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Capsule summary: 

A perspective on current and future capabilities in global high-resolution climate 

simulation for assessing climate risks over next few decades, including 

advances in process representation and analysis, justifying the emergence of 

dedicated, coordinated experimental protocols. 
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Abstract 1 

 2 

The timescales of the Paris Climate Agreement indicate urgent action is 3 

required on climate policies over the next few decades, in order to avoid the 4 

worst risks posed by climate change. On these relatively short timescales the 5 

combined effect of climate variability and change are both key drivers of 6 

extreme events, with decadal timescales also important for infrastructure 7 

planning. Hence, in order to assess climate risk on such timescales, we require 8 

climate models to be able to represent key aspects of both internally driven 9 

climate variability, as well as the response to changing forcings.  10 

 11 

In this paper we argue that we now have the modelling capability to address 12 

these requirements - specifically with global models having horizontal 13 

resolutions considerably enhanced from those typically used in previous IPCC 14 

and CMIP exercises. The improved representation of weather and climate 15 

processes in such models underpins our enhanced confidence in predictions 16 

and projections, as well as providing improved forcing to regional models, which 17 

are better able to represent local-scale extremes (such as convective 18 

precipitation). We choose the global water cycle as an illustrative example, 19 

because it is governed by a chain of processes for which there is growing 20 

evidence of the benefits of higher resolution. At the same time it comprises key 21 

processes involved in many of the expected future climate extremes (e.g. 22 

flooding, drought, tropical and mid-latitude storms). 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 
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Introduction 33 

 34 

Our capability to perform global climate model simulations suitable to inform 35 

societal action is constrained by both available computer resources and the 36 

efficiency of the algorithms used in our models. Multi-exaflop computer power 37 

would be needed for global climate models to produce multi-member ensemble, 38 

multi-century simulations at resolutions capable of resolving macroscopic cloud 39 

features and ocean mesoscale eddies. Estimates suggest that such computer 40 

power is at least a decade away. Yet, given the enormous scale of 41 

supercomputing about to be used for the next Coupled Model Intercomparison 42 

Project (CMIP6; Eyring et al. 2016), we feel that this is a particularly important 43 

time to review our current status in present-day high-resolution global climate 44 

modeling. 45 

 46 

At one extreme, numerous climate model simulations are performed as part of 47 

each CMIP cycle (Meehl et al. 2000; Meehl et al. 2007; Taylor et al. 2012; 48 

Eyring et al. 2016), organized by the World Climate Research Programme 49 

(WCRP). Such models typically include aspects of Earth System complexity 50 

such as biogeochemistry, and simulations including several ensemble 51 

members are usually completed. However, in order to achieve this task, the 52 

horizontal resolution has traditionally been compromised, typically to ~150km 53 

or coarser in the atmosphere and 1 degree in the ocean. This means that 54 

important climate processes (such as atmospheric convection, ocean 55 

mesoscale boundary currents and eddies) have had to be parameterised rather 56 

than resolved, and dynamical processes and interactions can be compromised 57 

(Collins et al. 2018).  58 

 59 

At the opposite extreme, the next major breakthrough in simulation may be 60 

reached at scales below 1 km in the atmosphere, as we come close to resolving 61 

the largest of boundary-layer eddies, the macroscopic cloud features and 62 

convective organisation (Schneider et al. 2017). Several global models (e.g. 63 

NICAM; Satoh et al. 2008, 2014) are now able to complete global simulations 64 

at sub-km grid spacing (Miyamoto et al. 2014). Such individual simulations are 65 
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currently short (<1 year), have only a minimal number of Earth System 66 

processes included, and challenge our observational abilities, due to the limited 67 

time and space sampling from satellites. However, they can be used to gain 68 

insights into poorly understood interactions (such as aerosol-microphysics-69 

cloud interactions, e.g. Hashino et al. 2013). Such models are also generally 70 

non-hydrostatic and hence able to better represent organised convective 71 

processes and small-scale structures in, for example, tropical cyclones. 72 

Considerable uncertainties remain, but such tools are key for future process 73 

understanding.  74 

 75 

In between these two fundamental scale boundaries, gradual refinements in 76 

resolution might be considered to afford only marginal benefits for our 77 

understanding of climate variability and change. However, here we aim to 78 

demonstrate that significant improvements in understanding are afforded by 79 

global models at intermediate resolutions, which are vital for projections over 80 

the next few decades. We show evidence that the large-scale circulation is 81 

significantly improved in the atmosphere using resolutions finer than 100km, 82 

despite the Rossby radius being ~1000km and hence “resolved” in CMIP-type 83 

models. For the ocean, the Rossby radius is finer than 100km and hence 84 

unresolved in most CMIP-ocean models, with potentially important 85 

consequences for climate simulation (Hewitt et al. 2017).  86 

 87 

Global NWP models have paved the way for developments in climate modelling 88 

and systematically demonstrated the added benefits of enhanced resolution, 89 

albeit in the context of initialised forecasts, which also benefit from advances in 90 

other components (such as data assimilation, ensemble size, number of 91 

observations and other model improvements; Magnusson and Källén, 2013; 92 

Bauer et al, 2015). With the advent of seamless modelling approaches (e.g. 93 

Senior et al. 2009; Brown et al. 2012), NWP and climate models are becoming 94 

equivalent in their scientific configurations, and many biases seen in long term 95 

climate simulations are already evident after days of an NWP forecast (Martin 96 

et al. 2010). An example of monitoring progress in NWP, citing resolution as 97 

one aspect of improvements in skills scores, in shown in Fig. 10 of Rodwell et 98 
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al. (2010). A more general, high-level review of the benefits of resolution in 99 

