 velocities ±20 km/s
 - AGB SiO masers 2 to \geq 5 R_* , V_{exp} < 10 km/s
 - Shock damping ~1.8 R_{*} (O'Gorman; Harper; Reid&Menten)
 - What is (non-linear) 4000 Effective Temperature Lim et al. (1998) R_* dependence on λ 3000 (2002 Feb between 0.4 - 7 mm? \ge +PT (2003) **ALMA** VLA+PT (2004) ······ Harper et al. (2001) ^g 2000 - Image ALMA star+lines **MOLsphere** 1000 • In all bands R. 2 6 7 50 100 150 200 0 ϕ_{eff} (mas)

Transport across radio photosphere

- 2~5+ R_{*} radio photosphere
 - λ 1 6+ cm
- Compare VLBA/KVN
 monitoring of SiO masers
 - VLA/e-MERLIN stellar continuum
 - ? 6 GHz size ?
 - Optical/IR interferometry &/or ALMA dust formation?
 - As done with SiO masers + VLTI in S Ori
 - Wittkowski et al. 2007

W Hya Color Vlemmings et al. 338 GHz Reid & Menten 22 GHz disc Contours Cotton et al. 43 GHz SiO masers

$>5 R_*$: the acceleration zone

- Starspots lead to wind plumes, streamers, clumps?
 - Locally-concentrated mass loss
 - Just a few maser/dust clumps formed per stellar period?
 - Correlated with large-scale star spots
 - Masers fade, re-appear further out with similar structure
 - Masing beaming fluctuates (months-yrs), clumps survive
 - Dusty clumps accelerated more than less dense surroundings?
- Multi- λ (sub-)mm H_2O masers would give physical conditions 10x finer scale than thermal lines
 - Do 658 GHz/SiO maser clumps evolve into 22/321/325 GHz ?
 - Can any instrument resolve few-au dust clumps at $\gg 5 R_*$?
- Also: hunting low-mass close compansions; polarization....

ALMA 16 km baselines and more

- c. 50 predicted H_2O maser transitions in ALMA bands
 - − $T_{\rm b} \gtrsim$ few 10⁴ K (representative v, good & bad transmission)
 - Detectable at 10-20 mas resolution in 30-60 min

- Resolve all maser emission, model physical conditions

1st octile	0 1 km/s	current	snecs	Resolution/2		Resolution/3	
100 00000		Garrent	-			1,000	
Freq	Time	beam	5σ	beam	5σ	beam	5σ
(GHz)	(h)	(mas)	(K)	(mas)	(K)	(mas)	(K)
86	0.5	66.0	1,172	33.0	4,686	22.0	10,544
137	0.5	41.4	1,024	20.7	4,095	13.8	9,213
183	1.0	31.0	6,201	15.5	24,803	10.3	55,807
230	0.5	24.7	911	12.3	3,643	8.2	8,197
325	1.0	17.5	7,079	8.7	28,315	5.8	63,709
354	0.5	16.0	1,288	8.0	5,153	5.3	11,595
447	0.5	12.7	9,018	6.3	36,073	4.2	81,165
658	0.5	8.6	13,226	4.3	52,903	2.9	119,033
899	0.5	6.3	24,724	3.2	98,894	2.1	222,512
906	1.0	6.3	29,804	3.1	119,216	2.1	268,236

ALMA 16 km baselines and more

- c. 50 predicted H_2O maser transitions in ALMA bands
 - − $T_{\rm b} \gtrsim$ few 10⁴ K (representative v, good & bad transmission)
 - Detectable at 10-20 mas resolution in 30-60 min

