
output:

html_document: default

pdf_document: default

Task 3: How to integrate Git with R Studio

This task is designed for students and researchers w ho w ant to implement a system of version control w ithin a standard R-based w orkflow. This can be applied

to a range of softw are development, data analysis and project management tasks. Your future research self w ill thank your for the convenience.

Don't forget you can join in the discussions over at our open Slack channel. Please do introduce yourself at #module5opensource, and tell us a bit about w ho you

are, your background, and how you ended up here!

Estimated time to complete: 30 minutes

Estimate time saving once complete: Virtually inf inite

Table of contents

Getting started

Git

R Studio

Step one: Dow nload all the things

Step tw o: Configure Git inside RStudio

Step three: Why did I just do that?

Step four: The perfect marriage betw een Git and R

Step f ive: Getting content w ith content

Step six: A brave commitment

Step seven: PUSH!

Getting started

Congratulations on making it this far! If you're reading this, you've survived pull requests, w eb-hooks, and can probably even tell us know w hat the F in FOSS

stands for (not Frustration…) Hopefully, you have overcome any scepticism or reluctance tow ards the benefits of GitHub and Open Source Softw are, and are

ready to take the next step.

Before starting this Task, please make sure you have already completed Task 1 and Task 2, so that you are more familiar w ith GitHub and some standard Open

Source practices.

This task w ill teach you how to integrate the version control softw are, Git, w ith the popular coding environment, RStudio. And yes, it is Git as in gif or God, not Jit

as in the w rong w ay of pronouncing things.

If you are one of those researchers w ho thinks that having code spread across multiple hard-drives that are w aiting to break, Dropbox, Google Drive, or any other

non-specialist softw are, this task is just for you. If you have ever experienced the mind-numbing process of having multiple 'f inal' versions of a paper bouncing

betw een different co-authors, this is also for you.

All of us are guilty of these sorts of things once in a w hile, but there are w ays to do it that are better for you, future you, and those w ho might benefit from your

w ork.

Getting Git

So, w hat is Git, and how is it dif ferent to GitHub? Git is a version control system, w hich enables you to save and track time-stamped copies of your w ork

throughout the development process. It also w orks w ith non-code items too, like this MOOC, the majority of w hich w as w ritten in markdow n in RStudio, and

integrated w ith a Git/GitHub w orkflow.

This is important, as all research goes through changes and sometimes w e w ant to know w hat those things w ere. Did you delete some text that you now think is

important? Version control w ill save that for you. Did your code used to w ork perfectly, but is now buggy beyond belief? Version control. It's a great w ay to avoid

that chaotic state w here you have multiple copies of the same f ile, but w ithout a stupid and annoying f ile naming convention.

 FINAL_Revised_2.2_supervisor_edits_ver1.7_scream.txt w ill be a thing of the past.

GitHub is the platform that allow s you to seamlessly share code from your w orkspace (e.g., laptop) to be hosted in an online space. So, sort of like the public

interface to GitHub. The advantages of Git/GitHub are:

https://openmooc-ers-slackin.herokuapp.com/
#Getting_started
#Git
#Rstudio
#one
#two
#three
#four
#five
#six
#seven
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/content_development/Task_1.md
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/content_development/Task_2.md

1. You get to keep copies of all your w ork through time;

2. You can compare w ork through different copies through time, w hich helps to spot bugs or errors;

3. Other people can collaborate openly w ith your w ork;

4. You have both a local and an online copy of your w ork that remain in sync;

5. It is fully transparent as to w ho made a contribution, w hy they made it, and w hen; and

6. You can have multiple people w orking on the same project at once in parallel.

While this w as primarily designed for source code, it should be instantly obvious how this becomes a pow erful tool for virtually all research w orkflow s.

RStudio

RStudio is a popular coding environment for researchers w ho use the statistical programming language, R. It comes w ith a text editor, so you don't have to install

another and sw itch betw een. It also includes a graphical user interface (GUI) to Git and GitHub, w hich w e w ill be using here.

Isn't it nice w hen brilliant Open Source tools integrate seamlessly like that. This should help to make your daily use of Git much simpler.

If at any point you need to install new packages for R, simply use the follow ing command:

 install.packages("PACKAGE NAME", dependencies = TRUE)

Replacing PACKAGE NAME w ith the, er, package name. Some examples you can play w ith that might come in useful include knitr , devtools or ggplot2 .

