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In analyses of longitudinal changes in leukocyte telomere length (LTL) it is common practice to 

control statistically for baseline LTL. However, theoretical considerations arising from collider bias 

suggest that this practice could lead to overestimation of the difference in LTL attrition between 

groups that have experienced different exposures. We used simulated LTL data to explore 

whether adjusting for baseline LTL results in biased estimates of the true difference in LTL attrition 

between individuals with different exposures using smokers and non-smokers as an example. We 

show that if baseline LTL is shorter in smokers than non-smokers and LTL measurement error is 

non-zero, then adjusting for baseline LTL results in overestimating the true difference in telomere 

attrition between smokers and non-smokers. The size of this latter bias increases with increasing 

LTL measurement error. Since it is a robust finding that smokers have shorter baseline LTL than 

non-smokers and LTL measurement error is substantial, we conclude that the type 1 error rate for 

reports of effects of smoking on telomere attrition is likely to be above 5%. Using real data from 

seven longitudinal cohorts we show that in line with our simulation results, the estimated 

difference in attrition between smokers and non-smokers is greater in models controlling for 

baseline LTL. Furthermore, as predicted by our simulations, the size of this latter difference is 

positively associated with signatures of LTL measurement error. On the basis of our analyses we 

recommend that models of LTL attrition should not control for baseline LTL. Although we have 

couched our analysis in terms of the effects of smoking, our findings are likely to have general 

relevance to other factors studied in relation to telomere attrition. Many claims of accelerated LTL 

attrition in individuals exposed to disease, stress or adversity will need to be re-assessed. 
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1 Introduction 
Leukocyte telomere length (LTL)—the mean number of TTAGGG sequence repeats at the end of 

leukocyte chromosomes—is emerging as a widely studied biomarker of human health. Many cross-

sectional studies of LTL demonstrate that mean LTL is shorter in individuals that have been exposed 

to diverse forms of stress and adversity (Pepper, Bateson and Nettle, 2018). Recent meta-analyses 

show that LTL tends to be shorter in individuals who are smokers (Astuti et al., 2017), are more 

sedentary (Mundstock, Zatti, et al., 2015; Denham, O’Brien and Charchar, 2016), are obese 

(Mundstock, Sarria, et al., 2015), were subjected to childhood trauma  (Z. Li et al., 2017) or psycho-

social stress (Hanssen et al., 2017), suffer from schizophrenia (Polho et al., 2015; Rao et al., 2016), 

post-traumatic stress disorder (X. Li et al., 2017), anxiety or depression (Schutte and Malouff, 2015; 
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Ridout et al., 2016) or have higher perceived stress (Mathur et al., 2015). These latter studies have 

been widely assumed to support the hypothesis that the exposures studied increase the rate of LTL 

attrition. However, a cross-sectional association between an exposure and LTL does not necessarily 

imply a causal link between the exposure and telomere attrition (Bateson and Nettle, 2018). To test 

the hypothesis that an exposure causes an increase in telomere attrition it is necessary to 

demonstrate that the same exposures associated with shorter LTL in cross-sectional studies also 

increase the rate of LTL attrition within individuals over time. To do this, telomere attrition is 

estimated from longitudinal datasets in which LTL is measured twice in each individual, first at 

baseline (LTLb) and again at follow-up (LTLfu). The best estimate of the change in telomere length for 

a given individual is then simply the difference between the baseline and follow-up measurements 

(ΔLTL). In the current paper we express this difference such that negative values indicate telomere 

attrition and positive values telomere elongation; dividing by the follow-up interval provides an 

estimate of the annual rate of attrition (ΔLTL.year-1). Multiple regression approaches can then be 

used to estimate the rates of telomere attrition associated with different exposures during the 

follow-up period (Ehrlenbach et al., 2009; e.g. Bendix et al., 2014; Huzen et al., 2014; Weischer, 

Bojesen and Nordestgaard, 2014; Müezzinler et al., 2015; Puterman et al., 2015; Révész et al., 2016). 

In the current paper we address the question of how these statistical models should be constructed 

in order to obtain unbiased estimates of the effects of a given exposure on the rate of telomere 

attrition. While our discussion is relevant to all of the exposures listed above, we have chosen to use 

smoking behaviour to illustrate the impact of different analytic strategies. Our rationale for choosing 

smoking is that it is one of the most commonly reported exposures in studies of telomere dynamics, 

meaning that many datasets are available for meta-analysis. 

1.1 Controlling for baseline LTL 
Researchers often have a strong intuition that it is important to control for baseline variation in the 

outcome variable of interest in analyses of change. In the current context, this would imply including 

baseline LTL as a covariate in analyses of the effect of smoking on the rate of LTL attrition. Indeed, 

we have found nine studies that report the effect of smoking on LTL attrition and all of these control 

for baseline LTL in their multiple regression models (Aviv et al., 2009; Ehrlenbach et al., 2009; 

Farzaneh-Far et al., 2010; Bendix et al., 2014; Huzen et al., 2014; Weischer, Bojesen and 

Nordestgaard, 2014; Müezzinler et al., 2015; Révész et al., 2016; Toupance et al., 2017). What are 

the arguments in favour of controlling for baseline telomere length? 

In a highly-cited paper, Vickers and Altman (2001) considered the best analysis approach to adopt in 

controlled trials of an intervention with baseline and follow-up measurement. They concluded that 

analysis of covariance (which controls for baseline measurement in an analysis of change) will yield 

unbiased estimates of the effect of the intervention on the measured outcome variable of interest. 

