
output:

pdf_document: default

html_document: default

Task 1: How to set up a repository on GitHub

This task is designed for students and researchers w ho w ant to create their f irst Open Source project (softw are or non-softw are) on GitHub. GitHub is a place

for you to come and play and experiment w ith new research w orkflow s, and is really just the beginning to help set the stage for your ow n pathw ays and ideas.

Don't forget you can join in the discussions over at our open Slack channel. Please do introduce yourself at #module5opensource, and tell us a bit about w ho you

are, your background, and how you ended up here!

Estimated time to complete: 30-45 minutes.

Estimate time saving once complete: Unimaginable..

Table of contents

Getting started

Setting up a GitHub profile

The GitHub language

Creating a new repository

The foundational steps

Choosing a license

Creating a README file

Creating contributing guidelines

Creating a code of conduct

Making your code citable

Keeping your issues up to date

Check-list for launching your project

https://openmooc-ers-slackin.herokuapp.com/
#Getting_started
#Profile
#Language
#Create_new
#Foundation
#License
#Readme
#Contributing
#Conduct
#Citation
#Issues
#Check-list

The workflow for Task 1. Keep this handy as you work through the task!

Getting started

A 'repository' is really just a fancy name for a project on GitHub. GitHub is a place online w here you can manage projects, store f iles, and openly collaborate w ith

others. This is all achieved by using version control to track projects as they progress. As such, GitHub is a pow erful tool for both softw are and non-softw are

projects.

One of the most important things to consider at this early stage is to think about how you w ant the w ider community to interact w ith your project. As you are

w orking in the open, you w ant to make sure others feel comfortable in accessing, view ing, and engaging w ith your w ork. Setting up a repository in a w ay that

low ers the barriers to entry, and the fear of being an 'outsider' is the f irst step tow ards maintaining a successful project.

Octocat, GitHub's little mascot

Setting up a GitHub profile

To set up a GitHub profile, simply head to the main page and click Sign Up for GitHub. Here, you can create your personal account, w ith a username, email, and

passw ord as standard.

Sign up for GitHub

The next step is to set up a personal plan. For now, simply select the 'Unlimited public repositories for free' plan, unless you are concerned about privacy, in w hich

case select the private plan. If you intend to set up a project for an organisation, you can select that option too.

The GitHub language

This is possibly the most confusing and off-putting aspect of GitHub. Here are some of the most commonly used terms and their definitions:

Initialise : Create an empty repository.

Checkout: Create a w orking copy of a local repository.

Clone : Copy the repository into a local directory on your computer.

Fork : Create a personal offshoot of a repository to w ork on it in parallel.

Branch: An independent and parallel version of a repository. Changes do not affect the master branch.

Master: The main and default branch for a repository.

Clean: No commits pending on the branch.

Stage : Add updates ready to be committed to a branch.

Commit: A revision to a repository, like a versioned 'save' function.

Commit message : A description of changes accompanying a commit.

https://github.com/join

Check : A status check.

Fetch: Nothing to do w ith dogs. Refers to getting the latest changes from an online repository w ithout merging them.

Index: The 'tree' w hich acts as a staging area.

Working Directory: The 'tree' w here the f iles are kept.

Head: The 'tree' w hich indicates the last commits made.

Push: Add committed changes to the head of your remote repository.

Merge : Combining the changes made in one branch back w ith the master branch upon completion.

Pull: Update your repository by fetching and merging the new est commits.

Pull request: A request to merge an updated branch into the master branch.

Issue : Suggested improvements, tasks, or questions related to a repository.

Whew ! Don't w orry about memorising all of these for now. Like any new skill, familiarity comes w ith experience.

You can probably see how some of these are fairly similar to things like save, copy, paste - standard w orkflow operations, but adapted for a softw are

management process. There are a few more too, but this should do for getting started.

If you are interested, most of these terms come from the underlying Git system. Git w as built to allow developers to manage different versions of source code in a

distributed manner, w hich is great. It has lots of features and the ability to do lots of complex stuff, w ritten by a very clever guy. How ever, the user interface w as

not designed w ith new users in mind, so it can be hard to learn.

Unbeatable guide to using Git. (Source: XKCD)

Creating a new repository

On your GitHub profile, click the 'Create new repository'. The f irst step is to create a name as the brand for your project. Ideally, it should be memorable and give

some indication of w hat the project does.

Create a new repository

Make sure not to duplicate names, infringe upon other trademarks, or name it anything that could be considered to be offensive.

https://mirrors.edge.kernel.org/pub/software/scm/git/docs/gitglossary.html
https://git-scm.com/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://xkcd.com/1597/

The foundational steps

Any GitHub repository requires 4 key elements to get started and to begin developing a w elcoming community:

1. An Open Source license;

2. A README f ile;

3. Contributing guidelines; and

4. A Code of Conduct.

These are critical aspects and best practices of any project for users to understand their legal rights, their expectations, the purpose of the project, and to improve

the overall user experience.