NWP models is provided by Wedi (2014). 100 

 101 

Hence some of the following evidence from climate models is far from unique 102 

to them. However, aspects of the hydrological cycle have typically not been a 103 

part of NWP skill assessments (which, for example, usually concentrate on 104 

large-scale quantities that are relevant to users on short-range timescales, such 105 

as 500 hPa height, 250 hPa winds and temperature; see references above and 106 

Mittermaier et al. 2016). In addition, and more crucially, the NWP modelling 107 

systems are typically neither radiatively balanced nor water-conserving, so are 108 

not well-placed for systematic process studies of water cycle processes on 109 

longer time- and space-scales. 110 

 111 

Regional models are increasingly being used for climate studies at resolutions 112 

of several kilometres (Kendon et al. 2017). One could argue that this approach 113 

mitigates the need for refinements to global model resolutions. Indeed if the 114 

requirement is to understand local processes (such as convective precipitation) 115 

and extremes in terms of their local impacts, then such models currently 116 

represent our best tools. However, the regional models' representation of the 117 

large-scale circulation is no better than that of the driving global model 118 

(otherwise it would not be well constrained), and this requires the global model 119 

to credibly represent global modes of variability, dynamic and thermodynamic 120 

responses to climate forcing. Hence it is key to make the large-scale circulation 121 

as accurate as possible, as this provides critical information needed for the 122 

regional downscaling to offer added information. We will argue that it is 123 

precisely at these synoptic scales that the new generation of high-resolution 124 

global models are showing substantial improvement in the mean state and 125 

variability. 126 

 127 

We ask in this paper what we can learn from the range of models at global 128 

resolutions that are now or will soon become affordable on flagship 129 

supercomputers worldwide. In particular we ask what added value such 130 

enhanced models provide in terms of the simulated hydrological cycle, and thus 131 
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the trustworthiness and robustness of current climate projections particularly 132 

over the next few decades.  133 

 134 

The global hydrological cycle 135 

 136 

One of the key questions for climate research is how the global water cycle 137 

might change in the next few decades. At its most basic, the global water cycle 138 

describes the movement of water between the different reservoirs in the climate 139 

system - in and on the ocean (including sea-ice and ice shelves), over and 140 

below the land surface (surface and ground water, land-ice), and the 141 

corresponding energy exchanges. It is therefore implicated in many of the 142 

impacts that climate change brings - excess water (flooding, tropical and mid-143 

latitude storms, atmospheric rivers), lack of water (drought), and intensity of 144 

storms (concurrently regulated by energy and momentum exchanges).  145 

 146 

The representation of the global water cycle in coupled climate models, and in 147 

particular some of its governing processes, is subject to much larger variability 148 

among models than other (thermodynamic) indicators. One can contrast the 149 

significant agreement in CMIP5 (Flato et al. 2013), expressed by model 150 

projections of future warming rates and patterns, against the disagreement in 151 

projected precipitation changes, which showed little improvement over the 152 

earlier CMIP3 assessment. Although precipitation does not represent the whole 153 

water cycle, and our observational record is short and uncertain, such 154 

fundamental disagreements do not build confidence in future projections.  155 

 156 

Part of the reason for this uncertainty is the lack of representation of the 157 

dynamical aspects of the coupled climate system, and how these are coupled 158 

to the physical aspects of model simulation. At the largest scales, on the order 159 

of the Rossby radius, model physics (i.e. column processes) dominate the 160 

under-resolved dynamics in atmosphere and ocean (Trenberth et al. 2011; 161 

Demory et al. 2014). As resolution increases and the synoptic and mesoscales 162 

become better resolved, then they both play an important role – perhaps at a 163 

minimal resolution of around 50km (Matsueda and Palmer 2011; Delworth et 164 

al. 2012, Demory et al. 2014). As resolution increase continues towards the 1 165 
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km-scale, multi-scale dynamics increasingly dominates column physics (see for 166 

instance the discussion in Vellinga et al. 2016).  167 

 168 

a. Large-scale moisture transports 169 

Studies focusing on the impact of resolution on the simulated global 170 

hydrological cycle as a whole remain quite rare (Pope and Stratton 2002; Hack 171 

et al. 2006; Hagemann et al. 2006; Demory et al. 2014). Demory et al. (2014) 172 

find that the simulation of a select few components of the global hydrological 173 

cycle is degraded by increasing model resolution, due to an overall excess in 174 

net available energy at the surface that is caused by errors in model physics. 175 

However, they find that the overall hydrological cycle is intensified by global 176 

grid refinement, and for consistent reasons, resulting in a strength that 177 

compares well with observations (e.g. as in Trenberth et al. 2011). This is 178 

manifested by less precipitation over the ocean and more precipitation over 179 

land, caused by enhanced large-scale atmospheric moisture transport from the 180 

ocean to the land, reducing the commonly overestimated precipitation recycling 181 

over land. At mid-latitudes, this increase in the large-scale atmospheric 182 

moisture transport is particularly associated with the storm track regions. 183 

Notably, such multi-scale interactions can only be studied with global models. 184 

