
output:

pdf_document: default

html_document: default

Module 5: Open Research Software and Open Source

Table of Contents

Introduction

What is Open Source Softw are

Principles of Open Source Softw are

The Open Source community, governance, and contributions

Existing platforms and tools for Open Source Softw are

Open Source Softw are used in research

Getting Started w ith OSS - FAQ

Making good softw are for re-use

Open Source licensing

Softw are citation

Using GitHub and Zenodo

Collaborating through Open Source

Where to go from here

[IDEA: ONCE TEXT IS COMPLETE; CREATE AUDIO RECORDING FOR ALL OF THIS FOR EACH MODULE, and release as a podcast]

Introduction

Welcome to Module 5 of the Open Science MOOC: Open Research Software and Open Source .

This module has been developed in the open through collaboration by an international team of Open Source aff icianados. Everything you see here has been

developed in the open through interactive feedback and collaboration from the w ider community. It comprises a series of videos, infographics, text-based reading

(sorry), and practical tasks for you to sink you teeth into.

Don't forget you can join in the discussions over at our open Slack channel. Please do introduce yourself at #module5opensource, and tell us a bit about w ho you

are, your background, and how you ended up here!

Why should you take this module?

[TO ADD: Introductory video]

Who is this module for?

This module is designed primarily for computational researchers at the graduate and undergraduate level, as w ell as budding data scientists and any other

researcher w ho uses analytical code or softw are. In a modern day research environment, this covers pretty much anyone w ho uses a computer for ther w ork.

"An article about computational result is advertising, not scholarship. The actual scholarship is the full softw are environment, code and data, that produced

the result." - J. Buckheit and D. L. Donoho, 1995.

Softw are and technology underpin much of modern research, w hich is now almost inevitably computational in one w ay or another - search engines, social

netw orking platforms, analytical softw are, and digital publishing. With this, there is an ever-increasing demand for more sophisticated Open Source Softw are,

matched by an increasing w illingness for researchers to openly collaborate on new tools.

The pow er of Open Source is in that it low ers the barriers to collaboration and adoption, therefore allow ing ideas and technology to spread more rapidly. This

Module w ill introduce the necessary tools required for transforming softw are into something that can be openly accessed and re-used by others.

#Introduction
#What_OSS
#Principles
#OS_Community
#Platforms
#Research
#FAQ
#Reuse
#Licensing
#Citation
#GitHub_Zenodo
#Collaborating
#Future_OSS
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/README.md#development-team-
https://openmooc-ers-slackin.herokuapp.com/

Image by Patrick Hochstenbach (CC0 1.0 Universal)

Specific learning objectives for this Module:

1. Learn the characteristics of open softw are; understand the ethical, legal, economic, and research impact arguments for and against Open Source
Software , and further understand the quality requirements of open code.

2. Be able to turn code made for personal use into open code w hich is accessible by others.

3. Use softw are (tools) that utilizes open content and encourages w ider collaboration.

What is Open Source Software

Virtually all modern scientif ic research w orkflow s rely on a range of softw are tools, either operating on different datasets, w ith dif ferent parameters, and applied

iteratively in various w ays (data science) or operating on different inputs and using models and methods to predict some output state (computational science).

Open Source Softw are (OSS) is computer softw are in w hich the full source code is available under a specif ic license that enables other users to access, view,

modify, and redistribute that code for any purpose. Because OSS requires such a license, it typically remains free of charge by default. This explicit licensing is

also w hat dif ferentiates OSS from free softw are. Re-using OSS for analysis, simulation and visualisation for research is also typically easier and more f lexible

compared to proprietary softw are. Often, w hether w e know it or not, w e are already using OSS as part of our ow n research w orkflow s.

OSS fits into the broader scheme of Open Science as it helps to make the full research environment, including the softw are that produced the research results,

fully accessible and re-usable. As such, it forms a necessary component for the best practices (Jiménez et al., 2018) and repeatability and reproducibility of

research (both personally and by others), along w ith other components, such as sharing data (Stodden, 2010).

In some cases, sharing of source code can even be conditional for the acceptance of associated research manuscripts (Shamir et al., 2013). It is also generally

perceived to increase research impact (Vandw alle, 2012).