Furthermore, they argue that this is generally the most powerful analytic approach, and the 

efficiency gains over analysing a simple change score will be greatest when the correlation between 

baseline and follow-up measurements is low. This latter paper is cited as the justification for 

controlling for baseline telomere length in at least one study of the factors affecting telomere 

attrition that we have found (Van Ockenburg et al., 2015). In studies of telomere dynamics, the 

correlation between baseline and follow-up telomere measurements is often low due to 

measurement error; in a recent meta-analysis of 18 longitudinal telomere datasets we reported 

Pearson correlation coefficients with a range of 0-0.66 for measurements made with qPCR and 0.92-

0.97 for those made with Southern blotting (Bateson et al., no date). This might seem like a strong 

argument for controlling for baseline telomere length in analyses of change.  
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However, there is an important difference between controlled trials (the subject of Vickers and 

Altman, 2001) and epidemiological studies aimed at identifying the factors affecting the rate of 

telomere attrition. In controlled trials, subjects are randomly allocated to treatment groups at the 

start of the study, meaning that it is logically impossible for any baseline differences in the outcome 

variable being measured to be caused by the intervention applied between the baseline and follow-

up measurements. In contrast, in epidemiological studies, there is no random allocation of subjects 

to exposures and exposures will often be present prior to the baseline measurement, meaning that 

it is quite possible that a baseline difference in telomere length is caused by the exposure or 

exposures under investigation. This difference between controlled trials and epidemiological studies 

is critically important, because the causal relationships between a set of variables determine the 

correct analytic strategy and inappropriate statistical control can introduce biases in estimates of 

effects on the outcome of interest (Greenland, 2003). Thus, in the current context, we need to 

understand whether controlling statistically for baseline telomere length biases estimates of the 

effect of smoking (or any other exposure) on the rate of telomere attrition. 

Glymour et al. (2005) examined the consequences of baseline control in asking whether educational 

attainment affects change in cognitive function in old age. They showed that in many plausible 

scenarios, controlling for baseline cognitive function induces a spurious statistical association 

between education and change in cognitive function. More generally, they concluded that when 

exposures are associated with baseline health status, an estimation bias arises if the change in 

health status precedes the baseline measurement or if there is measurement error in health status. 

Given that many exposures of interest—smoking being a prime example—will be present prior to 

baseline telomere measurement and that telomere length is known to be measured with error, 

there is strong reason to suspect that controlling for baseline telomere length could be a source of 

bias in analyses of telomere attrition.  

1.2 Directed acyclic graphs 
Directed acyclic graphs (DAGs), also known as causal diagrams, are recommended as a method for 

representing the causal relationships among a set of variables and for identifying the correct analytic 

strategy (Greenland, Pearl and Robins, 1999; Glymour et al., 2005; Glymour and Greenland, 2008). In 

Figure 1 we use a DAG to present one possible hypothesis for the causal relationships among 

smoking, baseline telomere length and telomere attrition. The DAG in Figure 1 represents the null 

hypothesis that smoking does not affect the rate of telomere attrition; it assumes that the 

association between smoking and baseline telomere length is brought about by both variables being 

caused by exposure to early-life adversity (ELA). To reflect the presence of error in the measurement 

of LTL we distinguish between true and measured values of LTL and ΔLTL; measured values are 

indicated with a prefix of m. Although we are ultimately interested in true LTL and ΔLTL, these are 

latent variables that are not directly accessible to us, and any analyses must therefore use mLTL and 

mΔLTL, explaining the presence of both true and measured values in the DAG. We assume that 

mLTLb is positively related to true LTLb and baseline measurement error (errorb), and that mΔLTL is 

positively related to ΔLTL and follow-up measurement error (errorfu). However, mΔLTL must also be 

negatively related to baseline measurement error (see Appendix for a proof of why this follows). This 

is due to regression to the mean: the phenomenon whereby subjects measured with an extreme 

error, negative or positive, at baseline will on average tend to be measured with a less extreme error 

at follow-up, generating the negative correlation between measured baseline LTL and measured LTL 

attrition that is commonly observed in longitudinal telomere datasets (Verhulst et al., 2013). 

In Figure 1, a path connects smoking with mLTLb via ELA and LTLb. ELA is assumed to cause both 

smoking and LTLb. Thus, as long as ELA is not controlled for, a negative association will be present 
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between smoking and mLTLb. A path also connects smoking with mΔLTL via ELA, LTLb, mLTLb and 

errorb  (in DAGs, a path is a series of lines connecting two variables, regardless of arrow direction). 

On this path, mLTLb is caused by both LTLb and errorb and is therefore what is termed a ‘collider’. In 

the parlance of DAGs, a collider blocks a path, meaning that smoking is independent of mΔLTL 

(under our null hypothesis). However, controlling statistically for mLTLb unblocks the path between 

smoking and mΔLTL and hence introduces a spurious association between smoking and mΔLTL. This 

latter phenomenon is known as ‘collider bias’ (Greenland, 2003; Cole et al., 2010). In summary, it 

follows from the assumptions embodied in Figure 1 that controlling for mLTLb should inflate 

estimates of the effect of smoking on LTL attrition via collider bias. The size of this bias should 

depend on both the strength of the association between smoking and LTLb and the size of the 

measurement error. 

 

 
Figure 1. Directed acyclic graph (DAG) summarising the assumed causal relations between smoking, measured 

baseline LTL (mLTLb) and measured LTL attrition (mΔLTL; shaded boxes) and various unmeasured/latent 

variables including: exposure to early-life adversity (ELA), true baseline telomere length (LTLb), baseline 

measurement error (errorb), true telomere change (ΔLTL) and follow-up measurement error (errorfu). Errorb 

and errorfu are uncorrelated and independent of LTL and attrition. Causal relationships are indicated by arrows 

with the direction of the effect given next to the arrow. The absence of an arrow from smoking to ΔLTL shows 

the assumption that smoking does not affect the rate of LTL attrition (the null hypothesis). This DAG is 

analogous to the DAGs presented in Glymour et al (2005; Figure 3) and Glymour and Greenland (2008; Figure 

12-14) and can thus be subjected to an identical analysis. See Section 1.2 for further details. 

1.3 Aims 
Since most of the longitudinal studies of the effects of smoking on telomere attrition also report an 

effect of smoking on baseline LTL, the above analysis raises the question of whether the results 

reported for the effects of smoking on LTL attrition are biased. Since measurement error affects 

baseline LTL, and baseline LTL affects apparent telomere attrition (via regression to the mean), we 

can ask how the extent of measurement error affects the size of this bias. In the remainder of this 

paper we address these questions via a combination of simulation and re-analysis of existing 

datasets. In section 2 we use a simulation model to ask whether, as predicted above, controlling for 

baseline LTL biases estimates of the association between smoking and telomere attrition. In section 

3, we re-analyse empirical datasets to test the predictions arising from our simulation. Specifically, 

we explore the variation between datasets in signatures of measurement error and ask whether 

controlling for baseline LTL increases estimates of the association between smoking and LTL 

attrition. 
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2 Simulation model 
The advantage of a simulation approach is that it is possible to generate datasets for which the true 

values of latent variables (in this case LTLb and ΔLTL) are known. We can then verify how adding 

different magnitudes of measurement error and using different statistical analysis approaches affect 

our ability to estimate the values of these latent variables correctly. We simulated longitudinal LTL 

datasets in which we set the true differences between smokers and non-smokers in LTLb, ΔLTL and 

the LTL measurement error (errorb and errorfu) based on realistic values obtained from the literature. 

