
ar
X

iv
:1

71
0.

03
67

5v
1

 [
cs

.S
E

]
 1

0
O

ct
 2

01
7

CONTRIBUTED RESEARCH ARTICLE 1

An Introduction to Rocker:

Docker Containers for R
by Carl Boettiger, Dirk Eddelbuettel

Abstract We describe the Rocker project, which provides a widely-used suite of Docker images with
customized R environments for particular tasks. We discuss how this suite is organized, and how
these tools can increase portability, scaling, reproducibility, and convenience of R users and develop-
ers.

Introduction

The Rocker project was launched in October 2014 as a collaboration between CB & DE to provide high-
quality Docker images containing the R environment (Boettiger and Eddelbuettel, 2014). Since that
time, the project has seen both considerable uptake in the community and substantial development
and evolution. Here we seek to document the project’s objectives and uses.

What is Docker?

Docker is a popular open-source tool to create, distribute, deploy, and run software applications us-
ing containers. Containers provide a virtual environment (see Clark et al. (2014) for an overview of
common virtual environments) requiring all operating-system components an application needs to
run: code, runtime, system tools, system runtime. Docker containers are lightweight as they share the
operating system kernel, starting instantly using a layered filesystem which minimizes disk footprint
and download time, are built on open standards that run on all major platforms (Linux, Mac, Win-
dows), and provide an added layer of security by running an application in an isolated environment
(Docker, 2015). Familiarity with a few key terms is helpful in understanding this paper. The term
“container” refers to an isolated software environment on a computer. R users can think of running
a container as analogous to loading an R package; it makes a set of software functions available. A
Docker “image” is a binary archive of that software, analogous to an R binary package: a given ver-
sion is downloaded only once, and can then be “run” to create a container whenever it is needed. A
“Dockerfile” is a recipe, the source-code, to create a Docker image. Development and contributions
to the Rocker project focuses on the construction, organization and maintenance of these Dockerfiles.

Design principles & use cases

Docker gives users very convenient access to pre-configured and pre-built binary images that “just
work”. This allows R users to access a wider-variety of ready-to-use environments than provided by
either the R Project itself or, say, their distribution which will generally focus on one (current) release.
For example, R users on Windows may run RStudio Server or Shiny Server locally just by launching
a single command (once Docker itself is installed). Another common use-case is access to R-devel
without affecting the local system. Here, we detail some of the principle use cases motivating these
containerized versions of R environments, and the design principles that help make them work.

Portability: From laptop to cloud

One common use case for Rocker containers is to provide a fast and reliable mechanism to deploy
a custom R environment to a remote server, such as Amazon Web Services Elastic Compute (AWS
EC2), DigitalOcean, NSF’s Jetstream servers (Stewart et al., 2015), or private or institutional server
hardware. Rocker containers are also easy to run locally on most modern laptops by first installing
the appropriate Docker command (or distribution) for Windows, MacOS, and Linux-based operating
systems. By sharing volumes with the local host, users can still manipulate files with familiar, native
tools while performing computation through a reproducible, containerized environment (Boettiger,
2015). Being able to test code in a predictable, pre-configured R environment on a local machine and
to then run the same code in an identical environment on a remote server (e.g., for access to greater
RAM, more processors, or merely to free up the local machine from a long-running computation) is
essential for low-friction scaling of analysis. Without such containerization, getting code to run ap-
propriately in a remote environment can be a major undertaking, requiring both time and knowledge
many would-be users may not have.

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

http://arxiv.org/abs/1710.03675v1

CONTRIBUTED RESEARCH ARTICLE 2

For instance, the following bash commands install Docker on almost any Linux-based server and
then launch a Rocker container providing the RStudio-server environment over a web interface.

wget -qO- https://get.docker.com/ | sh

sudo docker run -p 8787:8787 -e PASSWORD=<PICK-A-PASSWORD> rocker/rstudio

The docker run option -p sets the port on which RStudio will appear, 8787 is the RStudio default
(adding your user to the docker group to avoids the need for a sudo command to call docker: sudo
usermod -g docker $USER). Many academic and commercial cloud providers make it possible to exe-
cute such code snippets when a container is launched, without ever needing to ssh into the machine.
The user may log into the server merely by pasting its IP address or DNS name (followed by the cho-
sen port, e.g., :8787) into a browser and entering the appropriate password. This provides the user
with a familiar, interactive environment running on a remote machine while requiring a minimum of
expertise.

Deploying Docker containers on centrally administrated multi-user machines, such as depart-
ment or university clusters, has previously been more difficult, since system adminstrators do not
want to allow the elevated user permissions the Docker runtime environment requires. To work
around this problem, Lawrence Berkeley National Labs (LBNL) has made ‘Singularity’ (LBNL, 2017):
a container runtime environment that users can both install and use to run most Docker containers
without requiring root privileges, making it easier to deploy Rocker containers in this context as well.