Some of common advantages for developers include:

Increased developer loyalty and empow erment;

Low er costs of services and marketing;

Increased branding of services and products;

Production of high quality softw are at low er expense;

Flexibility and rapid innovation;

Customisation and modular integration;

Increased reliability and independence; and

https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/Reading%20Material_Open%20Source%20and%20Open%20Research%20Software/Jim%C3%A9nez%20et%20al.%2C%202018.pdf
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/Reading%20Material_Open%20Source%20and%20Open%20Research%20Software/Stodden%2C%202010.pdf
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/Reading%20Material_Open%20Source%20and%20Open%20Research%20Software/Shamir%20et%20al.%2C%202013.pdf
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/Reading%20Material_Open%20Source%20and%20Open%20Research%20Software/Vandewalle%2C%202012.pdf

Based on open standards available to everyone.

As such, the main advantages for researchers (users) include lower costs , increased transparency, increased security and stability, no vendor 'lock
in' w ith increased user control, and overall higher quality. Furthermore, sharing OSS allow s researchers to receive credit for their efforts, for example

through direct softw are citation (Smith et al., 2016).

Commonly used OSS include the Mozilla Firefox internet brow ser and the LibreOff ice full off ice suite. LibreOff ice is similar to the popular Microsoft Off ice, including

a w ord processor, spreadsheet manager, and slide presentation softw are, but is completely free and Open Source.

Some regard the OSS movement to represent a counter-movement to neoliberalism and privatisation, through defiance of regulations and norms in the construction

and re-use of information, and a potential transformation of modern-day capitalism through making softw are abundantly available w ith minimal effort. See The

free/open source softw are movement: Resistance or change? by Panayiota Georgopoulou for more on this topic.

Principles of Open Source Software

The Open Source Initiative, one of the pioneers of OSS, offers the follow ing definition:

Don't worry, you don't need to memorise all of this, but it's good to know the principles that OSS is coming from.

Free Redistribution: The license shall not restrict any party from selling or giving aw ay the softw are as a component of an aggregate softw are distribution

containing programs from several dif ferent sources. The license shall not require a royalty or other fee for such sale.

Source Code : The program must include source code, and must allow distribution in source code as w ell as compiled form. Where some form of a

product is not distributed w ith source code, there must be a w ell-publicized means of obtaining the source code for no more than a reasonable

reproduction cost preferably, dow nloading via the Internet w ithout charge. The source code must be the preferred form in w hich a programmer w ould

modify the program. Deliberately obfuscated source code is not allow ed. Intermediate forms such as the output of a preprocessor or translator are not

allow ed.

Derived Works : The license must allow modif ications and derived w orks, and must allow them to be distributed under the same terms as the license of

the original softw are.

Integrity of The Author's Source Code : The license may restrict source-code from being distributed in modif ied form only if the license allow s the

distribution of "patch f iles" w ith the source code for the purpose of modifying the program at build time. The license must explicitly permit distribution of

softw are built from modif ied source code. The license may require derived w orks to carry a dif ferent name or version number from the original softw are.

No Discrimination Against Persons or Groups : The license must not discriminate against any person or group of persons.

No Discrimination Against Fields of Endeavour: The license must not restrict anyone from making use of the program in a specif ic f ield of

endeavour. For example, it may not restrict the program from being used in a business, or from being used for genetic research.

Distribution of License : The rights attached to the program must apply to all to w hom the program is redistributed w ithout the need for execution of an

additional license by those parties.

License Must Not Be Specific to a Product: The rights attached to the program must not depend on the program's being part of a particular softw are

distribution. If the program is extracted from that distribution and used or distributed w ithin the terms of the program's license, all parties to w hom the

program is redistributed should have the same rights as those that are granted in conjunction w ith the original softw are distribution.

License Must Not Restrict Other Software : The license must not place restrictions on other softw are that is distributed along w ith the licensed

softw are. For example, the license must not insist that all other programs distributed on the same medium must be open-source softw are.

License Must Be Technology-Neutral: No provision of the license may be predicated on any individual technology or style of interface.

Now, this all might be a little complex to remember. How ever, it can be summarised as making software as re-usable as possible for future works, while also being

freely available.