All four of these f iles should be kept in the root directory for your project repository. It is convention to use markdow n f ile formats (.md) for most of these f iles

(though the license f ile is most often plain text (.txt)), and capitalise all f ile names. Instead of spaces in f ile names, make sure to use underscores _ .

So you should end up w ith a foundational f ile selection like this:

1. LICENSE.md

2. README.md

3. CONTRIBUTING.md

4. CODE_OF_CONDUCT.md

The basic repository structure

Choosing a license

Choosing an appropriate license is w hat w ill dif ferentiate your Open Source repository from publicly available softw are. While you are not obliged to choose a

license, doing so guarantees that others w ill be able to modify, share, re-use, and build upon your project w ithin a legal framew ork.

To start w ith, you w ant to check Choose A License to f ind a license that best suits your intentions for the repository.

The three primary ones to choose from are:

MIT License : A permissive license that lets people do w hatever they w ant w ith your code as long as they provide appropriate attribution to you, and do not

hold you liable.

Apache License 2.0: Similar permissions to the MIT License, but also provides an express grant of patent rights from contributors to users.

GNU General Public License (GPL) v3: A copyleft license that requires anyone w ho redistributes your code, or a derivative w ork, to make the source

available under the same terms as the original license; also provides an express grant of patent rights from contributors to users.

Thankfully, w hen you start a new repository on GitHub, you are given the option to select an existing license from a drop-dow n menu. You should alw ays (w ith

very few exceptions) use an existing license, since this is w hat potential users and contributors w ill see before they choose to use or contribute to your

softw are.

https://choosealicense.com/
https://en.wikipedia.org/wiki/Copyleft

Choosing an example license

If they don't have one you w ant, you can add one you like manually. To do this, simply click 'Create new f ile' in the repository, and copy and paste an existing

license text in. Name the f ile something like LICENSE.txt or LICENSE.md to make it clear, and keep it in the main repository folder (i.e., the root). Make sure to add a

clean commit message, and you're done!

Helping hand: This MOOC uses a different combination of licenses for code content and non-code content. Here you can f ind an example of the MIT

License that w e apply for all code and softw are generated as part of the MOOC production.

Creating a README file

When you initialise your new repository, there should be an option to do so w ith a README f ile. Just like Alice in Wonderland, these do exactly w hat they say -

provide key information about the project. These are typically the f irst thing outside contributors w ill see w hen they come to your repository, so making them

informative and w elcoming is key.

Part of the README file for this module

The f ile w ill originally be in markdow n (.md) format. This is a lightw eight markup language w ith a plain text format. To learn some basic markdow n, see this

cheatsheet. But for now, w e can just use plain text.

https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/LICENSE.md
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

There are several things you w ill w ant to include in your README f ile:

What is this project about and w hat does it do.

Why should people care, and w hy is it useful.

How can someone get started contributing to the project.

Who can be contacted in case someone needs help.

A link to the license, contributing guidelines, and code of conduct.

A description of the project structure.

Who is involved, and w hat are their roles.

The current status of the project.

Pro-tip: Later on as your project develops, you might w ant to add FAQs based on community feedback, or a tutorial to help users understand how your

project w orks.

Remember that not everyone coming to your project w ill be an expert, or understand w hat it is you are doing and w hy. Having a w ell-documented README f ile w ill

enhance the user experience for people w ith a range of prior know ledge.

When the README f ile is included in the root directory, GitHub w ill automatically display this on the homepage of your repository. This means it is the f irst thing

people w ill often see, so make it count!

Helping hand: Here, you can f ind the README f ile used for this MOOC module. This includes information on the status, rationale, learning outcomes,

development team, key documents, and license to help. You can copy and adapt this structure for your ow n projects as needed.

Creating contributing guidelines

Contributing guidelines are designed to communicate to potential contributors a short guide on how to engage w ith your project and community. You w ant to make

sure to be w elcoming, and indicate that you are eager for participants to engage w ith your project. Whenever a participant opens a new pull request or creates a

new issue, they w ill see a link to your contribution f ile.

Part of the `CONTRIBUTING` guidelines for this module

Sticking w ith the all caps f ile names, the next step is to create a CONTRIBUTING f ile. Click 'Create new f ile', and make sure to save it in markdow n format as before.

This f ile w ill tell other users how they can engage w ith and participate in your project. This is the f irst step tow ards establishing a community around your project,

so make it engaging, concise, and informative.

The CONTRIBUTING f ile should include information on:

What sort of contributions you are looking for.

How to suggest updates or new features.

How to interact w ith the project using GitHub's functions (e.g., the pull request protocol).

How to f ile a bug report or create an issue.

The ultimate goal, vision, or roadmap for the project.

How to contact those in charge of the project.

https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/README.md

Links to any external documentation or w ebsites.

Pro-tip: Consider starting off w ith a short thank you note for people taking the time to consider contributing - they have clicked on the f ile to learn more

after all! If there are other methods of recognition that you have in mind, make sure to include them in here too.

Here, you are essentially trying to encourage people to volunteer their time to advance your project. Make sure to be w elcoming and friendly, and be precise about

how people can engage. When w riting this, make sure to think about it from the user perspective - how can you make their life easier w hen submitting pull

requests and opening issues to make the w hole project run more smoothly.