This portability is also valuable in an instructional context. Requiring students to install all neces-
sary software on personal laptops can be particularly challenging for short workshops, where down-
load and installation time and troubleshooting across heterogeneous machines can prove time con-
suming and frustrating for students and instructors alike. By deploying a Rocker image or Rocker-
derived image (see Extensibility) on a cloud machine, an instructor can easily provide all students
access to the pre-configured software environment using only the browser on their laptops. This
strategy has proven effective in our own experience in both workshops and semester-length courses.
Similar Docker-based cloud deployments have been scaled to courses of 100s of students, e.g., at Duke
(Cetinkaya-Rundel and Rundel, 2017) and UC Berkeley (UC Berkeley, 2017).

Interfaces

An important aspect of the Rocker project design is the ability for users to interact with the software
on the container through either an interactive shell session (such as the R shell or a bash shell), or
through a web browser accessing the RStudio® Server integrated development environment (IDE).
Traditional remote and high-performance computing workflows for R users have usually required
the use of ssh and a terminal-only interface, posing a challenge for interactive graphics and a barrier
to users unfamiliar with these tools and environments. Accessing an RStudio® container through
the browser removes these barriers. Rocker images include the RStudio-server software pre-installed
and configured with the explicit permission of RStudio® Inc.

Users can access a root bash shell in a running Rocker container using

docker exec -ti <container-id> bash

which can be useful for administrative tasks such as installing system dependencies. All Rocker
images can also be run as an interactive R, RScript or bash shell without running RStudio, which can
be useful for batch jobs or for anyone who prefers that environment.

As with any interactive Docker container, users should specify the interactive (-i) and terminal
(-t, here combined with interactive as -ti) flags, and specify the desired executable environment
(e.g., R, though other common options may be Rscript or bash):

docker run --rm -ti rocker/tidyverse R

This example shows the use of the --rm flag to indicate that the container should be removed
when the interactive session is finished. Details on sharing volumes, managing user permissions,
and more can be found on the Rocker website, https://rocker-project.org.

Sandboxed

Another feature of Rocker containers is the ability to provide a sandboxed environment, isolated from
software and potentially from other data on the machine. Many users are reluctant to upgrade their

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

https://rocker-project.org

CONTRIBUTED RESEARCH ARTICLE 3

suite of installed packages, which may break their existing code or even their R environment if the
installation goes poorly. However, upgrading packages and/or the R environment is often necessary
to run analysis of a colleague, or access more recent methods. Rocker offers an easy solution. For
instance, a user can run R code requiring the most recent versions of R and related packages inside a
Rocker container without having to upgrade their local installations first. Conversely, one could use
Rocker to run code on an older R release with prior versions of R packages, again without having to
make any alteration to one’s local R install. Another common use case is to access a container with
support for particular options such as using gcc or clang compiler sanitizers (Eddelbuettel, 2014).
These requires R itself be built with specialized settings that may not be not available or familiar
to many R users on their native system, but can be easily deployed by pulling the Rocker images
rocker/r-devel-san or rocker/r-devel-ubsan-clang.

This sandboxing feature is also valuable in the remote computing context, allowing system ad-
ministrators to grant users freedom to install software which requires root privileges inside a con-
tainer, while not granting them root access on the host machine. Root access is required to launch
Docker containers, though not to access containers already running and providing some service such
as RStudio. Users logging into a container through the RStudio® interface do not by default have root
privileges, though are able to install R packages. Granting these users root privileges in the container
still leaves them sandboxed from the host container. Further, Docker images can be deployed from
a machine without root privileges through the alternate container runtime environment, Singularity
(LBNL, 2017). Unlike traditional virtual machines, these containers do not impose a large footprint
of reserved resources as a typical host can easily support 100s of containers (Docker, 2015).

Transparent

Users can easily determine the software stack installed on any Rocker image by examining the as-
sociated Dockerfile recipe, which provides a concise, human-readable record of the installation. All
Rocker images use automated builds through Docker Hub, which also acts as the central, default
repository distributing the images. Using automated builds rather than uploading pre-built image
binaries to the Docker Hub avoids the potential for the build not to match the recipe. The corre-
sponding Dockerfile is visible both on the Docker Hub and in the linked GitHub repository of the
Rocker project (https://github.com/rocker-org), which provides a transparent versioned history
of all changes made to these recipes, as well as documentation, a community wiki, and issue trackers
for discussing proposed changes, bugs, improvements to the Dockerfiles and troubleshoot any is-
sues users may encounter. Having these public source files built automatically by a trusted provider
(Docker Hub), rather than built locally and uploaded only in binary form provides is also useful from
a security perspective in avoiding malware.