An Open Source checklist

There are a number of existing platforms and tools that support OSS and collaboration. The Open Science Training Handbook provides a check-list to use for

evaluating the 'openness' of existing research softw are, based on the Open Source Definition above:

Is the softw are available to dow nload and install?

Can the softw are easily be installed on different platforms?

Does the softw are have conditions on the use?

https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/Reading%20Material_Open%20Source%20and%20Open%20Research%20Software/Smith%20et%20al.%2C%202016.pdf
https://www.mozilla.org/en-US/firefox/
https://www.libreoffice.org/
http://www.redalyc.org/html/742/74212712006/
https://opensource.org/
https://en.wikipedia.org/wiki/The_Open_Source_Definition#Definition
https://open-science-training-handbook.gitbook.io/book/es/02opensciencebasics/03openresearchsoftwareandopensource#knowledge

Is the source code available for inspection?

Is the full history of the source code available for inspection through a publicly available version history?

Are the dependencies of the softw are (hardw are and softw are) described properly? Do these dependencies require only a reasonably minimal amount of

effort to obtain and use?

Check, check, check, done! Simples.

The Open Source community and its governance

There are tw o main camps w ithin the free softw are community: The free software movement, and the OSS movement. Both have differing ideologies based

on user liberties and the practical applications of softw are. Often, the term 'FLOSS' is used to reconcile these tw o political camps, and means 'Free/Libre and Open

Source Softw are'; Libre being French and Spanish for 'free' in the context of freedom.

The core principle of re-use is w hat separates OSS from 'Free Softw are'. Free and Open Source Softw are (FOSS) is an inclusive term to describe softw are that

can be classif ied as both free and Open Source. A good example of FOSS is the Ubuntu Linux operation system.

The big dif ference betw een free softw are and OSS is that the former must distribute updated versions under the same license as the original, w hereas new er

versions of OSS can be distributed under dif ferent licenses. FOSS combines the best of both w orlds.

These definitions have now become w idely adopted, both by international governments, as w ell as some large organisations such as the Mozilla Foundation and

the Wikimedia Foundation. Major organisations in the FLOSS space include the UK's Softw are Sustainability Institute, w ho produce valuable resources such as

their recent Softw are Deposit Guidance for Researchers.

For individual projects

Within OSS projects, there are typically three main formal roles:

Maintainer;

Contributor; and

Committer.

A maintainer is a user w ith 'commit' access to implement suggested changes to the project. They have responsibility for the direction and improvement of the

project. A contributor is someone w ho directly adds value to the project through issue resolution, code w riting, or even external activities such as

communications and event organisation. A committer is someone w ho can make 'commits' to the project (see Task 1).

Typically, roles are made public through either the README f ile, a Contributors f ile, or a separate team page for the project.

Existing platforms and tools for Open Source Software

Virtual environments and machines are becoming increasingly popular as high-pow ered research w orkflow enablers, and many of these are built upon OSS (e.g.,

operating systems, programming languages, and data processing framew orks). Popular services include Google Cloud and Amazon Web Services, w hich also

assist w ith database storage and content delivery, as w ell as computational pow er. InsideDNA is a computing platform for reproducible research in bioinformatics,

genomics and the life sciences.

As mentioned above, LibreOff ice provides an Open Source alternative to Microsoft Off ice. The tw o are almost completely compatible, just w ith dif ferent default f ile

formats. For citation managers, Zotero is the most popular Open Source alternative to proprietary platforms such as Mendeley or EndNote.

Zotero uses the BibTeX (pronounced 'bib-tech') format, based on LaTeX (pronounced 'lay-tech'), and has brow ser plugins to make citation management simple. By

integrating this w ith other softw are such as LibreOff ice, it is now possible to have a fully Open Source research w orkflow in many cases.

GitHub

Did you know that this entire project w as build as an open and collaborative community effort in GitHub?

GitHub is a popular hosting site for both softw are and non-softw are content (often called 'notebooks'), w ith added capabilities for version control, project

management and tracking, and storage services. GitHub is built on top of the OSS Git, w hich enables users to w ork remotely to maintain, share, and collaborate on

research softw are and other non-softw are based projects.