Demory et al. (2014) also uncovered a locally asymptotic response of the mid-185 

latitude large-scale atmospheric moisture transport, starting at about 60 km grid 186 

size, which seems to be within recent observational estimates (Trenberth et al. 187 

2011). There are indications that other models show similar sensitivity to 188 

resolution (Terai et al. 2017; Vanniere et al., submitted). 189 

 190 

b. Surface water balance and precipitation distribution 191 

Precipitation, evaporation, runoff and storage variations characterise the water 192 

balance over any land area. All four of these quantities are difficult to observe 193 

and to simulate by global climate models, and our current ability to close the 194 

water balance remains highly unsatisfactory over the global land area and much 195 

more so at the scales of continents or large river basins. One example of these 196 

uncertainties is illustrated in Figure 1: total global precipitation is remarkably 197 

resolution invariant, which points to a very robust constraint provided by global 198 

long-wave cooling in all model simulations, producing precipitation estimates 199 
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within the range of significant and persistent observational uncertainty (see 200 

estimates by GPCP versus Wild et al. 2015 versus Stephens et al. 2012). 201 

Further, increasing the resolution in the HadGEM3 atmospheric GCM (GA3, 202 

Mizielinski et al 2014) from about 100 to 25 km changes the model estimate of 203 

precipitation partitioning. Land versus sea distribution of precipitation agrees 204 

with the findings in Demory et al. 2014; additionally, for the land portion, global 205 

(rugged) mountain precipitation increases by about 15%, and available 206 

observations, which are sparse over complex terrain, are hardly able to assess 207 

these model estimates. Precipitation over comparatively small mountain areas 208 

is particularly important since it disproportionately contributes to runoff and 209 

therefore the generation of so-called blue water which sustains ecosystems and 210 

human livelihood. 211 

 212 

Given such uncertainties in global precipitation, it is not surprising that regional 213 

distributions are also poorly estimated. Figure 2, reproduced from Wehner et 214 

al. (2014), shows an analysis of annual daily total precipitation distributions from 215 

three different horizontal resolutions of the Community Atmospheric Model 216 

(CAM5.1), for a number of regions. There is some evidence that, at resolutions 217 

finer than 25km, grid separation is no longer the limiting factor in reproducing 218 

observations (e.g. Hawcroft et al. 2016) and that deficiencies in sub-grid scale 219 

parameterisations dominate the model errors (Wehner et al. 2014), particularly 220 

when convection is an important contributor to the local atmospheric water 221 

budget.  222 

 223 

Using the same ensemble of GA3 atmospheric model simulations as Demory 224 

et al. (2014) at 130km, 60km and 25km resolution (referred to an N96, N216 225 

and N512 respectively), the precipitation distribution in each IPCC SREX1 226 

region is used to determine which model resolution best fits the multiple 227 

observational datasets available over that region (see Appendix A for details). 228 

Figure 3 shows the coarsest best resolution for each region. Several key points 229 

become evident: 230 

                                                
1 Special Report on Managing the Risks of Extreme Events and Disasters to 
Advance Climate Change Adaptation 
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 1. In most regions a resolution finer than 130km is worthwhile;  231 

 2. Globally 60km may be sufficient for this metric, but there are some 232 

regions (e.g. Western Africa, South Eastern Asia) which consistently favour 233 

25km resolution, often where land-sea contrasts and/or mountainous terrain 234 

exist; note also that at latitudes polewards of 50˚, the only long-term global 235 

observational datasets have resolutions of 110km and hence it not possible to 236 

properly assess higher resolution models; 237 

 3. There are some regions which are uncertain, either because no model 238 

is clearly better or the observational datasets disagree too much with each other 239 

to assign a best model resolution (i.e. we do not know the climatology well 240 

enough to validate models). 241 

 242 

c. Dynamical processes and moisture transport 243 

Correct attribution of the processes responsible for the global distribution of 244 

precipitation is key, because models that produce a reasonable climatology via 245 

demonstrably incorrect processes cannot be trusted for climate projections of 246 

rainfall. 247 

 248 

Extra-Tropical Cyclones  249 

One likely component driving the sensitivity of simulated moisture transport and 250 

precipitation to resolution is the moisture transport effected by dynamical 251 

processes such as cyclones (both tropical and mid-latitude). Storms provide a 252 

considerable proportion of annual rainfall in many regions of the world 253 

(Scoccimarro et al 2014; Guo et al 2017), and as such representing their 254 

frequency, variability, position and composition is important. Catto et al. (2010) 255 

and Zappa et al. (2013) show that extratropical storm structure and intensity 256 

are better represented at resolutions finer than 100km, and hence the moisture 257 

transport associated with them. Jung et al. (2012) demonstrate significantly 258 

improved extratropical cyclone frequency when moving from 130km to 40km 259 

resolution, with little change at finer grid spacings.  260 

 261 

Tropical Cyclones and African Easterly Waves 262 

There is mounting evidence from many modelling studies that atmosphere 263 

resolutions at 50km or finer skilfully represent the interannual variability of 264 
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tropical cyclones (Zhao et al, 2009; Manganello et al. 2012; Roberts et al, 2014; 265 