Community Optimized

Having a shared, transparent computational environment created by a publicly hosted, reproducible
recipe facilitates community input into configuration details. R and many of its packages and related
software can be configured with a wide range of options, compilers, different linear-algebra libraries
and so forth. While this flexibility reflects varying needs, many users rely on default settings which
may be optimized more for simplicity of installation than performance. The Rocker recipes reflect sig-
nificant community input on these choices, as well as the considerable experience and expertise of the
R Debian maintainer of 20 years in what configuration options to use. This helps create a more finely
tuned, optimized reference implementation of the R environment as well as a platform for comparing
and discussing these concerns which are often overlooked elsewhere. Issues and Pull Requests on
the Rocker repositories on GitHub attest to these discussions and improvements. Widespread use of
the Rocker image helps promote both testing of these choices and contributions further tweaking the
configuration from many members of the R community.

Versioned

Access to specific versions of software can be important for users who need computational repro-
ducibility more than having the latest release of any piece of software, since subsequent releases can
alter the behavior of code, introduce errors or otherwise alter previous results. The versioned stack
(r-ver, rstudio, tidyverse, verse, and geospatial) provides images which are intended to build an
identical software stack every time, regardless of the release of new libraries and packages. Users
should specify an R version tag in the Docker image name to request a version stable image, e.g.,
rocker/verse:3.4.0. If no tag is explicitly requested, Docker will provide the image with the tag
:latest, which will always have the latest available versions of the software (built nightly).

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

https://github.com/rocker-org

CONTRIBUTED RESEARCH ARTICLE 4

Users building on the version-tagged images will by default use the MRAN snapshot mirror
(Revolution Analytics, 2017) associated with the most recent date for which that image was current.
This ensures that a Dockerfile building FROM rocker/verse:3.4.1 will only install R package ver-
sions that were available on CRAN on 2017-06-30, that is, the day R 3.4.1 was released. This default
can of course be overwritten in the standard R manner, e.g., by specifying a different CRAN mir-
ror explicitly in any command to install.packages(), or by adjusting the default CRAN mirror in
options(repo=<CRAN-MIRROR>) in an .Rprofile. Note that the MRAN date associated with the cur-
rent release (e.g., 3.4.2 at the time of writing) will continue to advance on the Docker-hub image
until the next R release. Software installed from apt-get in these images will come from the the
stable Debian release (stretch or jessie) and thus not change versions (though it will receive secu-
rity patches). Packages installed from BioConductor using the bioclite() utility will also install the
version appropriate to the version of R found on the system (the Bioconductor semi-annual release
model avoids the need for an MRAN mirror). Users installing packages from GitHub or other sources
can request a specific git release tag or hash for a more reproducible build, or adopt an alternative
approach such as packrat (Ushey et al., 2016). A more general discussion of the use and limitations
of Docker for computational reproducibility can be found in Boettiger (2015).

Extensible

Any portable computational environment faces an inevitable tension between the “kitchen sink prob-
lem” at one extreme, and the “discovery problem” on the other. A kitchen sink image seeks to accom-
modate too many use cases in a single image. Such images are inevitably very large and thus slow
or difficult to deploy, maintain and optimize. At the other extreme, providing too many specialized
images makes it more difficult for a user to discover the one they need. The Rocker project seeks
to avoid both of these problems by providing a carefully-curated suite of images that an be easily
extended by individuals and communities.

To make extensions transparent and persistent, Rocker images can be extended by any user by
writing their own Dockerfiles based on an appropriate Rocker image. The Dockerfiles in the Rocker
stack should themselves provide a simple of example of this. A user begins by selecting an ap-
propriate base image for their needs: if the RStudio® interface is desired, a user might start with
FROM rocker/rstudio; an image for testing a particular C code in an R package might use FROM

rocker/r-devel-san, an image for reproducing a data analysis will probably select a stable version
tag in addition to an appropriate base library, e.g.,: FROM rocker/tidyverse:3.4.1 Users can easily
add additional software to any running Rocker image using the standard R and Debian mechanisms.
Details on how to extend Rocker images can be found at https://rocker-project.org.

Sharing these Dockerfiles can also facilitate the emergence of extensions tuned to particular com-
munities. For instance, the rocker/geospatial image emerged from the input of a number of Rocker
users all adding common geospatial libraries and packages on top of the existing Rocker images.
This coalescence helped create a more fine-tuned image with broad support for a wide range of
commonly-used data formats and libraries. Other community images are developed and maintained
independently of the Rocker project, such as the popgen image of population-genetics-oriented soft-
ware developed by the National Evolutionary Synthesis Center (NESCent). Rocker images are also
being used as base Docker images in the NSF sponsored Whole Tale project for reproducible comput-
ing (Ludaescher et al., 2017), and are heavily used by the R-Hub project in automated package testing
(Csárdi, 2017).