We then used these simulated datasets to calculate the size of biases in the parameter estimates for 

the difference in ΔLTL between smokers and non-smokers obtained from different statistical models 

in which we varied whether, and if so how, we controlled for LTLb.  

2.1 Methods 
We simulated four different scenarios to describe the true differences in LTLb and ΔLTL between 

smokers and non-smokers: (A) No difference in LTLb and no difference in ΔLTL; (B) No difference in 

LTLb, but a true difference in ΔLTL; (C) A true difference in LTLb, but no difference in ΔLTL; and (D) A 

true difference in LTLb and a true difference in ΔLTL. Since scenarios C and D both assumed a true 

difference in baseline LTL between smokers and non-smokers (with shorter LTL in smokers), we 

predicted that estimates of the difference in telomere attrition between smokers and non-smokers 

would be biased in these scenarios if measured baseline LTL (mLTLb) was included in the statistical 

models as a control variable. The parameter values used in each scenario were taken from Aviv et al. 

(2009), who reported a significant baseline difference in LTL between smokers and non-smokers of 

141 bp and a non-significant mΔLTL between smokers and non-smokers of -2 bp.year-1 (Table 1). 

 
Table 1: Parameter values used in the simulations. 

  Scenario 

  A B C D 

  No diff. in LTLb True diff. in LTLb 

 Parameter No diff. in 
ΔLTL 

True diff. in 
ΔLTL 

No diff. in 
ΔLTL 

True diff. in 
ΔLTL 

Non-
smokers 

LTLb (bp;  
mean±sd*) 

7451±777 7451±777 7481±777 7481±777 

ΔLTL (bp.year-1; 
mean±sd*) 

-40.7±46 -40±46 -40.7±46 -40±46 

Smokers LTLb (bp;  
mean±sd*) 

7451±777 7451±777 7392±777 7392±777 

ΔLTL (bp.year-1; 
mean±sd*) 

-40.7±46 -42±46 -40.7±46 -42±46 

*Note that the standard deviations of baseline LTL and annual attrition in Table 1 are likely to be 
overestimates of the standard deviations of the true variables, since both true variation and measurement 
error contribute to the measured values. However, in the absence of error-free measurements we used these 
published standard deviations as the best estimates available. 

 
The simulation of LTL values was based on one previously described by Bateson and Nettle (Bateson 

and Nettle, 2016) and was implemented in the statistical computing language R. The script for the 

simulation is available as supplementary information: “R_script_TL_Bias_2018_final.R”. In each 

replicate simulation, values of LTLb were generated for 2000 participants (1000 non-smokers and 
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1000 smokers) by drawing independent random samples from normal distributions with means and 

standard deviations as given in Table 1. Each participant was then assigned a value of ΔLTL.year-1 by 

again drawing an independent random sample from normal distributions for attrition with means 

and standard deviations given in Table 1. This rate of attrition was applied for 10 years starting with 

the true LTLb to yield a true LTLfu for each participant. We assumed that each participant experienced 

a consistent rate of attrition over the follow-up interval (equivalent to setting r = 1 in Bateson and 

Nettle’s (2016)simulation). Measurement error was introduced into both baseline and follow-up LTL 

values by assuming that mLTL was an independent random sample from a normal distribution with 

the mean equal to the true LTL and the standard deviation equal to the true LTL*CV/100 where CV is 

the coefficient of variation of the measurement error. Measured ΔLTL for each participant was 

calculated as the difference between mLTLb and mLTLfu. We assumed values of CV of 0, 2, 4, 8, 10, 12 

and 14%, and generated 1000 replicate data sets for each value of CV in each of the four scenarios 

(A, B, C and D). 

Next, we modelled the dataset from each replicate with four different statistical models that 

represent alternative approaches found in the literature for modelling the difference in telomere 

attrition rates between individuals with different exposures (see Table 2). In these models, mΔLTL, 

mLTLb and mLTLfu were continuous variables and smoking was categorical (smokers versus non-

smokers). Model 1 is the basic model in which mΔLTL is predicted by smoking status with no 

statistical control for mLTLb (e.g. Shlush et al., 2011). Model 2 includes control for mLTLb by including 

mLTLb as a covariate; model 2 represents the approach most commonly adopted in the current 

telomere dynamics literature (e.g. Puterman et al., 2015; Révész et al., 2016; Toupance et al., 2017). 

Model 3 is a variant of model 2 in which the response variable is mLTLfu as opposed to mΔLTL (e.g. 

Shalev et al., 2013; Carlson et al., 2015). Model 4 is a repeated-measures equivalent of model 1 in 

which the response variable is mLTL and timepoint (baseline versus follow-up) is entered as a 

predictor (e.g. Shin et al., 2008); in this model inclusion of the interaction between timepoint and 

smoking is necessary to test the hypothesis that attrition differs between smokers and non-smokers. 

Note that models 1 and 4 contain no control for mLTLb, whereas models 2 and 3 control for mLTLb 

by including it as a covariate. 

 
Table 2: The four statistical models compared. 

No. Model 

 Response variable Fixed predictor variable(s) 

1 mΔLTL Smoking 

2 mΔLTL  mLTLb + Smoking 

3 mLTLfu mLTLb + Smoking 

4 mLTL Timepoint + Smoking + Timepoint*Smoking1 
1Model 4 additionally contains a random effect of participant to account for repeated measures. 

 
Models 1, 2 and 3 are variants of the general linear model and were fitted using the ‘lm’ function in 

the R base package, whereas model 4 is a general linear mixed-effects model and was fitted using 

the ‘lmer’ function in the ‘lme4’ package (Bates et al., 2015). To compare the estimates of the 

difference in mΔLTL.year-1 between smokers and non-smokers produced by the different models we 

recorded the β coefficients for the ‘Smoking’ variable produced by models 1, 2 and 3 and the 

‘Timepoint*Smoking’ variable for model 4.  To analyse the frequency of type 1 error rates (i.e. 

incorrectly rejecting the null hypothesis of no difference in attrition between smokers and non-

smokers in the scenarios where there was no true difference in ΔLTL) we additionally recorded 

whether the latter β coefficients were significantly different from zero (at p < 0.05). Summarised 
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output data from one run of the simulation are available as “Supplementary_dataset.CSV”. These 

data were used to create Figures 2 and 3. 