Kodama et al. 2015). In the Atlantic, much of this improvement can be attributed 266 

to better global teleconnections (from El Niño, for example, Bell et al. 2014) 267 

providing a constraint on the environment, and improved dynamical precursor 268 

features such as African Easterly Waves (AEWs). Despite the latter being 269 

relatively large-scale dynamical systems, they are poorly represented at ~100 270 

km grid scales (Martin and Thorncroft, 2015; Caron et al, 2011). This re-271 

emphasises the danger of assuming that representation by at least two grid 272 

points is sufficient for resolving features.  273 

 274 

Tropical cyclone importance is not only limited to producing high-impact events: 275 

Guo et al. (2017) showed that typhoons in East Asia produce about 50% of 276 

precipitation in coastal areas at the peak of the season, but also contribute a 277 

sizeable portion of the moisture transport that supports all other types of 278 

precipitation further inland. Further, their net contribution to the regional 279 

moisture budget of China is comparable albeit opposite to that of the monsoon 280 

at the time of its recession. Scoccimarro et al. (2014) show a similar result for 281 

the North Atlantic tropical cyclones and US precipitation, while Pantillon et al. 282 

(2015) show a remote link to Mediterranean rainfall events. These impacts 283 

require fidelity in storm characteristics, with Figure 4 (from Manganello et al. 284 

2014) illustrating the improvement of storm genesis and track as model 285 

resolution is enhanced, while Scoccimarro et al. (2017) demonstrated the 286 

additional importance of high frequency coupling between atmosphere and 287 

ocean. 288 

 289 

Mesoscale Convective Systems 290 

In addition to storms influencing the mean precipitation, Vellinga et al. (2014) 291 

have shown important scale interactions between large-scale variability and 292 

smaller scales. Decadal variability in Sahel rainfall is shown to be related to the 293 

interaction between the large-scale Atlantic Multi-Decadal Oscillation (AMO) 294 

and AEWs. Only model resolutions fine enough (at 60km and finer in that study) 295 

to represent stronger, self-organised (at the mesoscale) and propagating 296 

rainfall events capture the observed decadal trends. There are indications that 297 

other CMIP5 models follow this relationship, but analysis is complicated by 298 
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confounding factors such as different aerosol loadings, indicating a need for a 299 

more systematic set of comparable simulations. 300 

 301 

Westerly Wind Bursts 302 

Aforementioned dynamical precursor systems such as AEWs are also found to 303 

be important in driving variability in other dynamical systems. If they are poorly 304 

represented in models, this can significantly bias the simulated mean state, and 305 

hence lead to misleading future projections. One example would be the 306 

westerly wind bursts (WWBs) in the tropical Pacific that precede El Niño events: 307 

in observations the irregular variability of ENSO has been attributed to such 308 

WWB events (Puy et al. 2017). It may be possible that the inclusion of 309 

stochastic schemes (Christensen et al. 2017) enables some of the aspects of 310 

these precursor systems to be replicated. However development of such 311 

stochastic schemes is best informed by models able to simulate the dynamical 312 

aspects of these processes, as well as the physics-dynamics coupling. 313 

 314 

Monsoons 315 

In the tropics, the monsoon circulations provide a large portion of annual rainfall 316 

to many regions. There are many components and individual processes within 317 

these circulations (flow reversals, orographic interactions, land-sea contrasts, 318 

sensitivity to remote biases), and this may be why increased model resolution 319 

does not directly lead to improved monsoon simulation (Ogata et al. 2017; 320 

Johnson et al. 2016). Individual components do indicate a resolution sensitivity 321 

(such as monsoon depressions, Johnson et al. 2016), but reduction of remote 322 

biases to improve the regional mean state may be equally important (Levine 323 

and Martin 2017; Martin et al. 2010). 324 

 325 

Atmospheric Blocking 326 

At mid-latitudes, the representation of storm tracks and blocking play important 327 

roles in the large-scale dynamics of the water cycle. Dawson et al. (2012) 328 

demonstrate a large improvement in the structure of Euro-Atlantic weather 329 

regimes in a model run at 16km compared to one run at 150km, while Dawson 330 

and Palmer (2015) show a 40km simulation has intermediate regime fidelity. 331 

The distribution, frequency and development of European blocking has been 332 
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shown to be influenced by aspects of atmosphere and ocean resolution 333 

(Berckmans et al 2013). Schiemann et al. (2017) showed some improvement 334 

in blocking in a multi-model atmosphere ensemble at 25km compared to 335 

~100km, consistent with Jung et al. (2012) results when moving from 130km to 336 

40km. Scaife et al. (2011) showed how reducing large-scale model biases in 337 

the North Atlantic with a 1/4 degree ocean resolution led to improved frequency 338 

of European blocking. O'Reilly et al. (2016) studied blocking and extended cold 339 

spells over Europe, and showed that the resolution of remote SST fronts was a 340 

key factor in reinforcing the blocking anticyclone and hence extending the 341 

timescale of the events.  342 

 343 

Ocean dynamics 344 

The impact of resolution on dynamical processes affecting the hydrological 345 

cycle is not limited to the atmosphere. In particular, the transport of freshwater 346 

is related to the stability of the meridional overturning circulation (Drifhout et al. 347 

2013). Since transport of freshwater can take place in narrow currents and 348 

eddies, this points to an important role for ocean resolution. In the South 349 

Atlantic, the transport of freshwater is strongly determined by Agulhas eddies 350 

which move salt from the Indian Ocean to the Atlantic Ocean (Drifhout et al. 351 

2003). In this region, resolution is key to the simulation of the Agulhas 352 

retroflection and the shedding of eddies (Banks et al. 2007; Biastoch et al. 353 

2008). In the North Atlantic, ocean resolution is important for capturing the East 354 