Rocker organization and workflow

The Rocker project consists of a suite of images built automatically by and hosted on the Docker Hub,
https://hub.docker.com/r/rocker. Source Dockerfiles, supporting scripts and documentation are
hosted on GitHub under the organization rocker-org, https://github.com/rocker-org. The issue
tracker and pull requests are used for community input, discussions and contributions to these im-
ages. The Rocker project wiki provides a place to synthesize community-contributed documentation,
use-cases, and other knowledge about using the Rocker images.

Images in the Rocker Project

The Rocker project aims to provide a small core of Docker images that serve as convenient ‘base’
images on which other users can build custom R environments by writing their own Dockerfiles,
while also providing a ‘batteries included’ approach of images that can be used out of the box. The
challenges of balancing diverse needs driven by very different use cases against the overarching goals
of creating images that are still sufficiently light-weight, easy to use and easy to maintain is a difficult

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

https://rocker-project.org
https://hub.docker.com/r/rocker
https://github.com/rocker-org

CONTRIBUTED RESEARCH ARTICLE 5

art. The implementation in both individual Rocker images and image stacks can never perfect that
balance for everyone, but today reflects the considerable community input and testing over the past
few years.

All Rocker images are based on the Debian Linux distribution. The Debian platform provides a
small base image, the well-known apt package management system and rich ecosystem of software
libraries, making it the base image of choice for Docker images, including many of the “official”
images maintained by Docker’s own development team. The Debian platform is also perhaps the
best-supported Linux platform within the R community, including an active r-sig-debian listserve.
The relatively long period between stable Debian releases (roughly two years recently) means that
software in the Debian stable (e.g., debian:jessie, debian:stretch) releases can lag significantly
behind current releases of popular software, including R. More recent versions of packages can be
found in the pre-release distribution, debian:testing, while the very latest binary builds can be
found on debian:unstable. The Rocker project can be largely divided into two stacks which address
different needs, reflected in which Debian distribution they are based on. The first stack is based
on debian:testing. The second, more recently-introduced stack, is based only on Debian stable
releases. Rocker images always point to specific stable releases (jessie, stretch), and do not use the
tag debian:stable, which is a rolling tag that always points to the most recent stable version. The
different Rocker stacks have different aims and thus provide different images, as shown in Tables 1
& 2 below.

The debian:testing-based images

The debian:testing stack aims to make the most efficient use of upstream builds: the pre-compiled
.deb binaries provided by the Debian repositories. It is both quicker and easier to install software
from binaries, since the package manager (apt) manages the necessary (binary) dependencies and
bypasses the time-consuming process of compiling from source. Basing this stack on debian:testing

means that much more recent versions of commonly-used libraries and compilers are available as
binaries than would be found in a Debian stable release. In order to provide access to the most
recent available binaries, this stack uses apt-pinning (Debian Project, 2017) to allow the apt package
manager to also install binaries from debian:unstable, which represents the most recent, bleeding
edge of packages built for Debian when necessary. For instance, the r-base image provided by Rocker
installs the most recent version of R as a binary from Debian unstable. Similarly, recent versions of
many popular R packages can also be installed through the package manager, e.g., apt-get install

r-cran-xml. This can be particularly helpful for packages with external system dependencies (such
as libxml2-dev in this example) which cannot be installed from the R console as they are system
dependencies rather than R packages installed from within R. We should note, however, that only
about 500 of the over 11,000 CRAN packages are available as Debian packages.

As the names testing and unstable imply, this approach is not without challenges. The partic-
ular version of any given package can change as packages move from unstable into testing. New
versions are sent to unstable during the normal course of Debian development. This can occasion-
ally break an previously-working installation command in a Dockerfile until the maintainer redirects
the package manager to install a package from the unstable sources that could previously be in-
stalled from testing, or vice versa (using the -t option in apt). That said, packages only migrate
from unstable to testing after a period of several days—and if the migration and installation of the
particular version is free of interactions with other packages in their dependency graph. That way,
unstable serves as validation lab which leaves testing reasonably stable yet current.

Relative to stable, the testing stack thus offers the following advantages:

1. These Dockerfiles are easy to develop and extend because almost all software can be installed
through the package manager.

2. These Dockerfiles always install the most recent available software.
3. These Dockerfiles can almost always build relatively quickly.

and these down-sides:

1. These Dockerfiles require occasional minor maintenance to ensure successful builds. (e.g.,
changing an installation directive from unstable to testing or vice versa).