Step one: Download all the things

1. You should already have a GitHub account by now if you have follow ed the previous tasks. If not, sign up here. Free unlimited repositories for all!

2. Dow nload and install the latest version of R. Also available for Mac and Linux.

3. Dow nload and install the latest version of Rstudio. Oh, hey, looks it Open Source! Sw ish.

4. Dow nload and install the latest version of Git. Make sure to Select “Use Git from the Windows Command Prompt” during installation.

Pro-tip: To update all of your R packages in one, simply execute the follow ing code update.packages(ask = FALSE, checkBuilt = TRUE)

For now, just choose all the usual default options for each install. Depending on w hich Operating System (e.g., Mac, Window s, Linux), this might be different for

each of you. For now, and for the rest of this task, w e're going to stick w ith doing things the easy-ish Window s w ay (but also provide some instructions for using

the command line).

For Linux or Debian users, simply use the follow ing command to install Git:

 sudo apt-get install git-core

For Mac users, this link, or purchase a new laptop w ith a dif ferent operating system.

If you w ant, you can also dow nload the local version of GitHub and use it through the simple GUI. It's available on Window s and Mac and Linux, and can make your

life a little easier, especially if you w ant to use a different platform to RStudio.

Pro-tip: You see w hen installing Git it says 'Use Git Bash as shell for Git projects?' This is the place w here you can use the command-line to access Git

from outside of RStudio. It's a pow erful beast. Try the follow ing tw o commands to get started:

 git config --global user.name 'YOUR USERNAME'

 git config --global user.email 'YOUR EMAIL'

Step two: Configure Git inside RStudio

Right, that's the easy bit done. Next, go into RStudio, and in the tabs at the top go to Go to Tools > Global Options > Git/SVN. SVN is just another version control

system like Git, and w e don't need to w orry about that here.

In the place w here it says Git executable, add the pathw ay here to the git.exe f ile that you just dow nloaded in the previous step. Make sure the boxe here that

says Enable version control interface for RStudio projects is ticked. This now has tied version control to future projects in RStudio, to provide a really

pow erful additional dimension to collaborative or solo w ork.

https://github.com/
https://www.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/bin/linux/
https://www.rstudio.com/products/rstudio/#Desktop
https://gitforwindows.org/
http://git-scm.com/download/mac
https://desktop.github.com/

The Global Options window inside RStudio

Next, hit the button in this w indow that says Create RSA Key, This is a private key that is used for authentication betw een different systems, and saves you from

having to type in your passw ord over and over. Here, it w ill pop up a new w indow w ith a public key, that you w ant to copy to your clipboard.

Head over to GitHub, go to your profile settings, and the SSH and GPG keys tab. Click New SSH key. Here, paste in the key from RStudio, and call it something

imaginative like 'RStudio'.

Inside GitHub where you will want to enter the key you just generated in RStudio

OK, now hold on to your butts, w e're going into the command line. Don’t w orry if you’ve never used the shell before because it’s quite similar to using R, or any

other coding system. The main difference here though is that instead of calling functions like in R, you call commands.

So back in RStudio, go to Tools > Shell, and it w ill open up a command prompt w indow. If you already played w ith the Git Bash above, you should have done this

step already. Enter the follow ing tw o commands:

 git config --global user.name 'YOUR USERNAME'

 git config --global user.email 'YOUR EMAIL'

Hopefully it does not have to be said to substitute in your ow n GitHub username and email here. You can access this at any point just by f inding the 'Shell' w ithin

Window s. Or, if you right click on any folder on your Desktop that is linked to a GitHub repo, you can open up the Shell instantly and Bash aw ay.

What this stage has done is configure Git, w hich is softw are that runs on your desktop, to GitHub, w hich is a repository w ebsite.

Restart R Studio. Whew, that w as tough. Next.

Step three: Why did I just do that?

OK, hold your breathe, w e're going to pause here just to learn some basic Git commands. Some of the key ones you could do w ith learning are:

Add: This is w here you submit f iles to the staging area before being committed.

Commit This is like 'saving' your w ork by creating a new version or copy.

Push: This is how you send f iles from your local project to the online repository.

Pull: This is how you get f iles from your online repository to your local project.

Back in RStudio, type in the follow ing into the Terminal, or by opening up a new Shell:

 git add .

It w on't actually do anything for now, but in the future w ill add all f iles in your current w orking directory (that's w hat the . does) to staging ready for a commit.