Version control is essentially a process that takes snapshots of the f iles in a repository, and tracks modif ications to them. It records w hen the changes w ere

made, w hat they w ere, and w ho did them. If several people are w orking on one f ile at once, any overlapping changes are detected, and must be resolved prior to

continuing. This provides a much more streamlined and automated process than manually saving and recording changes as projects develop. It also avoids the

inevitable lists of confusing named f ile versions…

https://www.ubuntu.com/
https://www.mozilla.org/en-US/foundation/
https://wikimediafoundation.org/wiki/Home
https://www.software.ac.uk/
https://softwaresaved.github.io/software-deposit-guidance/
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/content_development/Task_1.md
https://cloud.google.com/compute/
https://aws.amazon.com/
https://insidedna.me/
#What_OSS
https://www.zotero.org/
https://www.zotero.org/
https://github.com/OpenScienceMOOC/
https://github.com/
https://git-scm.com/

GitHub helps us to avoid, er, sub-optimal file naming conventions (source: XKCD)

One of the more popular and useful functions of GitHub is the issue tracker, w hich is used to organise OSS development. The above link takes you to the issue

tracker for the development of this module! If you think there is something here that can improved, or you w ant to comment on, anyone can add or contribute to an

issue there!

Other similar project hosting services include BitBucket, GitLab, and Launchpad. If the recent acquisition of GitHub by Microsoft is a bit off-putting to you, these are

great alternatives.

How ever, w e also know that GitHub can have quite a high learning curve. Which is w hy the f irst practical task for this MOOC w ill teach you how to set up your

f irst GitHub project repository!

GO TO TASK 1: Building your first GitHub repository

Open Source Software used in research

Especially in scientif ic research, Open Source Softw are usage and development has become practically the norm. There's a number of reasons for this beyond

those that apply to the general acceptance of OSS by, for example, consumers, industry, or government. Among these reasons are:

Increasingly, algorithms implemented in analysis softw are form an integral part of the methods described in scholarly publications. As such, it is completely at

odds w ith rigorous peer review if these algorithm implementations are closed to outsiders.

Scientif ic collaboration more often than not spans multiple institutions and distributed research netw orks w here secrecy and command hierarchy is not

maintained in a w ay that is 'necessary' for closed source development.

Many computational analyses are run in virtualized environments (such as institutional, national, or international 'cloud' infrastructures) and hosted on multi-

user servers. Closed-source, commercial softw are often disallow s such usage.

OSS development often relies on volunteers. In a time of budgetary constraints for scientif ic research, this is a clear advantage.

For these and other reasons, Open Source tools are very commonly used in scientif ic research. This includes usage in f ields w here many researchers are

amateur developers themselves and rely on tools such as R for statistical analysis and scripting, w hich, in the last decade, has almost completely displaced

commercial softw are for statistical analysis such as SPSS or JMP in a lot of f ields. In f ields such as bioinformatics, that involve a lot of f ile handling of the outputs

of DNA sequencing platforms, general purpose scripting languages such as Python and commonly used libraries built on top of it (such as biopython) have become

a vital part of the toolkit of many researchers.

Python

https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/issues
https://bitbucket.org/
https://about.gitlab.com/
https://launchpad.net/
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/content_development/Task_1.md
https://www.r-project.org/
https://www.python.org/
http://biopython.org/

Tools such as R and Python are essentially softw are for w riting softw are. Although programming is an increasingly common activity among researchers, of

course not every scientist does this. One step aw ay from programming is the chaining together of the inputs and outputs of various analysis tools in longer

w orkflow s. As an example from genomics, a very common w orkflow is to start out w ith high-throughput sequencing reads and then i) do basic quality control

checks; ii) map the reads against a reference genome; iii) identify the points w here the new data are at variance w ith the reference. These steps are routinely

executed as a w orkflow w here a different Open Source executable is run in a Linux command-line environment for each of the three steps. Although this is

arguably not quite open source softw are development, it does involve the usage and production of open source artifacts (such as Linux shell scripts) for w hich

the principles that w e discuss in this module are applicable.

R

Lastly, OSS is also used in scientif ic research for reasons that more closely mirror those that drive the adoption of OSS in w ider society, namely that it is cheap.