2.2 Results 

2.2.1 Parameter estimates 
Figure 2 shows the estimated difference in mΔLTL.year-1 between smokers and non-smokers derived 

from the four models in each of the four different scenarios that we simulated. Scenarios A and C 

simulate datasets in which the null hypothesis of no difference in ΔLTL between smokers and non-

smokers is true. In scenario A, in which there is also no difference in LTLb between smokers and non-

smokers, all models correctly estimate the true difference in rates of attrition between smokers and 

non-smokers as zero. However, in scenario C, in which there is a true difference in LTLb, while 

models 1 and 4 correctly estimate the difference in rates of attrition between smokers and non-

smokers as zero, models 2 and 3 overestimate this difference at non-zero values of measurement 

error, and the overestimation increases as LTL measurement error increases.  

Scenarios B and D simulate datasets in which there is a true difference in ΔLTL between smokers and 

non-smokers of -2 bp.year-1 in smokers. In scenario B, in which there is no true difference in LTLb, all 

models correctly estimate the difference in attrition between smokers and non-smokers at ~-2 

bp.year-1. However, in scenario D, in which there is a true difference in LTLb between smokers and 

non-smokers, while models 1 and 4 correctly estimate the difference in attrition between smokers 

and non-smokers, models 2 and 3 overestimate the difference at non-zero values of measurement 

error, and this overestimation increases as measurement error increases.  

We also experimented with a more rarely-used statistical approach: correcting mΔLTL.year-1 for 

expected regression to the mean using the formula supplied by Verhulst et al. (2013), and using this 

as the response variable (e.g. Nettle et al. 2015), either with or without control for mLTLb. The 

results for these models exactly mirror models 1 and 2: the difference in ΔLTL is correctly estimated 

without control for mLTLb, but overestimated in proportion to measurement error if mLTLb is 

controlled for (data not shown).   

In summary, it appears that when there is a true difference in LTLb between smokers and non-

smokers (scenarios C and D), controlling for LTLb by including it as a covariate (models 2 and 3) 

results in estimating an exaggerated difference (i.e. a bias) in the rate of attrition in smokers 

compared to non-smokers. This bias occurs whenever measurement error is greater than zero.  

2.2.2 Type 1 errors 
Figure 3 shows the probability of type 1 errors in scenarios A and C (where there is no true 

difference in ΔLTL between smokers and non-smokers). In scenario A, the probability of type 1 errors 

with all models is around 0.05, as would be expected. However, in scenario C (where there is a 

difference in LTLb between smokers and non-smokers) the type 1 error rates with models 2 and 3 

reflect the exaggerated estimates of difference in ΔLTL seen in Figure 2C, rising as measurement 

error increases.  

2.3 Discussion 
Our results show that as long as there is no true difference in baseline LTL between smokers and 

non-smokers (scenarios A and B in our simulations), then all of the statistical modelling approaches 

that we have considered accurately estimate the difference in LTL attrition between smokers and 

non-smokers. However, if there is a true difference between smokers and non-smokers in baseline 

LTL (scenarios C and D) and LTL measurement error is non-zero, then controlling for baseline LTL 

biases estimates of the difference in attrition between smokers and non-smokers. Specifically, the 
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difference in attrition is overestimated and the size of this overestimation increases as LTL 

measurement error increases, for realistic values of measurement error. This overestimation of the 

difference in attrition translates into a type 1 error rate of above the usually-accepted 5% level in 

scenario D. 

It is worth pointing out that scenario B is unlikely to be very common, unless the baseline LTL 

measurement is taken early in life, before the participants have started smoking. Likewise, scenario 

A is not typical, given the abundant cross-sectional evidence that smokers have shorter telomeres 

than non-smokers (Astuti et al., 2017). Thus, the scenarios likely to be empirically widespread are 

exactly those (C and D) where bias will occur if baseline LTL is controlled for.   

 

 
 
Figure 2. Controlling for baseline LTL exaggerates estimates of the difference in telomere attrition between 
smokers and non-smokers. The estimated effects of smoking on LTL attrition rate obtained from fitting four 
alternative models to data simulated given four sets of assumptions regarding the true differences between 
smokers and non-smokers (scenarios A-D). The dashed lines indicate no difference between smokers and non-
smokers in LTL attrition. Data points are the mean ± 95% confidence intervals obtained from modelling the 
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data from 1000 replicate simulations and lines are simple linear fits. The four scenarios are as follows: (A) No 
difference in attrition and no difference in baseline LTL; (B) A true difference in attrition, but no difference in 
baseline LTL; (C) No difference in attrition, but a true difference in baseline LTL; and (D) A true difference in 
attrition and a true difference in baseline LTL. The true effect of smoking on LTL attrition rate in scenarios B 
and D was an additional -2 bp.year-1 in smokers. The true effect of smoking on baseline LTL in scenarios C and 
D was that smoker’s baseline LTL were 141 bp shorter. 
 
 
 

 
 
Figure 3. Controlling for baseline LTL increases the probability of type 1 errors for detecting a difference in 
attrition between smokers and non-smokers. Type 1 error rates for the four different different models under 
consideration. Data points represent the proportion of simulations yielding a p-value below 0.05 in 1000 
replicate simulations, and lines are simple linear fits. Panels A and C show the probability of type 1 errors 
occurring in scenarios A and C where there is no true effect of smoking on the LTL attrition. 

3 Does controlling for baseline LTL inflate estimates of the 

difference in attrition between smokers and non-smokers in real 

datasets? 
In section 2 we showed, using a simulation model, that if there is a true difference in LTLb between 

smokers and non-smokers and LTL measurement error is non-zero, then controlling for mLTLb in 

models of m∆LTL results in overestimating the true difference in ∆LTL between smokers and non-

smokers. Furthermore, the size of this latter bias increases as LTL measurement error increases. 