2. The resulting images are inherently dynamic: rebuilding the same Dockerfile months or years
apart will generate images with significantly different versions of software installed.

3. The use of apt pinning may be unfamiliar to some users, where the user must ultimately be
responsible to ensure compatibility (Debian Project, 2017).

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 6

Images overview

The debian:testing-based stack currently includes seven images actively maintained by the Rocker
development team (Table 1). r-base builds on debian:testing, and the other six in the stack each
build directly from r-base. The r-base image is unique in that it is designated as the official image
for the R language by the Docker organization itself. This official image is reviewed and then built by
employees of Docker Inc based on a Dockerfile maintained by the Rocker team. Consequently, users
should refer to this image in Docker commands without an organization namespace, e.g., docker run

-t r-base to access the official image. All other images in the Rocker project are not individually
reviewed and built by Docker Inc and must be referenced using the rocker namespace, e.g., docker
run -ti rocker/r-devel.

Several of the images in this stack are oriented towards the R development community: r-devel,
drd, r-devel-san & r-devel-ubsan-clang all add a copy of the development version of R side-by-
side the current release of R provided by r-base. On these images, the development version is aliased
to RD to distinguish from the current release, R. As the names suggest, each provide slightly different
configurations. Of particular interest are the images providing development R built with support for
C/C++ address and undefined-behavior sanitizers, which are somewhat more difficult to configure
(Eddelbuettel, 2014).

As these images focus on developers and/or as base images for custom uses, this stack does not
include many specific R packages. Additional dependencies and packages can easily be installed
from apt. R packages not available in the apt repositories can be installed directly from CRAN using
either R or the littler scripts, as described in https://rocker-project.org/use.

This stack also includes the images shiny and rstudio:testing that provide Shiny server and
RStudio® server IDE from RStudio® Inc, built on the r-base image. RStudio® and Shiny are regis-
tered trademarks of RStudio Inc, and their use and the distribution of their software in binary form
on Docker Hub has been granted to the Rocker project by explicit permission from RStudio. Users
should review RStudio’s trademark use policy (http://www.rstudio.com/about/trademark/) and
address inquiries about further distribution or other questions to permissions@rstudio.com. The
Rocker project also provides images with RStudio® server and Shiny server in the stable versioned
stack.

Build schedule: The official r-base image is rebuilt by Docker following any updates to the offi-
cial debian images (roughly every few weeks). The rest of the stack uses build triggers that rebuild
the images either whenever r-base is updated, or the Dockerfile sources are updated on the corre-
sponding GitHub repository. The only exception in this stack is the drd image, which is rebuilt each
week by a cron trigger.

Table 1: The debian:testing image stack

image description size downloads

r-base official image with current version of R 254 MB 632,000
r-devel R-devel added side-by-side r-base (using alias RD) 1 GB 4,000
drd lightweight r-devel, built weekly 571 MB 4,000
r-devel-san as r-devel, but built with compiler sanitizers 1.1 GB 1,000
r-devel-ubsan-clang Sanitizers, clang c compiler (instead of gcc) 1.1 GB 525
rstudio:testing rstudio on debian:testing 1.1 GB 1,000
shiny shiny-server on r-base 409 MB 123,000

Table 2: The rocker-versioned stack of images

image description size downloads

r-ver Version-stable base R & src build tools 219 MB 6,000
rstudio Adds rstudio 334 MB 314,000

tidyverse Adds tidyverse & devtools 656 MB 83,000 1

verse Adds java, tex & publishing-related packages 947 MB 9,000
geospatial Adds geospatial libraries 1.3 GB 4,000

1This figure includes 49,000 downloads under the earlier name hadleyverse.

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

https://rocker-project.org/use
http://www.rstudio.com/about/trademark/
mailto:permissions@rstudio.com
https://hub.docker.com/r/_/r-base
https://hub.docker.com/r/rocker/r-devel
https://hub.docker.com/r/rocker/drd
https://hub.docker.com/r/rocker/r-devel-san
https://hub.docker.com/r/rocker/r-devel-ubsan-clang
https://hub.docker.com/r/rocker/r-devel-san
https://hub.docker.com/r/rocker/shiny
https://hub.docker.com/r/rocker/r-ver
https://hub.docker.com/r/rocker/rstudio
https://hub.docker.com/r/rocker/tidyverse
https://hub.docker.com/r/rocker/verse
https://hub.docker.com/r/rocker/geospatial

CONTRIBUTED RESEARCH ARTICLE 7

The debian:stable-based stack

This stack emphasizes stability and reproducibility of the Docker build. This stack was introduced
much more recently (November 2016) in response to considerable user input and requests. The key
feature of this stack is the ability to run older versions of R along with the then-contemporaneous ver-
sions of R packages. A user specifies the version desired using an image tag, e.g., rocker/r-ver:3.3.1
will refer to an image with R version 3.3.1 installed. Omitting the tag is equivalent to using the tag
latest, which, as the name implies, will always point to an image using the current R release. Thus,
users wanting to create downstream Dockerfiles which are based on the current release at time (but
will continue to reconstruct the same environment in the future after newer R versions are released)
should explicitly include the corresponding version tag, e.g., rocker/r-ver:3.4.2 at the time of writ-
ing, and not the latest tag. Users can also run the current development version of R using the tag
devel, which is built nightly from R-devel sources from subversion.