For example, individuals or organizations might decide to sw itch from Microsoft Off ice to LibreOff ice for manuscript w riting or spreadsheet processing because

the latter is free (both as in 'free beer' and 'free speech'). Likew ise, the choice to sw itch from ArcGIS to QGIS for the analysis of geographic information might be

prompted simply by cost considerations.

Getting Started with OSS - FAQ

I'm using X[e.g. Matlab,STATA,Excel] and I want to transition to something more open. What are the next steps?

Even if you are using proprietary softw are, you can usually still share your source code/documents etc. The best first step is sharing whatever you can.

Great! I can put them in my new github repo.

If that's enough for you for now great! If not for most pieces of proprietary softw are there are Open Source equivalents. Have a go w ith one and see w hat you

think.

Closed Open

Matlab Python, Julia

STATA/SPSS R

MS Office LibreOff ice

Mathematica JupyterLab

Test out your new Pull Request -PR- Skills … … by adding your ow n example here

Cool! But if I make the sw itch w ill I be stuck: taking ages to learn a new tool/ w ithout support /w ith buggy software.

Good question! The answ er is it depends. The best thing to do is f ind someone w ho's made the sw itch before and learn from their experience. Or just do a Google

search! Some OSS is much better than their closed counterparts, some aren't, so it's w orth choosing carefully.

Making good software for re-use

The most likely person w ho might w ant to re-use your softw are in the future is…you! So w hile sharing is alw ays better than not sharing, you can make your ow n

life, and that of others, much easier through appropriate documentation. Documentation can include several things, such as including helpful comments and

annotations in the code that help to explain w hy a particular action w as performed, rather than w hat it is intended to achieve.

One of the most critical aspects of this is including an informative README f ile, that accompanies almost every OSS project, and some times even more than one. It

can be a good practice to include one such f ile in every directory, that includes a list of f iles, a table of contents, and w hat the purpose of the directory is. The

 README f ile is typically just plain text or markdow n (again, such as all of the ones for the MOOC!), and can include critical information for how to install and run

softw are, previous dependencies and requirements, as w ell as tutorials or examples.

Did you know… The term README is some times playfully ascribed to the famous scene in Lew is Carroll's Alice's Adventures In Wonderland in w hich

https://www.youtube.com/watch?v=dQw4w9WgXcQ
https://www.qgis.org/en/site/
https://help.github.com/articles/about-pull-requests/
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/content_development/MAIN.md

Alice confronts magic munchies labeled w ith "Eat Me"" and "Drink Me". Potent.

The purpose here is to provide suff icient information to maximise the re-use and reproducibility of the computational environment, such that someone w ith no

experience w ith the project can easily access and re-use the softw are (Sandve et al., 2013). By low ering the barriers to entry, you increase the chances of

others being able to re-use your w ork, w hich is one of the ultimate goals of OSS (Ince et al., 2012).

An extension of this that can help to make things even easier for future re-use is 'container' technology. Containers are like an ecosystem frozen in time, w here

the code, the data, any other dependencies, are all perfectly preserved, packaged and saved in the present functioning versions. This means that anyone in the

future any one can come in and run the analyses again. As such, they are generally good for re-use, but this can come at the sacrif ice of modif ication or

understanding by others, as often a lot of details can be hidden w ithin the source code and its dependencies. Common examples of container implementation in

research include Rocker (a Docker container for the R language), Binder, and Code Ocean.

Sustainable software is good software.

10 simple rules for reproducible computational research

The 10 simple rules for making computational research more reproducible, based on Sandve et al., (2013), are:

1. For every result, keep track of how it w as produced.

2. Avoid manual data manipulation steps.

3. Archive the exact versions of all external programs used.

4. Version control all custom scripts.

5. Record all intermediate results, w hen possible in standardised formats.

6. For analyses that include randomness, note underlying random seeds.

7. Alw ays store raw data behind plots.

8. Generate hierarchical analysis output, allow ing layers of increasing detail to be inspected.

9. Connect textual statements to underlying results.

10. Provide public access to scripts, runs, and results.

https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/Reading%20Material_Open%20Source%20and%20Open%20Research%20Software/Sandve%20et%20al.%2C%202013.PDF
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/Reading%20Material_Open%20Source%20and%20Open%20Research%20Software/Ince%20et%20al.%2C%202012.pdf
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/Reading%20Material_Open%20Source%20and%20Open%20Research%20Software/Boettiger%20and%20Eddelbuettel%2C%202017.pdf
https://mybinder.readthedocs.io/en/latest/
https://codeocean.com/
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/Reading%20Material_Open%20Source%20and%20Open%20Research%20Software/Sandve%20et%20al.%2C%202013.PDF

Infographic adapted from Sandve et al., (2013). Feel free to download this and print it out to keep handy during your research!