- Resolve all maser emission, model physical conditions

GMVA/EHT-type baselines for proper motions of peaks

1st octile	0.1 km/s	current s	specs	Resol	ution/2	Reso	ution/3	ResIn/2	0 (3200 km)
Freq	Time	beam	5σ	beam	5σ	beam	5σ	beam	5σ
(GHz)	(h)	(mas)	(K)	(mas)	(K)	(mas)	(K)	(mas)	(K)
86	0.5	66.0	1,172	33.0	4,686	22.0	10,544	0.33	1.9E+8
137	0.5	41.4	1,024	20.7	4,095	13.8	9,213	0.21	1.6E+8
183	1.0	31.0	6,201	15.5	24,803	10.3	55,807	0.15	9.9E+8
230	0.5	24.7	911	12.3	3,643	8.2	8,197	0.12	1.5E+8
325	1.0	17.5	7,079	8.7	28,315	5.8	63,709	0.09	1.1E+9
354	0.5	16.0	1,288	8.0	5,153	5.3	11,595	0.08	2.1E+8
447	0.5	12.7	9,018	6.3	36,073	4.2	81,165	0.06	1.4E+9
658	0.5	8.6	13,226	4.3	52,903	2.9	119,033	0.04	2.1E+9
899	0.5	6.3	24,724	3.2	98,894	2.1	222,512	0.03	4.0E+9
906	1.0	6.3	29,804	3.1	119,216	2.1	268,236	0.03	4.8E+9

Ideas for MOB

Continuum

- Stellar/dust continuum extremely valuable, including:
 - Register masers
 - Self-calibration across the band in 20 sec solint

1st octile	3.5 GHz	current s	specs	Resol	ution/2	Reso	lution/3	Est Teff	S/N
Freq	Time	beam	5σ	beam	5σ	beam	5σ		Continuum
(GHz)	(h)	(mas)	(K)	(mas)	(K)	(mas)	(K)	(K)	
86	0.5	66.0	3.4	33.0	13	22.0	30	2,000	331
137	0.5	41.4	3.7	20.7	15	13.8	33	2,247	337
183	1.0	31.0	25.9	15.5	104	10.3	233	2,416	117
230	0.5	24.7	4.3	12.3	17	8.2	38	<i>2</i> ,558	333
325	1.0	17.5	39.4	8.7	158	5.8	355	2,789	88
354	0.5	16.0	7.5	8.0	30	5.3	67	2,849	476
447	0.5	12.7	58.9	6.3	235	4.2	530	3,020	257
658	0.5	8.6	104.7	4.3	419	2.9	943	3,326	159
899	0.5	6.3	228.8	3.2	915	2.1	2,060	3,596	79
906	1.0	6.3	276.9	3.1	1,108	2.1	2,493	3,603	65

Ideas for MOB

cm-wave continuum

λ (cm)	Array	Resolution (mas)	LAS (mas)	Tb sensitivity (3σ, K)
0.7	VLA	45	1200	120
1.3	e-MERLIN (winter)	12-25	160	1000-2000
1.3	e-MERLIN+VLA	~50	2400	few 100
5	e-MERLIN	40-70	600	250-500
18	e-MERLIN	180	2200	300-600
18	e-MERLIN+EVN	50-70	2200	100s-1000+

- Sensitivity depends on elevation, e-MERLIN with or without Lovell, weighting of combined arrays...
 - e-MERLIN/VLBI ~12 hr on-source; VLA ~1 hr or less
- Maybe masers: SiO 0.7 cm, H_2O 1.3 cm, OH 18 cm
 - Often bright enough to self-cal especially SiO, H_2O

Dream on....

Sooner

Later

- ALMA sub-mm λ on 16-km baselines
 - Self-calibrate on bright stars/masers; thermal absorption
 - Spectral line mm VLBI masers
 - ALMA + 20-50+ km baselines high res. for mm λ
- SKA Phase 1: $\lambda \ge 5$ cm, low resolution, v. sensitive
 - SKA Phase 2 (+ Global/African VLBI Network) high-res
- EVN/VLBA/VLBI phase referencing (align maser epochs/star)
- e-MERLIN 2 GHz b/w : double sensivity
 - Correlate with Goonhilly, EVN, AVN ... superb resolution
 - 2-4 and 15 cm receivers: high resolution
- ngVLA / (SKA high?): ideal few mm cm