MRAN archives: To facilitate installation of only contemporaneous versions of R packages on
these images, the default CRAN mirror from which to install R packages is fixed to a snapshot of
CRAN corresponding to the last date for which that version of R was the latest release. These snap-
shots are provided by the MRAN archive created by Revolution Analytics (now part of Microsoft).
It archives daily snapshots of all of CRAN from which a user can install packages with the usual
install.packages() function (Revolution Analytics, 2017). Users can always override this default
by passing any current CRAN repository explicitly. Unlike CRAN, Bioconductor only updates its
repositories through bi-annual releases aligned to R’s spring release schedule. Thus, Bioconductor
packages can be installed in the usual way using bioclite, which automatically selects the Biocon-
ductor release corresponding to the version of R in use.

Version tags: The version tags are propagated throughout this stack: e.g., rocker/tidyverse:devel
will provide the currently-released versions of the R packages in the tidyverse (Wickham, 2017) in-
stalled on the nightly build of R-devel. Developers building packages on this stack are encouraged
to tag their images accordingly as well. Table 3 indicates which versions of R are currently available
in the stack, going back to 3.1.0. While older versions may be added to the stack at a later date, we
note that the MRAN snapshots began in 2014-09-17 and thus go back only to the R 3.1 era. Each
tag must be built from a separate Dockerfile, enabling minor differences in the build instructions to
accommodate changing dependencies. Dockerfiles for past versions (e.g., prior to 3.4.2 currently)
are intended to remain static over the long term, while the tag for the current version, latest, and
devel may be tweaked to accommodate new features or dependencies. Version tags also obey seman-
tics so that omitting the second or third position of the tag is identical to asking for the most recent
version: i.e. rocker/verse:3.3 is the same as rocker/verse:3.3.3, and rocker/verse:3 is (at the
time of writing), rocker/verse:3.4.2. This is accomplished using post-build hooks in Docker Hub,
see examples at https://github.com/rocker-org/rocker-versioned/ for details.

Installation: In this stack, the desired version of R is always built directly from source rather
than the apt repositories. Compilers and dependencies are still installed from the stable apt reposito-
ries, and thus lag behind the more recent versions found in the testing stack. Version tags 3.3.3 and
older are based on the Debian 8.0 release, code-named jessie, while 3.4.0 - 3.4.2, devel, and latest

are based on Debian 9.0, stretch, (released 2017-06-17, while R was at 3.4.0), and thus have access
to much newer versions of common system dependencies and compilers. Dependencies needed to
compile R that are not required at runtime are removed once R is installed, keeping the base images
light-weight for faster download times. While most system dependencies required by common R
packages can still be installed from the apt repositories, occasionally a more recent version must be
compiled from source (e.g., the Gibbs Sampling program JAGS (Plummer, 2017), and the geospatial
toolkit GDAL, must both be compiled from source on debian:jessie images). In this stack, users
should avoid installing R packages using apt without careful consideration as this will install a sec-
ond (probably different) version of R from the Debian repositories, and a dated version of the R
package since any r-cran-pkgname package in the Debian repositories will depend on r-base in apt

as well.

Build schedule: All images are built automatically from their corresponding Dockerfiles (found
in the GitHub repositories rocker-org/rocker-versioned and rocker-org/geospatial). A cron job
sends nightly build triggers to Docker Hub to rebuild the latest and devel tagged images through-
out the stack. To decrease load on the hub, build triggers for the numeric version tags are sent
monthly. Although the Dockerfiles for older R versions installs an almost-identical software envi-
ronment every time, the monthly rebuilding of these images on Docker Hub ensures they continue
to receive Debian security updates from upstream, and proves the build recipe still executes success-
fully. Note that rebuilding images with software from external repositories never produces a bit-wise
identical image, and thus the image identifier hash will change at each build.