If you follow these steps, along w ith the processes in Task 1 and Task 2, you should be f ine!

Open Source licensing

An Open Source license is a type of license designed specif ically for softw are and code that make it explicit w hat the legal conditions for sharing and re-use are.

As mentioned above, the addition of a suitable license is w hat dif ferentiates publicly shared softw are from OSS. For example, the w idely used MATLAB is

proprietary softw are, and Octave is an openly licensed alternative programming language.

There are currently more than 1,400 unique Open Source licenses, a complexity born from the diff iculty in understanding the differences betw een the legal

implications across different license.

Some of the more common licenses include:

Berkeley Softw are Distribution ("BSD"),

Apache,

MIT-style (Massachusetts Institute of Technology), or

GNU General Public License ("GPL").

You don't need to know all the legal itty gritty behind all of these, but it is good to at least know w hat options are avaiilable to you.

There are tw o w ays in w hich contributions to a project become licensed:

1. Explicitly, w hereby the individual contribution has a clearly indicated license independent of the main project; or

2. Implicitly, w hereby the contribution falls under the original licensing code of the main project.

Thankfully, the process of selecting an Open Source license is relatively trivial, thanks to user-friendly tools such as Choose A License. Each of these licenses

allow s other users to use, copy, distribute, and build upon your w ork, often w hile ensuring that the creators are appropriately recognised for their w ork. Here, the

key is selecting an appropriate license for your w ork, depending on w hat you w ant, or do not w ant, others to do w ith it.

Software citation

Citations provide one of the most important interactions in scholarly research, forming the basis of our referencing and metrics systems. Typically, this is performed

thanks to the assistance of a permanent unique identif ier such as a Digital Object Identif iers (DOI). A DOI is a persistent identif ier, implemented in the Handle

System, that meets a common standard, depending on the purpose, such as for identifying academic information. Such identif ication is critical for tracking the

genealogy and provenance of research, for reproducibility, as w ell as for giving appropriate credit to those w ho have created the softw are. Importantly, softw are

should be considered a legitimate output from scholarly research, and citation is becoming an increasingly common w ay to indicate that.

In 2016, Smith et al., 2016 w rote a research paper about the principles of softw are citation as part of the FORCE11 Softw are Citation Working Group. In the same

w ay that you w ould w ant to cite softw are that you have used as part of good research practices, it is important to make your research easily citable too. When

citing any softw are used for your ow n research, you should include at minimum:

The author name(s),

Softw are title,

Version number, and

The unique identif ier/locator (DOI or URL).

The six principles of softw are citation by Smith et al., (2016) are provided here:

Importance : Softw are should be considered a legitimate and citable product of research. Softw are citations should be accorded the same importance in the

scholarly record as citations of other research products, such as publications and data; they should be included in the metadata of the citing w ork, for

example in the reference list of a journal article, and should not be omitted or separated. Softw are should be cited on the same basis as any other research

product such as a paper or a book, that is, authors should cite the appropriate set of softw are products just as they cite the appropriate set of papers.

Credit and attribution: Softw are citations should facilitate giving scholarly credit and normative, legal attribution to all contributors to the softw are,

recognizing that a single style or mechanism of attribution may not be applicable to all softw are.

Unique identification: A softw are citation should include a method for identif ication that is machine actionable, globally unique, interoperable, and recognized

https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/content_development/Task_1.md
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/content_development/Task_2.md
#What_OSS
https://www.mathworks.com/products/matlab.html
https://www.gnu.org/software/octave/
https://en.wikipedia.org/wiki/BSD_licenses
https://www.apache.org/licenses/LICENSE-2.0
https://opensource.org/licenses/MIT
https://www.gnu.org/licenses/gpl-3.0.en.html
https://choosealicense.com/
https://en.wikipedia.org/wiki/Digital_object_identifier
https://en.wikipedia.org/wiki/Handle_System
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/Reading%20Material_Open%20Source%20and%20Open%20Research%20Software/Smith%20et%20al.%2C%202016.pdf
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/Reading%20Material_Open%20Source%20and%20Open%20Research%20Software/Smith%20et%20al.%2C%202016.pdf

by at least a community of the corresponding domain experts, and preferably by general public researchers.