Greenland current which transports freshwater from both sea ice melt and 355 

potential ice sheet melt into the Atlantic (Böning et al., 2016). 356 

 357 

d. Land-Atmosphere coupling strength 358 

The asymptotic behavior with resolution uncovered by Demory et al. (2014) and 359 

discussed earlier is directly relevant to the correct representation of land-360 

atmosphere coupling in GCMs: at scales finer than 50km, the systematic 361 

overestimation of the contribution of land evaporation to precipitation starts to 362 

be mitigated by realistic simulation of atmospheric moisture convergence. 363 

However, observational evidence indicates that we must also simulate 364 

mesoscale circulations generated by landscape heterogeneity, at horizontal 365 

scales of 10km or less. For instance, Taylor (2012) showed that precipitation 366 
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over the Sahel occurs over dry land patches, but coarse GCMs preferentially 367 

produce precipitation over moist patches, where convective parameterisation 368 

responds to surface moist static energy. This is because they do not represent 369 

the mesoscale horizontal transports of moisture between different land patches. 370 

The phase of the diurnal cycle of precipitation over land can also impact land-371 

atmosphere coupling, and is almost uniformly poorly simulated in GCMs (Slingo 372 

et al. 1992; Bechtold et al. 2004; Clark et al. 2007; Ackerley et al. 2015) with 373 

implications for surface energy and moisture budgets. Recent convective 374 

parameterisations (e.g. Bechtold et al. 2014) have improved the diurnal cycle 375 

phase, while Birch et al. (2015) demonstrated similar capability by disabling 376 

convective parameterisation at around 10km resolution. 377 

 378 

e. Air-sea interactions 379 

The ocean’s mesoscale influence on the atmosphere in the extra tropics has 380 

been known from observational analyses for some time, both near-surface 381 

(e.g., Chelton et al. 2004; Xie 2004) and in the free troposphere via 382 

precipitation, clouds and upward winds (e.g., Minobe et al. 2008; 2010; 383 

Tokinaga et al. 2009; Frenger et al. 2013; Ma, J. et al. 2015, Smirnov et al. 384 

2015). However, it has required deployment of models with sufficient resolution 385 

in both the atmosphere and ocean in order to study and understand such 386 

interactions at the process level (Small et al. 2008; Chelton and Xie 2010, Kwon 387 

et al, 2010; Ma, J. et al.; 2015; Ma, X. et al. 2016).  388 

Coupled simulations demonstrate fundamental changes in the character of 389 

atmosphere-ocean coupling once they admit the ocean mesoscale (Bryan et al. 390 

2010; Roberts et al 2016), with modelling confirming that SST forces the local 391 

winds at frontal- and mesoscales, as observed (Chelton et al. 2001). In contrast, 392 

when the ocean model uses a coarse grid (1.0° or coarser), the opposite is 393 

found (Kirtman et al. 2012). These results point to the high possibility that 394 

frontal- and mesoscale air-sea interactions are poorly represented in CMIP5 395 

models, consistent with the CMIP3 analysis by Maloney and Chelton (2006), 396 

with potential consequences for the fidelity of simulations of the hydrological 397 

cycle. 398 

 399 
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Atmospheric resolution is also important to capture coupled responses. For 400 

example, the salient feature of the Gulf Stream rain band (Minobe et al. 2008; 401 

2010) is captured by an atmospheric GCM of about 50km grid-spacing (Minobe 402 

et al. 2008; Kuwano-Yoshida et al. 2010; Scher et al. 2017). By direct 403 

comparisons between high-resolution and low-resolution regional atmospheric 404 

model simulations (Willison et al. 2013; Ma, X. et al. 2016; Hawcroft et al. 2017), 405 

it is shown that latent heat release associated with extratropical cyclone 406 

development is fundamentally important for realistic winter storm simulations, 407 

and it is only when the model has sufficient resolution to resolve small-scale 408 

diabatic heating that the full effect of mesoscale air-sea interactions on 409 

extratropical cyclogenesis can be correctly simulated. 410 

 411 

The remote atmospheric response to oceanic fronts and eddies, in comparison 412 

to the local response, is generally more difficult to identify using direct 413 

observations (Frankignoul et al. 2011; O’Reilly and Czaja, 2015), hence most 414 

existing studies are based on high-resolution model experiments. A particularly 415 

useful experimental strategy for this type of study is a set of twin atmospheric 416 

model simulations, one of which is forced by observed SSTs and the other by 417 

spatially smoothed SSTs (Xie et al. 2002; Minobe et al. 2008; Kuwano-Yoshida 418 

et al. 2010; Small et al. 2014b; Piazza et al. 2015; Ma, X. et al. 2015 and 2016). 419 

These studies reveal how fine scale ocean features influence storm density 420 

(Minobe et al. 2008; Piazza et al. 2015), fronts (Masunaga et al. 2015; Parfitt et 421 

al. 2016); jet-stream shifts (Piazza et al. 2015; Ma, X. et al. 2015 and 2016; 422 

O’Reilly et al. 2017), storm-track strength (Small et al. 2014b) and remote 423 

rainfall response along US West Coast to Kuroshio eddies (Ma, X. et al. 2015 424 

and 2016; Kuwano-Yoshida and Minobe  2016).  425 

 426 

f. Hydrological extremes 427 

Global models are useful for studying extremes in order to account for both 428 

teleconnected events and for events governed by the large-scale environment. 429 

For example the Russian heat wave of 2010 was part of the same wave train 430 

that led to the devastating Pakistan floods (Lau and Kim 2010; Watenabe et al. 431 