Meta-analyses of real LTL data show that baseline LTL is shorter in smokers than non-smokers and 

that there is known to be substantial variation between studies in the magnitude of LTL 

measurement error. We therefore predict that in real longitudinal datasets, estimates of the 

difference in ∆LTL between smokers and non-smokers will depend on both the size of the 

measurement error and the modelling strategy adopted. Specifically, we predict that estimates of 

the difference in ∆LTL between smokers and non-smokers should be larger when they are derived 

from models controlling for mLTLb, and that the size of this effect of modelling strategy should 

increase as measurement error increases.  
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The aim of the current section is to test these predictions using real data from seven cohorts in 

which LTL was measured longitudinally. Our specific aims were as follows. First, we set out to 

confirm that there is substantial variation in LTL measurement error among the seven cohorts. This 

is important, because the existence of variation in measurement error is a pre-requisite for the 

subsequent analysis. Second, we tested whether the estimated association between smoking and 

m∆LTL is greater when the association is derived from a model controlling for LTLb (model 2) 

compared a model without control for LTLb (model 1), and whether any difference is explained by 

differences in LTL measurement error among cohorts. Finally, we asked whether the effects of 

modelling strategy that we have identified generalise from smoking behaviour to other putative 

influences on the rate of telomere attrition, namely sex and body mass index (BMI) (e.g. Farzaneh-

Far et al., 2010). Meta-analyses show that LTL is shorter in adult males (Gardner et al., 2014) and in 

individuals with higher BMI (Mundstock, Sarria, et al., 2015). We therefore predict that just as for 

smoking, estimates of the statistical effects of sex and BMI on m∆LTL could be exaggerated in 

models controlling for mLTLb and that the size of this bias should be related to LTL measurement 

error. 

3.1 Methods 
We used data from participants in seven longitudinal cohorts whose LTL had been measured at least 

twice (Table 3). For the analyses of effects of smoking, we restricted the dataset to those 

participants who were either current or never smokers at the time of the baseline LTL measurement 

(designated ‘smokers’ and ‘non-smokers’ respectively); for clarity, those who had quit smoking at 

some point prior to the baseline measurement were excluded. For the analyses of sex and BMI we 

used the full dataset for which longitudinal LTL data were available. As our estimate of BMI, we used 

the mean of BMI at baseline and follow-up where this was available; and otherwise either BMI at 

baseline or BMI at follow-up, whichever was available. We were unable to analyse the effect of sex 

for the Caerphilly Cohort Study (CCS), since this cohort was restricted to male participants. 

The first telomere measurement for each participant was designated as mLTLb and the second, or 

last where more than two were available (both the Lothian cohorts), as mLTLfu. For each participant 

∆LTL.year-1 was calculated as (mLTLfu-mLTLb)/(agefu-ageb) so that negative values indicate telomere 

attrition over the follow-up interval.  

To characterise the measurement error present in each cohort we did not use the CVs reported for 

the cohorts, because there is considerable variation between labs in exactly which CVs are calculated 

and reported and consistent measures were not available for all cohorts. Instead, we used 

signatures of measurement error that can be directly calculated from the telomere measurements 

themselves, namely the correlation between mLTLb and mLTLfu and the correlation between mLTLb 

and m∆LTL. All else being equal, the correlation between mLTLb and mLTLfu will be less positive the 

higher the measurement error, and the correlation between mLTLb and m∆LTL will be more negative 

the higher the measurement error (Steenstrup et al., 2013; Verhulst et al., 2013). 

For each cohort, we modelled the difference in m∆LTL.year-1 between smokers and non-smokers 

using models 1 and 2 (Table 2). These models yielded estimates of the standardised β coefficient for 

the association between smoking and m∆LTL.year-1. To compare the difference in the estimates of 

this parameter between models 1 and 2 we calculated the difference in association ( = model 2-

model 1). A stronger negative association between smoking and m∆LTL.year-1 in model 2 compared to 

model 1 will therefore be indicated by a more negative value of . 



Table 3. Summary of the datasets analysed for smoking 
Cohort 
(acronym) 

Country Mean 
age at 
baseline 
(years) 

Mean 
follow-
up 
interval 
(years) 

LTL 
measurement 
method 

Number of 
participants by 
baseline smoking 
status1 

Diff. in LTLb 
between 
smokers 
and never-
smokers 
(Cohen’s d)2 

Signatures of LTL measurement 
error (data from smokers and 
never-smokers pooled) 

Diff. in ∆LTL.year-1 between 
smokers and never-smokers 
(standardised β [s.e.])4 

Reference 
for cohort 

     Smokers Never-
smokers 

 Correlation 
between 
baseline LTL and 
follow-up LTL (r) 

Correlation 
between 
baseline LTL 
and ∆LTL (r)3 

Model 1 Model 2  

ADELAHYDE 
(ADE) 

France 68.1 8.3 TRF 5 42 -0.99 0.93 -0.09 0.49 [0.47] 0.49 [0.50] (Hjelmborg 
et al., 2010) 

Caerphilly 
Cohort Study 
(CCS) 

Wales, 
UK 

64.2 8.0 qPCR 207 169 -0.12 0.03 -0.81 0.22 [0.10] 0.12 [0.06] (Gardner et 
al., 2013) 

Evolution de 
la Rigidité 
Artérielle 
(ERA) 

France 58.6 9.5 TRF 27 86 0.19 0.96 -0.32 -0.30 [0.22] -0.24 [0.21] (Toupance 
et al., 2017) 

Hertfordshire 
Ageing Study 
(HAS) 

England, 
UK 

67.0 9.2 qPCR 29 93 -0.19 -0.10 -0.75 -0.12 [0.21] -0.27 [0.14] (Gardner et 
al., 2013) 

Lothian Birth 
Cohort 1921 
(LBC1921) 

Scotland, 
UK 

80.2 9.2 qPCR 3 78 -0.40 0.35 -0.23 0.10 [0.59] 0.06 [0.59] (Gardner et 
al., 2013) 

Lothian Birth 
Cohort 1936 
(LBC1936) 

Scotland, 
UK 

69.6 6.0 qPCR 75 415 -0.16 0.54 -0.31 -0.10 [0.13] -0.15 [0.12] (Harris et 
al., 2016) 

MRC 
National 
Survey of 
Health and 
Development 
(NSHD) 

England, 
UK 

53.4 9.3 qPCR 204 335 -0.06 0.08 -0.80 0.03 [0.09] -0.02 [0.05] (Gardner et 
al., 2013) 

1These numbers are smaller than the numbers given in the original reference for the cohort because we only included participants for 

whom there was telomere length and age at both baseline and follow-up and smoking status at baseline; furthermore, participants who 

had quit smoking prior to baseline were excluded. 2Negative numbers indicate that LTLb is shorter in smokers. 3Negative numbers indicate 

that longer LTLb is associated with greater telomere loss. 4Negative numbers indicate greater telomere loss in smokers.
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To compare the results obtained across the seven cohorts we used meta-regression, fitting linear 

regression models to the values obtained for each cohort. To account for the different numbers of 

participants per cohort, we weighted data points by the number of participants in each cohort. 