Persistence : Unique identif iers and metadata describing the softw are and its disposition should persist - even beyond the lifespan of the softw are they

describe.

Accessibility: Softw are citations should facilitate access to the softw are itself and to its associated metadata, documentation, data, and other materials

necessary for both humans and machines to make informed use of the referenced softw are.

Specificity: Softw are citations should facilitate identif ication of, and access to, the specif ic version of softw are that w as used. Softw are identif ication

should be as specif ic as necessary, such as using version numbers, revision numbers, or variants such as platforms.

Note: For instructions on 'how to make your softw are citable' see the section Using GitHub and Zenodo below and Task 2: Linking GitHub and Zenodo.

Using GitHub and Zenodo

GitHub is a popular tool for project management, content storage, and version control. Note that GitHub itself is not OSS. How ever, Git, the tool w hich it is based

on, is. Git is designed to help manage the source code f iles, and the updates to them, for a softw are-related project. How ever, it can also be extended to other

non-softw are projects; for example, this MOOC!

How ever, getting research onto GitHub is just the f irst step. It is equally important to make it persistent and re-usable, w hich is w hy having a Digital Object Identif ier

(DOI) associated w ith it can be useful. The simplest w ay to do this is through a service called Zenodo, w hich is a free and open source multi-disciplinary

repository created by OpenAIRE and CERN, and can be used to assign a DOI to individual GitHub repositories. There is a GitHub Guide that explains the details,

w hich involve linking GitHub repositories directly through to Zenodo so that w hen developers create formal releases for their softw are, Zenodo creates and

archives a that version of the softw are.

There's nothing special about using Zenodo for creating DOIs, other than its free of cost; other general repositories can also be used, such as DataCite DOI

Fabrica, or your ow n institutional repositories such as Caltech's.

A lot of researchers might typically be afraid of sharing code w hich is incomplete, buggy, or imperfect. How ever, in the OSS community, such a practice of sharing

'raw ' code is fairly commonplace. Sharing code openly enables others to re-use and improve it, as w ell as to engage in a deeper w ay w ith any research

associated w ith it. This is one of the fundamental aspects of peer-collaboration, perhaps best exemplif ied by the traditional process of research manuscript peer

review.

Task 2 w ill guide you through the process of linking a GitHub repository to Zenodo for archiving.

Did you know… All content produced for this MOOC is available as part of a community in Zenodo?

GO TO TASK 2: Linking GitHub and Zenodo

Collaborating and contributing through Open Source

Often, OSS is developed in a public, decentralised, collaborative manner betw een multiple contributors. The purpose of this is to enhance the diversity and scope

of a project and its design, in order to become more beneficial and sustainable. Such an approach w as famously likened to a 'bazaar' model by Eric Raymond, an

early OSS proponent. One of the major guiding principles of this is that of peer production, w hich relies on self-organised communities to regulate the

development of content, co-ordinated tow ards a shared goal or outcome.

OSS projects rely heavily on volunteer collaboration, w hich often entails a constant f lux of new comers in order to become productive and sustainable

(Steinmacher et al., 2014). Creating the right social atmosphere for a project, and a w elcoming engagement environment, are often critical to successful

collaboraitons in OSS.

Where to go from here

Hopefully now you have come to see the importance of softw are as a cornerstone of modern science, and the importance that OSS plays in this.

The learning outcomes from this should be:

1. You w ill now be able to define the characteristics of OSS, and some of the ethical, legal, economic and research impact arguments for and against it.

2. Based on community standards, you w ill now be able to describe the quality requirements of sharing and re-using open code.

3. You w ill now be able to use a range of research tools that utilise OSS.

4. You w ill now be able to transform code designed for their personal use into code that is accessible and re-usable by others.