2010), while Atlantic tropical cyclones have been shown to affect Arctic sea ice 432 

cover (Scoccimarro et al. 2012). Assessing model skill in tropical cyclone 433 
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landfalling, where the large-scale steering flow is key, is in its infancy (e.g. 434 

Camp et al. 2015; Murakami et al. 2016), but this is clearly an important metric 435 

for impacts. 436 

 437 

Despite improvements in simulation of tropical cyclones in CMIP5 (Walsh et al. 438 

2013), only a handful of global models showed any TCs reaching category 1 439 

hurricane/typhoon intensity. More recently the grid spacing in state of the art 440 

global models has become sufficiently fine (order of 10-30 km) to realistically 441 

represent TCs, even in terms of intensity (Manganello et al. 2012; Wehner et 442 

al. 2014; Wehner et al. 2015; Murakami et al. 2015; Walsh et al. 2015; 443 

Scoccimarro et al. 2016a; Scoccimarro et al. 2017), up to the maximum 444 

category 5. Our current understanding of future changes to frequency and 445 

intensity (Walsh et al. 2015) is based on these relatively few capable models, 446 

hence indicating a more systematic and multi-model study is required to 447 

increase our confidence in such interpretations.  448 

 449 

The higher gradients of moisture and temperature simulated in high horizontal 450 

resolution global climate models are also important beyond the tropics, and 451 

projected to become more important in the future. The simulation of extra-452 

tropical transition of tropical systems, and robust future projections thereof, 453 

show substantial sensitivity to resolution (Haarsma et al. 2013) thus 454 

representing new challenges and opportunities for the prediction of the 455 

changing risks posed by extreme precipitation, winds and storm surge 456 

impacting Europe.  457 

 458 

Future prospects and challenges 459 

There are an increasing number of modelling groups able to push our current 460 

modelling capability to the next level. This includes using km-scale global 461 

atmosphere and eddy-rich ocean simulations. Different methods are being tried 462 

to overcome the many associated technical challenges, ranging from more 463 

efficient algorithms to novel numerical methods. One factor that has so far been 464 

lacking is a large multi-model, multi-resolution ensemble of global simulations 465 

using a common experimental design to enable coordinated analysis. This is 466 

the goal of the CMIP6 HighResMIP project (Haarsma et al 2016), which 467 
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proposes a simple experimental design with the primary goal of assessing the 468 

robustness of projections across a multi-model ensemble, as a response to 469 

changes in the representation of climate processes with model horizontal 470 

resolution. 471 

 472 

Using the CMIP6 HighResMIP protocol to create a multi-model reference 473 

dataset, work within the EU Horizon 2020 PRIMAVERA 2  project and with 474 

collaborators will also assess the costs and benefits of other advances: 475 

 476 

1. Stochastic parameterisation schemes, which attempt to represent the 477 

variability of unresolved, sub-grid scale processes (Palmer 2009), offer a 478 

complementary approach to increasing model resolution. Due to nonlinearities 479 

in the system, including a zero-mean noise into a GCM leads to systematic 480 

shifts in the climate that can reduce model biases (Jung et al. 2005; Williams 481 

2012; Berner et al. 2015; 2017), and improve variability (Lin and Neelin 2000, 482 

2003; Dawson and Palmer 2015; Christensen et al 2015, 2017), often 483 

analogous to refining model resolution (e.g., Berner et al. 2012; Watson et al. 484 

2017)). As model resolution increases, stochastic approaches will become 485 

more valuable, as representing the interaction of the resolved scales with the 486 

sub-grid through purely deterministic schemes becomes harder to justify 487 

(Dorrestijn et al. 2013); 488 

 489 

2. Global cloud-system resolving models are a particularly important tool for 490 

understanding multi-scale structures, such as the large-scale and synoptic 491 

environment of tropical cyclogenesis (Nakano et al. 2017; Yamada et al. 2017), 492 

or large-scale sea breezes and convection initiation (Birch et al. 2015). They 493 

also demonstrate the potential of models in complementing and enhancing 494 

observations, for example the discovery by Miyakawa et al. (2012) of the three-495 

fold structure of convective momentum transport associated with MJO, using 496 

the high-resolution data by Miura et al. (2007); 497 

 498 

                                                
2 https://www.primavera-h2020.eu 
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3. Eddy-rich ocean models: the majority of CMIP5 climate projections were 499 

undertaken using coarse (1o or coarser) ocean model components (typically 500 

with meridional refinement near the equator). At this grid spacing, the first 501 

baroclinic Rossby radius is resolved only near the equator (Hallberg, 2013). 502 

Hewitt et al. (2017) reviewed the improvements found in going towards eddy-503 

poor/eddy-rich regimes (1/4˚ – 1/10˚), with important consequences for large-504 

scale biases (McClean et al. 2011; Delworth et al. 2012; Small et al. 2014a; 505 

Hewitt et al. 2016), heat uptake (e.g. Griffies et al. 2015; Kuhlbrodt et al. 2015) 506 

and ocean marine ecosystems (Saba et al. 2016; McKiver et al 2015; Stock et 507 

al. 2010). Coupled simulations with ocean resolutions up to 1/16 degree will 508 

enable investigation of the impact of eddies on the mean state and variability of 509 

the coupled system; 510 

 511 

4. Unstructured meshes: an alternative approach to globally uniform increases 512 

in resolution is offered by a new generation of models for the atmosphere, 513 

ocean and sea ice, formulated on unstructured meshes (e.g., Danilov 2013; 514 

Ringler et al. 2013; Zarzycki et al., 2014; Sein et al. 2016). Unstructured 515 

meshes provide multi-resolution capacity, that is, they have the flexibility to 516 

enhance resolution where required. Several of the more mature unstructured 517 

mesh models (Finite Element Sea Ice-Ocean Model (FESOM), Wang et al. 518 

2008; Wang et al. 2014; Danilov et al. 2017; Model for Prediction Across Scales 519 