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

https://github.com/rocker-org/rocker-versioned/

CONTRIBUTED RESEARCH ARTICLE 8

Images overview

In this stack, each image builds on the previous image, rather than all other images building directly
on the base image, as in the testing stack. Table 2 lists the names and descriptions of the five images
in this stack, along with image size and approximate download counts from Docker Hub. Sizes
reflect (compressed) cumulative size: a user who has already downloaded the most recent version
of r-ver and then pulls a copy of rstudio image will only need to download the additional 115 MB
in the rstudio layers and not the full 334 MB listed. This linear design limits flexibility (no option
for tidyverse without rstudio) but simplifies use and maintenance. While no single environment
will be optimal for everyone, both the packages selected in this stack and the stack ordering reflect
considerable community input and tuning.

The rstudio image includes a lightweight, easy-to-use and docker-friendlyinit system, s6 (Bercot,
2017) for running persistent services, including the RStudio® server. This system provides a conve-
nient way for downstream Dockerfile developers to add additional persistent services (such as an
ssh server) to a single container, or additional start-up or shutdown scripts that should be run when
a container starts up or shuts down. The rstudio image uses such a start-up script to configure user
settings such as login password and permissions through environmental variables at run time.

The tidyverse image contains all required and suggested dependencies of the commonly-used
tidyverse and devtools R packages, including external database libraries (e.g., MariaDB and Post-
greSQL). Users should consult the package Dockerfiles or installed.packages() list directly for a
complete list of installed packages. The verse library adds commonly-used dependencies, notably
a large but not comprehensive LaTeX environment and Java development libraries. Previously, the
Rocker project provided the image hadleyverse which was since divided into tidyverse and verse

through community input.

Table 3: Available tags in the rocker-versioned stack.

tag apt repos MRAN date Build frequency images with tag

devel stretch current date nightly r-ver, rstudio, tidyverse,
verse, geospatial

latest stretch current date nightly r-ver, rstudio, tidyverse,
verse, geospatial

3.4.2 stretch current date monthly r-ver, rstudio, tidyverse,
verse, geospatial

3.4.1 stretch 2017-09-28 monthly r-ver, rstudio, tidyverse,
verse, geospatial

3.4.0 stretch 2017-06-30 monthly r-ver, rstudio, tidyverse,
verse, geospatial

3.3.3 jessie 2017-04-21 monthly r-ver, rstudio, tidyverse,
verse, geospatial

3.3.2 jessie 2017-03-06 monthly r-ver, rstudio, tidyverse,
verse, geospatial

3.3.1 jessie 2016-10-31 monthly r-ver, rstudio, tidyverse,
verse, geospatial

3.3.0 jessie 2016-06-21 monthly r-ver

3.2.0 jessie 2015-06-18 monthly r-ver

3.1.0 jessie 2014-09-17 monthly r-ver

Several images in the rocker-versioned stack can be customized on build when built locally
(rather than pulling prebuilt images from Docker Hub) by using the --build-arg option of docker
build. In the r-ver image, users can set R_VERSION and BUILD_DATE (MRAN default snapshot). In the
rstudio image users can set RSTUDIO_VERSION (otherwise defaults to the most recent version), and
the PANDOC_TEMPLATES_VERSION .

This stack also makes use of Docker metadata labels defined by http://schema-label.org, in-
dicating image license (GPL-2.0), vcs-url (GitHub repository), and vendor (Rocker Project). These
metadata can be altered or extended in downstream images.

Conclusions

Over the past several years, Docker has seen immense adoption across industry and academia. The
Open Container initiative (The Linux Foundation: Projects, 2017) now provides an open standard

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

http://schema-label.org

CONTRIBUTED RESEARCH ARTICLE 9

that has further extended this container approach to research environments through projects such as
Singularity (LBNL, 2017), allowing users to deploy containerized environments such as Rocker on
machines where they do not have root access, such as clusters or private servers. Containerization
promises to solve numerous challenges such as portability and replicability in research computing,
which often relies on complex and heterogeneous software stacks (Boettiger, 2015). Yet implementing
such environments in containers is not a trivial task, and not all implementations provide the same
usability, portability or reproducibility. Here we have detailed the approach taken by the Rocker
project in creating and maintaining these environments through an open and community-driven pro-
cess. This structure of the Rocker project has evolved over three years of operation while drawing in
an ever-widening base of academic researchers, university instructors and industry users. We believe
this overview will be instructive not only to users and developers interested in the Rocker project, but
as a model for similar efforts around other environments or domains.