Helping hand: The Contributing guidelines for this MOOC module include some very specif ic things: an introduction to using Git and GitHub, tips for getting

started, contact information, how to alter the content and repor issues, a link to the README f ile, and information on the preferred content and code styles.

Feel free to copy and adapt this for your ow n project as needed.

Creating a Code of Conduct

A code of conduct is important for setting the ground rules for expected behaviour and participation for project contributors, and is an easily referenced document

for show ing that your project team takes constructive dialogues seriously. Therefore, it is a critical element for creating and maintaining a healthy community that

engages in a constructive and productive manner w ithin a positive social atmosphere.

A code of conduct not only provides expectations of behaviour, but also describes w ho those expectations apply to, w hen they apply, w hat to do should a

violation of the code occur, and w hat the action items for this w ill be. As such, points of contact need to be made clear in the code of conduct. Typically, this

should be in a private w ay such as an email address.

Pro-tip: In case a violation needs to be reported about the person w ho receives those reports, make sure to include an option to contact a secondary

party.

To add a code of conduct, you can create your ow n from scratch by adding a new markdow n f ile, or use existing templates such as the Contributor Covenant.

Name your f ile CODE_OF_CONDUCT.md , and make sure it is visible in the README f ile.

Helping hand: This MOOC also has a Code of Conduct based on the Contributor Covenant. As you can see, it includes information on expected standards

of behaviour, responsibilities of those in the community, and enforcement of the CoC including contact details. Feel free again to re-use and adapt this to

your project as you see f it.

Part of the CODE OF CONDUCT file for this module, based on the Contributor Covenant

Making sure to enforce the code of conduct is important, as it show s that not only do you value the code, but you respect the inf luence that it has on your

community. It is important to treat each member of the community w ith the respect, courtesy, and importance that they deserve. Should a violation occur, or a

repeat offender makes consistent violations, it is best to refer to the Open Source Guide to see how to enforce the code of conduct.

Making your code citable

If you w ant to make your code citable from the start, you should store the metadata needed for a citation from the start, by creating a [codemeta.json]

https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/CONTRIBUTING.md
https://contributor-covenant.org/
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/CODE_OF_CONDUCT.md
https://opensource.guide/code-of-conduct/#enforcing-your-code-of-conduct

(https://codemeta.github.io) f ile or a [CITATION.cff](https://citation-file-format.github.io) f ile. Both w ill allow tooling that is currently being developed to

automatically create citation information, rather than asking you to type it in a form later.

If you're interested, cite.research-softw are.org provides further background information about softw are citation in academia.

Keeping your issues up to date

Issues are not necessarily problems w ith a project, but also suggestions for improvement, things to develop in the future, and comments and feedback about the

project to w ork through. They can be openly shared and discussed w ith contributors as needed, sort of like a forum.

If you are a project lead, it is important to maintain a list of issues that make it clear to contributors w hat aspects of the project need attention. It is also important to

engage w ith as many issues as possible from others in a positive manner, to show that you take their contributions seriously.

Key elements for issues include:

An informative title and description;

Coloud-coded labels/tags to help categorise and f ilter;

Milestones to associate issues w ith specif ic features or project phases;

Assignees indicate w ho is responsible for w orking on an issue;

Comments for providing feedback.

The issue tracker for the Open Scholarship Strategy project

Within issues it is possible to use @ mentions to notify other contirbutors about the issue, and to get the right people engaged in an effective manner. GitHub has

an internal system of notif ications, just like Facebook or Tw itter, and can also send emails to people w ho are mentioned in the issue tracker. This can all be

customised for individuals w ithin the user settings.

Checklist for launching your project

So now you are ready to launch your project, begin advertising it, and getting contributions! Before continuing, make sure that you have:

 Project has a memorable and informative name

 Project has a LICENSE f ile that is an exact copy of an Open Source license

 Complete documentation including a README , CONTRIBUTING , and CODE_OF_CONDUCT f iles

 Project has at least one clearly labelled issue

 Any code included at this stage is clearly structured and annotated

https://cite.research-software.org/

CONGRATULATIONS!

You have now launched an Open Source research project! Hopefully, from here on out, your w ork w ill act to benefit the w ider community, forge new

collaborations, and create new and fantastic opportunities for you all. Try and think about w ays in w hich these skills can be applied to future projects, and how

they might also have helped w ith some in the past.

From now on, it is all up to you! Some advice is to:

Write clean code;

Have a w ell-structured project;

Make frequent commits w ith clean messages;

Keep projects w ell-documented;

Have clear contributing guidelines;

Make use of the description and tag functions;

Don't fork someone else's repository unless you intend to w ork on them;

Make sure to contribute to other people's projects too.

Know a way this content can be improved?

Time to take your new GitHub skills for a test-run! All content development primarily happens here. If you have a suggested improvement to the content, layout, or

anything else, you can make it and then it w ill automatically become part of the MOOC content after verif ication from a moderator!

https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/content_development/Task_1.md