Step four: The perfect marriage between Git and R

Now, in Task 1, you should have learned how to build your very f irst GitHub repository. If you haven't done that, w e can w ait here w hile you go and do that. If you

have already, or have an existing GitHub repository, w e can move on.

So, you should have a repository on GitHub, complete w ith a README f ile, a LICENSE f ile and some other bits and bobs.

What w e are going to do now, is integrate that repository w ith Git. Steady now.

1. Firstly, go to Project > Create Project > Version Control > Git.
2. Back on GitHub, you should see a bit w here there is a https:// URL. That is the link to your repository, and it gives you the option to clone it in your desktop. For

now, just copy that link, sw itch back to RStudio, and paste it into the 'Repository URL' as indicated.

3. Give the project a directory name, like test, Jim, or w hatever you w ant.

4. Next, brow se for the place on your desktop w here you w ant this project to live, its subdirectory.

5. Click 'Create Project', and let the magic be done!

What you just did w as tell RStudio to associate a new project in R w ith specif ic repository on GitHub.

Step four: Alternative

If you still haven't built your f irst repository on GitHub, w e can do something slightly dif ferent here. In RStudio, click New project and then New Directory. Call it

w hat you w ant and change the directory as needed, make sure to tick Create a git repository, and then click Create Project. This creates an .Rproj f ile, w hich

you can manage in the usual w ay through RStudio, including adding README.md and LICENSE.md f iles as discussing in Task 1.

Step five: Getting content with content

Remember that README f ile w e created a w hile back? Well, it's time to w rite it. Thinking back to Task 1, there w ere some specif ic things that w e said make a good

 README f ile. Do you remember w hat any of them w ere? Just to refresh your memory, these w ere:

What is this project about and w hat does it do.

Why should people care, and w hy is it useful.

How can someone get started contributing to the project.

Who can be contacted in case someone needs help.

A link to the license, contributing guidelines, and code of conduct.

A description of the project structure.

Who is involved, and w hat are their roles.

The current status of the project.

So, in RStudio, open that f ile try adding just a bit of information about this for your project. If you are doing this for an actual project, try and make it useful. If you

are just tinkering for now, you can add w hat you w ant.

Remember that your README f ile is in markdow n (.md) format. For a refresher on some of the simple syntax markdow n uses, check this handy cheatsheet.

Screenshot of what this module looks in markdown, during development. Meta.

Step six: A brave commitment

OK, so now you should have a nicely edited README f ile. Now w e are going to 'commit' this to the project using Git. This is basically the equivalent of saving this

version of your project, w ith a record of w hat changes w ere made. Successive commits produce a history that can be examined at a later time, allow ing you to

w ork w ith confidence.

There are a few w ays of doing this.

1. Go to Tools > Version Control > Commit
2. In the environment pane in RStudio, there should be a new 'Git' tab. Handy.

3. In your console pane, there should now be a new 'Terminal', w hich you can run Git command lines through.

Let's just stick w ith the second option for now. This Git pane show s you w hich f iles have been changed and includes buttons for the most important Git

commands w e saw earlier.

Select the README f ile in the Git w indow, w hich should show up automatically if you have made any edits to it. This adds that f ile to the 'staging' area, w hich is sort

of like the pre-saving space for your w ork. Click 'Commit' and a new w indow should pop up.

Here, you have a chance to review your changes, and w rite a nice commit message. Type in something brief, but informative about the changes that you have

made in this version or snapshot of your w ork. You w ant this to be enough information so that if you or someone else looks back on it, you'll know w hy you made

this commit and the changes associated w ith it. These are like safety nets for your project in case you need to fall back for some reason.

Pro-tip: Here, you w ill see a list of all the changes you have made since your last commit. Older removed lines are in red, and new ly added lines are in

green. Double check these to make sure that the edits you have made are the ones you intended to make. This is really helpful for spotting typos, stray

edits, and any other little mistakes you might have accidentially introduced. Safety f irst.

Note If you are colour-blind and can't see w hich lines have been added or removed, you can use the line numbers in the tw o columns on the left of the w indow

as a guide. Here, the number in the f irst column identif ies the older version, and the number in the second column identif ies the new version.

Now w hen you click 'Commit', another w indow w ill pop up, telling you how many f iles you have changed and the number of lines w ithin that f ile you have

changed. Close that little w indow dow n.

Step seven: PUSH!

Click the Push button in the top right of the new w indow. A new w indow w ill pop up now. What this is doing is synchronising the f iles changed on your local

repository w ith the README f ile to the online version of the project on GitHub.