(MPAS), Skamarock et al. 2012; Ringler et al. 2013), will participate in aspects 520 

of CMIP6 (specifically OMIP and HighResMIP). CMIP6 will thus provide an 521 

excellent opportunity to assess and contrast such approaches within a large 522 

multi-model framework; 523 

 524 

5. Improved physical parameterisations - particularly those that are designed to 525 

work at multiple scales (e.g. Arakawa et al. 2016; Fox-Kemper et al. 2013) - are 526 

being developed for all components of the climate system, but these efforts 527 

need resources and skilled people (Jakob 2014). Such schemes enable 528 

seamless modelling across space and timescale with less parameter tuning, 529 

albeit requiring the highest resolution global models for testing their efficacy. 530 

 531 

Observational requirements 532 
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It is also important to exploit global observations that can both assess GCMs 533 

and explore independent ways to improve process representation, including 534 

their global teleconnections, in these models. An example is provided by the 535 

NASA Gravity Recovery And Climate Experiment (GRACE) satellite mission for 536 

the global water cycle (Böning et al. 2012), which is able to provide 537 

simultaneous assessment of water storage in different components of the 538 

climate system. The evolution of high-resolution GCMs represents an important 539 

and as yet unmet challenge to develop observational products at matching 540 

resolutions: no observational counterparts to the spatially complete and 541 

physically consistent GCMs exists, capable of supporting the study of multi-542 

scale interactions. Instead, a wide range of instruments and methods, each with 543 

characteristic strengths and limitations, need to be employed. A combination of 544 

high resolution modeling and observational datasets are key to WCRP’s Global 545 

Water and Energy Exchanges (GEWEX) project focus on improved 546 

understanding of the relevant geophysical processes of water and energy 547 

variability and change on regional to local scales. 548 

 549 

At global resolutions affordable over the next decade, the representation of 550 

atmospheric convection remains a huge challenge. While it plays a fundamental 551 

role in the climate system, the poor quality of current simulations calls into 552 

question all processes dependent on it (including all Earth System complexity). 553 

This lack of simulation skill is also enveloped in many of the largest 554 

uncertainties in climate projections, such as climate sensitivity, in particular due 555 

to uncertainties in future cloud changes. However, even once model resolutions 556 

should become so refined that we may consider removing convective 557 

parameterisation, we would move into regimes in which poorly observed and 558 

understood interactions (multi-scale, aerosol-cloud-microphysics processes, 559 

air-sea and land-atmosphere interactions) will produce similar uncertainties. 560 

The number of ensemble simulations would also be severely limited, due to the 561 

huge computational expense. Hence there is no known threshold beyond which 562 

we would expect simulations to become independent of parameterisation 563 

choices, and therefore we need to continue to develop a manifold of global 564 

modelling practices, not limited to exploiting peak resolution.  565 

 566 
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Summary 567 

Society requires robust information about climate risks over the next few 568 

decades in order to make good financial decisions about adaptation strategies, 569 

as well as mitigation decisions.  570 

 571 

We have shown that enhanced resolution capabilities in global climate 572 

modelling have the potential to: 573 

 provide improved, globally consistent information about climate hazards 574 

and impacts, as shown by examples pertinent to the global water cycle 575 

 highlight future areas where more investment is required (High 576 

Performance Computing, better algorithms, suitable observations) 577 

 use a common simulation protocol to enable deeper understanding 578 

 579 

Tackling climate model uncertainty (measured by variability, or range of future 580 

projections) from different perspectives can potentially reveal limitations in any 581 

framework.  We are moving forward with a suite of complementary efforts, 582 

spanning uniform grid refinement across the globe in CMIP-class models; 583 

improved dynamical mesh designs providing the foundations for cloud-system 584 

resolving simulations; unstructured mesh and stochastic approaches.  We are 585 

implementing these changes at the present time, as part of CMIP6, and 586 

continued, albeit accelerated evolution should enable our future models to be 587 

significantly less dependent on still-unresolved processes, such as convection. 588 

 589 

The computational and analysis cost of this new generation of simulations, in 590 

terms of HPC, storage, network speed and analysis platform, is clearly large. 591 

New collaborative paradigms will be needed to efficiently address some of 592 

these challenges, including use of central analysis platforms, incorporating both 593 

data storage and compute, so that algorithms can be moved to the data rather 594 

than vice versa. Better coordination of experimental design and collaboration 595 

can help to form multi-model datasets to ameliorate the cost of single model 596 

ensemble simulations, and greatly enhance the scientific understanding from 597 

community analyses of such datasets, using common tools.  A current example 598 

of such good practice is CMIP6 HighResMIP. 599 
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 600 