3.2 Results 

3.2.1 Descriptive statistics 
We analysed data from the seven longitudinal cohorts detailed in Table 3. The combined dataset 

included data from 1,768 adults, comprising 550 current smokers and 1,218 never-smokers at the 

time of the baseline measurement. The mean age at baseline of the cohorts was 65.9±8.5 years 

(mean±sd; range: 53.4-80.2) and the mean follow-up interval was 8.5±1.2 years (mean±sd; range: 

6.0-9.5)Signatures of measurement error 

Five cohorts measured LTL using the quantitative polymerase chain reaction (qPCR) method and four 

used the arguably more precise terminal restriction fragment method (TRF; Aviv et al., 2011). Figure 

4A shows the correlation between mLTLb and mLTLfu for each cohort. For all cohorts, the correlation 

is less than one, as would be expected if there is independent measurement error present at both 

time points. However, the strength of the correlation differs markedly between cohorts, with 

Pearson correlation coefficients ranging from -0.01 to 0.97 (Table 3). As expected, the two cohorts 

measured with TRF (ADE and ERA) have the highest correlation coefficients. Figure 4B shows the 

correlations between mLTLb and mΔLTL.year-1. For all cohorts, the correlation is negative, as would 

be expected given regression to the mean arising from measurement error. As expected, the two 

cohorts measured with TRF have the smallest negative correlation coefficients. Figure 4C shows that 

there is a significant negative association between the mLTLb-mLTLfu correlation coefficient and the 

mLTLb-m∆LTL.year-1 correlation coefficient for each cohort (weighted linear regression: β±se = -

0.76±0.18, t = -4.17, p = 0.0088). This latter relationship is expected if the relationships present in 

Figures 4A and 4B are both attributable to a common cause, in this case measurement error. Thus, 

predicted signatures of LTL measurement error are present and the magnitude of the signature 

varies among the seven cohorts. 

 

Figure 4. Signatures of measurement error differ between cohorts. A: The relationship between mLTLb and 
mLTLfu for each of the seven cohorts. The lines were obtained from simple least squares regression. The 
dashed line shows the expectation if there is no change in mLTL between baseline and follow-up. Most of the 
data fall below the dashed line, indicating that in most participants, mLTL shortened between baseline and 
follow-up. B: The relationship between mLTLb and m∆LTL.year-1 for each of the seven cohorts. The lines were 
obtained from simple linear regression. C: Meta-regression between the mLTLb-mLTLfu correlation coefficient 
and the mLTLb-m∆LTL.year-1 correlation coefficient across cohorts. The size of the point representing each 
cohort is proportional the number of participants. The solid black line was derived from a linear regression in 
which the points were weighted by the number of participants in each cohort and the grey ribbon shows the 
95% confidence interval for this line. 
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3.2.2 Effects of modelling strategy 
We compared estimates of the difference in mΔLTL.year-1 between smokers and non-smokers 

derived from simple models that did not control for mLTLb (model 1) with estimates derived from 

models that controlled for mLTLb (model 2). Table 3 reports the standardised β coefficients for the 

difference in mΔLTL.year-1 between smokers and non-smokers derived from models 1 and 2 for each 

of the seven datasets. Coefficients from models 1 and 2 are strongly positively correlated, but not 

identical (Figure 5A; weighted linear regression: β±se = 0.89±0.11, t = 8.15, p = 0.0005). There is a 

non-significant tendency for the coefficients from model 2 to be more negative, indicating a bigger 

estimated difference in mΔLTL.year-1 between smokers and non-smokers compared to model 1 

(paired t-test: t(6) = 1.87, p = 0.1106). If the latter comparison is restricted to the five cohorts 

measured with qPCR, then the difference between models 1 and 2 is significant (paired t-test: t(4) = 

3.87, p = 0.0180). Further supporting the hypothesis that the difference in estimates derived from 

models 1 and 2 is caused by differences in measurement error, there is a significant positive 

relationship between the mLTLb-mLTLfu correlation coefficient (a proxy for measurement error) for 

each cohort and  (Figure 5B; weighted linear regression β±se = 0.11±0.04, t = 2.91, p = 0.0336). 

 

Figure 5. The biasing effect of controlling for baseline LTL. A: The relationship between the beta coefficients 
for smoking derived from models 1 and 2. The dotted line shows the expectation if the coefficients were 
identical. B: The correlation between a signature of LTL measurement error (the correlation between LTLb and 
LTLfu) and the difference between the β coefficients derived from models 1 and 2. In both panels, the solid 
black line was derived from a linear regression in which the points were weighted by the number of 
participants in each cohort and the grey ribbon shows the 95% confidence interval for this line. 
 

3.2.3 Generalisation to sex and BMI 
The combined dataset available for analysing effects of sex and BMI included data from 3,313 adults, 

comprising 2,077 males and 1,236 females. Table 4 reports the results of repeating the analysis 

described in section 3.2.3, first with sex, and second with BMI in place of smoking status. As 

observed for smoking, there is a positive relationship between the LTLb-LTLfu correlation coefficient 

(a proxy for measurement error) and  (the difference between the estimates derived from models 

1 and 2) for both sex and BMI (Figures 6A and B). This relationship is marginally non-significant in the 

case of sex (weighted linear regression β±se = 0.14±0.06, t = 2.43, p = 0.0722) and non-significant in 

the case of BMI (weighted linear regression β±se = 0.01±0.01, t = 0.82, p = 0.4480).  