To do this from the Shell, use the follow ing command:

 git push -u origin master

Some times here you w ill be prompted to add your username and passw ord from GitHub, w hich you should do if asked.

Close that w indow dow n, and the next one. Go to your project on GitHub, refresh, and check that the README f ile is still there in all its new ly edited glory. You

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

should see the commit message you made next to the f ile too.

OPTIONAL ADVANCED/AWESOME STEP

Alright, so you just pushed some content to your f irst repo, aw esome! Now let's put it into practice for a real project. Like, the one you are participating in right

now. Let's try this out:

1. Go to the repositors for this project on GitHub

2. Fork the repository to your ow n GitHub account. The URL for this should be: https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-

Source.git

3. Head into RStudio, go to File > New Project, choose Version Control, select Git, and then paste the forkerd repository URL found in your copy of the

repository. You now have your ow n versioned copy of this w hole module. Neat. Save this somew here on your local machine.

4. Now, you need to tell Git that a dif ferent version of this project exists. Open up the Shell, and enter the command: git remote add upstream

https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source

5. What you just did w as name the original branch here upstream , just to keep things simple for now. Now, create a new branch to document your changes to

this independent of the main branch. Enter the command: git checkout -b proposed-changes master

6. You just created a new branch called proposed-changes w here you can now edit all of the content and f iles to your heart's delight. Hopefully, the structure of

this project is simple enough for you to navigate around. All of the raw f iles for the MOOC can be found in the content_development folder, and this is

 Task_3.md .

7. If you scroll to the bottom of Task_3.md , you should see a place w here you can edit in your name and aff iliation. Add these in, and then go through the commit

procedure detailed above. If you see anything else that needs editing too, feel free to add them in too!

8. Now, you w ant to push thee changes back to the original branch. Use the follow ing command in your Shell: git push origin proposed-changes

9. Go back to GitHub and f ind your fork here. Click the little green button, and create a pull request. This is essentially a review to integrate the changes made

into the original branch for this MOOC project.

10. The ow ners in charge of the MOOC project w ill now get a notif ication of this, review it, and confirm it if everything w ent to plan! We w ill review it, and if it all

w ent okay, your name w ill now appear for all eternity as someone w ho completed this advanced task.

11. Have a cup of tea, coffee, or w ine to celebrate!

CONGRATULATIONS

You just integrated Git w ith R Studio, and made your f irst change to a version controlled project. Your life w ill now never be the same, and your research

w orkflow w ill probably be more rapid, agile, and collaborative than ever. Good luck going back to Word.

The great thing is that this doesn't have to just be used for code. You can use it for plain text, markdow n, html, and, w ell, R code. The possibilities are limitless -

w hat you have just learned is a new form of openly collaborative project management that w orks for an enormous range of tasks.

From now on, it is all up to you! Some advice is to:

Make frequent commits. Treat Git like your puppy, in that it requires constant and special attention. Just a pat on the head every now and then is enough to

keep it satisf ied, but it'll be happiest w ith sustained servicing.

The best w ay to do this is to make a commit each time you w ork on a specif ic problem. For example, w riting a paragraph, running an analysis, or f ixing a bug.

Push often. Don't let those commits build up, otherw ise you run more risk of getting into merge conflicts. Seeing as these can be the stuff of nightmares, just

make sure to push often.

Pull often. If others are w orking remotely on the same project, you w ill w ant to stay up to date w ith their changes. Make sure to frequently pull in their changes

from GitHub to make sure you are all in sync.

Experiment and explore! This task really only scratches the surface, and there are many different functions, tools, and w ays this can be used. Really, it is up

to you to f ind out how to use this information to improve your research w orkflow, and ultimately collaborate on better, more open and reliable research!

To learn more about issues, branches, merge conflicts, pull requests, and other advanced aspects of using Git and RStudio, check out this aw esome guide by

Hadley Wickham.

Know a way this content can be improved?

Time to take your new GitHub skills for a test-run! All content development primarily happens here. If you have a suggested improvement to the content, layout, or

https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source
http://r-pkgs.had.co.nz/git.html
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/content_development/Task_3.md

anything else, you can make it and then it w ill automatically become part of the MOOC content after verif ication from a moderator!

List of participants who completed the ADVANCED version of this task

YOUR NAME AND AFFILIATION HERE

YOUR NAME AND AFFILIATION HERE