APPENDIX A 601 

Methodology to choose best model resolution 602 

The methodology used to construct Figure 3 is based on the GA3 ensemble of 603 

global simulations (Mizielinski et al 2014), with five ensemble members at 25km 604 

and 130km resolution, and three members at 60km. Four observational 605 

datasets are used: Tropical Rainfall Measuring Mission 3B42 product, version 606 

7 (TRMM; Kummerow et al., 1998a; Huffman et al., 2007, 2010) and Climate 607 

Hazards Group InfraRed Precipitation with Station data (CHIRPS; Funk et al. 608 

2015) over 50˚S-50˚N, both at 25km grid resolution; Global Precipitation 609 

Climatology Centre (GPCC; Schneider et al. 2008) and the Global Precipitation 610 

Climatology Project (GPCP; Huffman et al. 2009), both globally at 110km. All 611 

data are initially regridded to a common 130km grid. For each region, a 612 

histogram of daily precipitation is constructed in two ways; a) using equally-613 

spaced intensity bins, b) using a non-linear distribution of bins following Martin 614 

et al. (2017) to show the relative importance of precipitation events in a given 615 

intensity bin to the total precipitation. The root mean square difference (RMSD) 616 

between a reference histogram (TRMM in the tropics, GPCP in mid-high 617 

latitudes) and all other datasets is calculated across all bins using a logarithmic 618 

scale, and illustrated in Figure 5. Figure 3 is then determined by using the 619 

RMSD for each histogram type, to determine the coarsest best resolution model 620 

to fit the observations. When using different bins to calculate the RMSD 621 

produces contradictory results, or in regions where the observational datasets 622 

span a wider range than the model resolution differences, the “uncertain” 623 

category is used. 624 
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Figure captions 1357 

 1358 

Figure 1: Long-term mean precipitation estimates from different sources over 1359 

the ocean, flat terrain and mountainous terrain (see inset, mountainous area is 1360 

25% of total land area). Bar chart labels: N96, N216, N512 are 130km, 60km, 1361 

25km resolution simulations respectively using HadGEM3-GA3 (Mizielinski et 1362 

al. 2014); N480, “N480, N96 orography” are GA6 (Walters et al. 2016) 1363 

simulations at 27km resolution, the latter with orography degraded to N96 1364 

(130km) resolution; N96*, N216*, N512* are the same N96, N216, N512 as 1365 

above, but with estimates scaled by the global surface net shortwave radiation 1366 

bias; Observation-based estimates: GPCP (GPCP v2.2, Adler et al. 2012); Wild 1367 

et al. (2015) (uncertainties not shown); Wild et al. (2013); Stephens et al. 1368 

(2012); Trenberth et al. (2009).  1369 

 1370 

Figure 2: Comparisons of the annual probability density distributions (y-axis) of 1371 

daily precipitation (mm day-1, x axis) between the models and location specific 1372 

gridded observations as indicated by the dataset name in parentheses.  a: 1373 

Global land and ocean (GPCP), b: Global land only (UW-Global), c: Tropical 1374 

land and ocean, 20S-20N (TRMM), d: CONUS (UW-CONUS), e: Asia 1375 

(APHRODITE), f: Europe (E-OBS). Red, blue, green and black lines 1376 

respectively represent the 2° CAM5.1, 1° CAM5.1, 0.25° CAM5.1. Observations 1377 

are represented by the black line in Figure 2a and by gray shading in Figures 1378 

2b–2f, indicating the range of available data sets. Daily precipitation was 1379 

remapped onto the 2˚ grid before computing the distributions in all cases. Any 1380 

precipitation rates larger than 100 mm/day are assigned to the last bin for 1381 

normalization purposes that sometimes results in an uptick at the end of the 1382 

plot. Reproduced from Wehner et al. (2014). 1383 

 1384 

Figure 3: Map showing the lowest best resolution model for each region as 1385 

defined in the Appendix by comparing daily precipitation histograms. 1386 

N512=25km, N216=60km, N96=130km mid-latitude resolution. Uncertain 1387 

implies either no model is clearly better, or that observational uncertainty is too 1388 

large to determine a best model. 1389 
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 1390 

Figure 4: North Atlantic Ocean (left) genesis and (right) track densities as 1391 

number density per season per unit area equivalent to a 5˚ spherical cap for 1392 

(a), (f) IBTrACS (Obs) and IFS simulations at (b), (g) T2047, (c), (h) T1279, (d), 1393 

(i) T511, and (e), (j) T159 resolutions. Reproduced from Manganello et al. 1394 

(2012) with permission by the authors. 1395 

 1396 

Figure 5: Illustration of comparing Root Mean Square Difference (RMSD) 1397 

values (see Appendix A for details) from models and observations, with 1398 

uncertainty in observations and model ensemble spread both indicated as 1399 

shading, and here RMSD is normalized to one dataset (TRMM in this example). 1400 

One model is clearly best in case a), two models cannot be split in b) due to 1401 

overlap in spread, while in c) the observations disagree too much to assign a 1402 

best model. 1403 
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 1406 
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Figure 3: Map showing the coarsest best resolution model for each region as 1451 

defined in the Appendix by comparing daily precipitation histograms. 1452 

N512=25km, N216=60km, N96=130km mid-latitude resolution. Uncertain 1453 

implies either no model is clearly better, or that observational uncertainty is too 1454 

large to determine a best model. 1455 
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