 

  



Bateson et al.: Controlling for baseline telomere length, version 2, July 2018 

 

14 
 

Table 4. Summary of the datasets analysed for sex and BMI. 
Cohort Number of 

participants 
Correlation 
between LTLb 
and LTLfu 

Differences between sexes 
in telomere 
length/attrition1 

(standardised β [s.e.]) 

Associations between BMI 
and telomere 
length/attrition2 

(standardised β [s.e.]) 

   LTLb ∆LTL.year-1 LTLb ∆LTL.year-1 

 Male Female   Model 
1 

Model 
2 

 Model 
1 

Model 
2 

ADE 33 35 0.94 -0.55 
[0.23] 

-0.18 
[0.24] 

-0.16 
[0.26] 

-0.22 
[0.12] 

0.14 
[0.12] 

0.16 
[0.13] 

CCS 756 0 0.05 NA NA NA 0.01 
[0.04] 

0.023 
[0.04] 

0.012 
[0.02] 

ERA 108 54 0.96 -0.065 
[0.17] 

-0.01 
[0.17] 

0.01 
[0.16] 

-0.06 
[0.08] 

-0.05 
[0.08] 

-0.04 
[0.08] 

HAS 158 95 0.15 0.09 
[0.13] 

0.13 
[0.13] 

0.06 
[0.09] 

-0.01 
[0.06] 

0.06 
[0.06] 

0.07 
[0.04] 

LBC1921 78 81 0.27 0.37 
[0.16] 

-0.12 
[0.16] 

-0.19 
[0.16] 

-0.01 
[0.08] 

-0.01 
[0.10] 

-0.01 
[0.08] 

LBC1936 444 414 0.49 0.38 
[0.07] 

0.21 
[0.07] 

0.09 
[0.07] 

0.02 
[0.03] 

0.00 
[0.03] 

-0.00 
[0.03] 

NSHD 500 557 0.08 0.19 
[0.06] 

0.25 
[0.06] 

0.10 
[0.04] 

-0.00 
[0.03] 

-0.01 
[0.03] 

-0.01 
[0.02] 

Notes: 1For sex, positive standardised βs indicate that males have longer LTLb and greater mΔLTL.year-1. 2For 

BMI, positive standardised βs indicate that participants with higher BMI have longer LTLb and greater 

mΔLTL.year-1. 

 

 

Figure 6. Measurement error predicts biases for sex and BMI. A: The correlation between a signature of LTL 
measurement error (the correlation between LTLb and LTLfu) and the difference between the β coefficients for 
sex derived from models 1 and 2. B: As panel A but the β coefficients are for BMI.  In both panels, the solid 
black line was derived from a linear regression in which the points were weighted by the number of 
participants in each cohort and the grey ribbon shows the 95% confidence interval for this line. 
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3.3 Discussion 
We compared the difference in telomere attrition between smokers and non-smokers estimated 

using two different statistical modelling strategies applied to telomere data from seven longitudinal 

cohorts. Model 1 contained no control for baseline telomere length, whereas model 2 controlled for 

baseline telomere length by including it as a covariate. Models 1 and 2 produced different estimates 

of the difference in the rate of telomere attrition between smokers and non-smokers. Specifically, 

we observed a tendency for the estimates derived from model 2 to suggest a more negative effect of 

smoking on telomere attrition than those derived from model 1. Since there can only be one true 

difference in the rate of telomere attrition between smokers and non-smokers, the β coefficients for 

smoking derived from either model 1 or model 2 (or both) must be incorrect. The fact that 

controlling for baseline LTL increases estimates of the effect of smoking rather than decreasing them 

suggests that baseline LTL is not a proxy for positive confounders of the difference in telomere 

attrition between smokers and non-smokers, but instead introduces a bias. Indeed, the DAG analysis 

in section 1.2 and our simulation results in section 2.2 both argue that controlling for baseline LTL 

(model 2) yields biased estimates, and that the correct estimates come from the model without 

control for baseline (model 1). Thus, it seems likely that model 2 is producing biased estimates of the 

effect of smoking on telomere attrition. This conclusion is strengthened by our finding that the 

discrepancy between the coefficients for smoking derived from models 1 and 2 is predicted by a 

proxy for the magnitude of the telomere measurement error present in a cohort. This latter 

relationship was predicted by our simulation that produces an association between the magnitude 

of bias and measurement error. Our results for smoking generalise to two other factors known to be 

associated with LTL and argued to influence attrition, namely sex and BMI. The weaker correlations 

for sex and particularly BMI are likely to reflect weaker evidence for true associations between sex 

and BMI and LTLb compared with the more robust association established for smoking. 

4 General Discussion 
We have used three separate lines of evidence to argue that controlling for baseline telomere length 

in analyses of telomere attrition is likely to cause biases in estimates of the effects of exposures such 

as smoking. First, we used an analysis of directed acyclic graphs to show that under a realistic set of 

assumptions, baseline TL is likely to be a collider on the path linking smoking and telomere attrition. 

Controlling for baseline TL is therefore predicted to introduce collider bias in the form of an 

overestimation of the true difference in telomere attrition between smokers and non-smokers. 

Second, we used a simple simulation model to confirm, again under a realistic set of assumptions, 

that controlling for baseline TL does indeed inflate estimates of the true difference in telomere 

attrition between smokers and non-smokers, but only when a true difference in TL is present at 

baseline. The magnitude of this bias is positively related to the magnitude of TL measurement error. 

Third, we analysed data from seven longitudinal human cohorts and showed that, in line with our 

predictions, estimates of the difference in telomere attrition between smokers and non-smokers 

tended to be greater when baseline TL was included in statistical models as a covariate. 

Furthermore, the magnitude of this latter difference was predicted by TL measurement error, as 

would be expected if the difference arises from collider bias.  