Bibliography

L. Bercot. s6: skarnet.org’s small and secure supervision software suite, 2017. URL
https://skarnet.org/software/s6/. [p]

C. Boettiger. An introduction to Docker for reproducible research, with examples from the R envi-
ronment. ACM SIGOPS Operating Systems Review, 49(1):71–79, 2015. doi: 10.1145/2723872.2723882.
URL https://dl.acm.org/citation.cfm?id=2723882http://arxiv.org/abs/1410.0846 . [p]

C. Boettiger and D. Eddelbuettel. Introducing Rocker: Docker for R, 2014. URL
https://ropensci.org/blog/blog/2014/10/23/introducing-rocker . [p]

M. Cetinkaya-Rundel and C. W. Rundel. Infrastructure and tools for teaching computing throughout
the statistical curriculum. PeerJ Preprints, 5:e3181v1, Aug. 2017. ISSN 2167-9843. doi: 10.7287/peerj.
preprints.3181v1. URL https://doi.org/10.7287/peerj.preprints.3181v1. [p]

D. Clark, A. Culich, B. Hamlin, and R. Lovett. BCE: Berkeley’s Common Scientific Compute Environ-
ment for Research and Education. Proceedings of the 13th Python in Science Conference (SciPy 2014),
pages 1–8, 2014. [p]

G. Csárdi. rhub: Connect to ’R-hub’, from ’R’, 2017. URL https://github.com/r-hub/rhub. R package
version 1.0.1. [p]

Debian Project. Apt-preferences overview, 2017. URL https://wiki.debian.org/AptPreferences.
[p]

Docker. What is Docker?, 2015. URL https://www.docker.com/what-docker. [p]

D. Eddelbuettel. sanitizers, 2014. URL http://dirk.eddelbuettel.com/code/sanitizers.html. [p]

Lawrence Berkeley National Laboratories. Singularity, 2017. URL http://singularity.lbl.gov/.
[p]

B. Ludaescher, K. Chard, M. Turk, V. Stodden, and N. Gaffney. The Whole Tale: Merging science and
cyberinfrastructure pathways, 2017. URL https://wholetale.org/. [p]

M. Plummer. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling,
2017. URL http://mcmc-jags.sourceforge.net/. Version 4.3.0. [p]

Revolution Analytics. Microsoft R Application Network, 2017. URL https://mran.microsoft.com.
[p]

C. A. Stewart, G. Turner, M. Vaughn, N. I. Gaffney, T. M. Cockerill, I. Foster, D. Hancock, N. Mer-
chant, E. Skidmore, D. Stanzione, J. Taylor, and S. Tuecke. Jetstream: A self-provisioned, scalable
science and engineering cloud environment. In Proceedings of the 2015 XSEDE Conference on Sci-
entific Advancements Enabled by Enhanced Cyberinfrastructure - XSEDE ’15, pages 1–8, New York,
New York, USA, 2015. ACM Press. ISBN 9781450337205. doi: 10.1145/2792745.2792774. URL
http://dl.acm.org/citation.cfm?doid=2792745.2792774. [p]

The Linux Foundation: Projects. The Open Container Initiative, 2017. URL
https://www.opencontainers.org/. [p]

UC Berkeley. Curriculum Overview | Division of Data Sciences, 2017. URL
http://data.berkeley.edu/education/curriculum-overview . [p]

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

https://skarnet.org/software/s6/
https://dl.acm.org/citation.cfm?id=2723882 http://arxiv.org/abs/1410.0846
https://ropensci.org/blog/blog/2014/10/23/introducing-rocker
https://doi.org/10.7287/peerj.preprints.3181v1
https://github.com/r-hub/rhub
https://wiki.debian.org/AptPreferences
https://www.docker.com/what-docker
http://dirk.eddelbuettel.com/code/sanitizers.html
http://singularity.lbl.gov/
https://wholetale.org/
http://mcmc-jags.sourceforge.net/
https://mran.microsoft.com
http://dl.acm.org/citation.cfm?doid=2792745.2792774
https://www.opencontainers.org/
http://data.berkeley.edu/education/curriculum-overview

CONTRIBUTED RESEARCH ARTICLE 10

K. Ushey, J. McPherson, J. Cheng, A. Atkins, and J. Allaire. packrat: A Depen-
dency Management System for Projects and their R Package Dependencies, 2016. URL
https://CRAN.R-project.org/package=packrat. R package version 0.4.8-1. [p]

H. Wickham. tidyverse: Easily Install and Load ’Tidyverse’ Packages, 2017. URL
https://CRAN.R-project.org/package=tidyverse. R package version 1.1.1. [p]

Carl Boettiger
UC Berkeley
ESPM Department, University of California,
130 Mulford Hall Berkeley, CA 94720-3114, USA
cboettig@berkeley.edu

Dirk Eddelbuettel
Debian and R Projects; Ketchum Trading
Chicago, IL, USA
edd@debian.org

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

https://CRAN.R-project.org/package=packrat
https://CRAN.R-project.org/package=tidyverse
mailto:cboettig@berkeley.edu
mailto:edd@debian.org

	1 An Introduction to Rocker: Docker Containers for R
	2.1 Introduction
	2.2 Design principles & use cases
	2.3 Rocker organization and workflow
	2.4 Conclusions