We initially found it difficult to obtain an intuitive understanding of why controlling for baseline TL is 

problematic. Figure 7 is our attempt to provide a graphical explanation for why the above bias 

occurs. The red and blue clouds indicate distributions of LTLb and ΔLTL measurements for smokers 

and non-smokers respectively. The three panels depict cartoon measured LTL data from a scenario 

in which there is no true difference in ΔLTL between smokers and non-smokers (the centres of the 

clouds for smokers and non-smokers lie on the same horizontal dotted line indicating an identical 
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level of attrition), but there is a true baseline LTL difference, with smokers having shorter LTLb than 

non-smokers (the centre of the cloud for smokers is to the left of the centre of the cloud for non-

smokers). This scenario is equivalent to that simulated in scenario C in section 2. All three panels of 

Figure 7 show the relationship between baseline LTLb and ΔLTL as a solid black regression line (note 

that this is the same relationship shown in Figure 4B). As LTL measurement error increases above 

zero, a negative relationship between LTLb and ΔLTL is introduced as a result of regression to the 

mean. The slope of the regression line rotates about the mean values of LTLb and ΔLTL, becoming 

more negative as the CV increases (panels B and C). Controlling for baseline LTL in an analysis of ΔLTL 

is conceptually equivalent to analysing the residuals from the regression of ΔLTL on LTLb. The effect 

of the rotation of the regression line that occurs as measurement error increases is to create mean 

negative residuals of the data from the regression line for smokers and mean positive residuals for 

non-smokers (indicated by the vertical arrows between the centre of each cloud and the regression 

line). Thus, a spurious difference in the residual ΔLTL between smokers and non-smokers is created, 

despite the fact that no true difference in ΔLTL exists. This bias only occurs because the smokers 

have a mean LTLb that is lower than that of non-smokers; it would not occur if there was no true 

difference in LTLb.  

 

Figure 7. Cartoon illustrating the biasing effect of controlling for LTLb in analyses of ΔLTL. See text for 

explanation. 
 
Given first, that there are robust differences in baseline TL between smokers and non-smokers (Aviv 

et al., 2009; Huzen et al., 2014; Weischer, Bojesen and Nordestgaard, 2014; Müezzinler et al., 2015; 

Révész et al., 2016), second, that TL measurement error is substantial (Aviv et al., 2011) and third, 

that most published analyses of the effect of smoking on telomere attrition control for baseline TL, 

we predict that the difference in LTL attrition between smokers and non-smokers is likely to have 

been overestimated. Reports of significantly accelerated LTL attrition in smokers compared to non-

smokers should therefore be interpreted with caution (e.g. Bendix et al., 2014; Huzen et al., 2014). 

In a recent meta-analysis in which we re-analysed LTL data from 18 longitudinal cohorts without 

control for baseline LTL, we found no evidence to support accelerated LTL attrition in adult smokers 

(Bateson et al., no date). 

Our findings are likely to have much broader impact than the specific cases of the effects of smoking, 

BMI and sex. Our findings are relevant to estimating the effect of any factor that is associated with a 

true difference in LTL at the time of baseline measurement on the rate of subsequent LTL attrition. 

The same considerations apply to the study of the association of LTL attrition with any disease, stress 

or adversity that has been linked with shorter baseline LTL in cross-sectional studies (Pepper, 

Bateson and Nettle, 2018). There is a growing literature claiming that exposure to various forms of 

stress and adversity accelerates LTL attrition, based predominantly on cross-sectional data (Epel et 

al., 2004; Damjanovic et al., 2007; Ahola et al., 2012; Humphreys et al., 2012; Ala-Mursula et al., 
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2013; Litzelman et al., 2014; Verhoeven et al., 2014, 2015; Park et al., 2015; Puterman et al., 2016). 

While cross-sectional associations between exposure to stress and short LTL do not prove that stress 

causes LTL attrition (Bateson and Nettle, 2018), longitudinal studies have started to emerge that 

appear to support a causal relationship (e.g. Shalev et al., 2013; Puterman et al., 2015; Révész et al., 

2016). Unfortunately, just as in the literature on effects of smoking, it is typical for authors to control 

for baseline LTL in these latter studies, meaning that the results should be treated with caution. Re-

analyses of these latter datasets is required to establish whether the claimed differences in LTL 

attrition are in fact biases introduced by incorrect control for baseline LTL. Specifically, we predict 

that removing baseline LTL as a control variable from the models used to analyse these data will not 

just increase the standard error of the estimates (as would be true if baseline LTL were an innocuous 

incidental variable that needed to be controlled for to increase power). Instead, it will systematically 

shift the parameter estimates for the effect of the exposure on LTL attrition towards zero.  

4.1 Conclusions 
We have shown that controlling statistically for baseline LTL incorrectly inflates estimates of the 

difference in LTL attrition between smokers and non-smokers, and that the size of this bias is 

positively related to the size of LTL measurement error. Furthermore, we have argued that this bias 

is not restricted to smoking and will occur for any factor that, like smoking, is associated with shorter 

LTL at the time of the baseline LTL measurement. On the basis of our analyses we recommend that 

models of LTL attrition should not control for baseline LTL. Given that the majority of previous 

analyses of factors affecting LTL attrition control for baseline LTL, many claims of accelerated LTL 

attrition in individuals exposed to disease, stress or adversity need to be re-assessed. 
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7 Appendix 1 
ΔLTL is estimated from longitudinal datasets in which LTL is measured twice, at baseline (mLTLb) and 
follow up (mLTLfu). The measured ΔLTL per year (mΔLTL.year-1) for the ith individual is calculated via 
the following formula:  
 
mΔLTL.year-1

i = (mLTLfu.i – mLTLb.i)/(ageb.i-agefu.i)      (Equation 1) 
 
Thus, a negative value of mΔLTL indicates telomere attrition and a positive value telomere 
elongation. An individual’s measured LTL can be written as the sum of their true LTL and a 
measurement error: 
 
mLTLb.i = LTLb.i + errorb.i        (Equation 2) 
 
mLTLfu.i = LTLfu.i + errorfu.i       (Equation 3) 
 
Here, errorb.i and errorfu.i are the errors introduced by measurement for that individual at baseline 
and follow-up respectively. We assume that errorb.i and errorfu.i are drawn from independent 
distributions. Equation 1 can now be expressed in terms of equations 2 and 3: 
 
mΔLTLi = LTLfu.i + errorfu.i - (LTLb.i + errorb.i) 
 = ΔLTLi + errorfu.i - errorb.i      (Equation 4) 
 
From equation 4 it is evident that there is an inverse relationship between mΔLTLi and errorb.i. In 
other words, a larger positive baseline measurement error for an individual results in a more 
negative mΔLTL, which implies greater measured telomere attrition, for that individual. This is an 
example of so-called regression to the mean: baseline values are negatively correlated with 
measures of change because individuals with high mLTLb generally have smaller mLTLfu and vice 
versa. 
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