#GitHub_Zenodo
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/content_development/Task_2.md
#GitHub
https://github.com/OpenScienceMOOC/
https://zenodo.org/
https://guides.github.com/activities/citable-code/
https://doi.datacite.org/
https://www.library.caltech.edu/news/enhanced-software-preservation-now-available-caltechdata
https://zenodo.org/communities/open-science-mooc/
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/content_development/Task_2.md
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/Reading%20Material_Open%20Source%20and%20Open%20Research%20Software/Steinmacher%20et%20al.%2C%202014.pdf

5. Softw are developers w ill be able to make their softw are citable, and softw are users w ill know how to cite the softw are they use.

BONUS TASK

If you have completed Task 1 and Task 2, w e also have a BONUS TASK for you, if you w ant to take your skills a step further. Task 3 w ill take you a step deeper

into integrating Git into a typical research w orkflow by show ing you how to integrate it w ith R Studio. It is recommended that you have completed the f irst 2 tasks

before proceeding w ith this one.

How ever, your Open Source journey does not stop here! This w as just the beginning, and there are some incredible resources out there if you w ould like to do or

learn more:

If you feel particularly inspired by this, you can endorse the Science Code Manifesto, w hich is based on the f ive principles of code, copyright, citation, credit,

and curation.

To launch and develop your ow n project, the Open Source Guides program offers a range of practical guides and skills to help launch and advance your OSS

projects.

For a detailed look at OSS-based research w orkflow s, the Open Science, Open Data, Open Source hand-guide by Pedro L. Fernandes and Rutger A. Vos is

one of the top resources online.

More formalised journal venues also exist for softw are-based articles, including The Journal of Open Research Softw are and The Journal of Open Source

Softw are. A list of such venues is also available.

The PLOS Open Source Toolkit provides a global forum for Open Source hardw are and softw are research and applications.

The NumFOCUS is a nonprofit organization that supports and promotes w orld-class, innovative, open source scientif ic softw are. Some of the projects they

sponsor include:

IPython and Jupyter Notebook initiatives.

rOpenSci, w hich promotes the open source R statistical environment for transparent and reproducible research.

To gain more hands on experience w ith OSS, the Softw are Carpentry community holds regular w orkshops to improve lab-based computing skills (Wilson

et al., 2017).

Further reading

These references here are just the beginning. They include some of the most useful general overviews of the Open Source landscape in research. However, if

you want to be find something more specific to your own research field, then that path is there for you to explore!

The Future of Research in Free/Open Source Softw are Development (Scacchi, 2010).

The Scientif ic Method in Practice: Reproducibility in the Computational Sciences (Stodden, 2010).

The case for open computer programs (Ince et al., 2012).

Current issues and research trends on open-source softw are communities (Martinez-Torres and Diaz-Fernandez, 2013).

Ten simple rules for reproducible computational research (Sandve et al., 2013).

A systematic literature review on the barriers faced by new comers to open source softw are projects (Steinmacher et al., 2014).

Know ledge sharing in open source softw are communities: motivations and management (Iskoujina and Roberts, 2015).

Softw are citation principles (Smith et al., 2016).

An introduction to Rocker: Docker containers for R (Boettiger and Eddelbuettel, 2017).

Good enough practices in scientif ic computing (Wilson et al., 2017).

Four simple recommendations to encourage best practices in research softw are (Jiménez et al., 2017).

Development Team

Alex Morley, Open Sourceror, University of Oxford, UK.

Kevin Moerman, Open Sourceror, MIT, USA.

https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/content_development/Task_1.md
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/content_development/Task_2.md
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/content_development/Task_3.md
http://sciencecodemanifesto.org/
https://opensource.guide/
https://pfern.github.io/OSODOS/gitbook/
https://openresearchsoftware.metajnl.com/
https://joss.theoj.org/
https://www.software.ac.uk/which-journals-should-i-publish-my-software
https://channels.plos.org/open-source-toolkit
http://www.numfocus.org/
http://ipython.org/
https://jupyter.org/
http://ropensci.org/
https://software-carpentry.org/
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/Reading%20Material_Open%20Source%20and%20Open%20Research%20Software/Wilson%20et%20al.%2C%202017.pdf
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/Reading%20Material_Open%20Source%20and%20Open%20Research%20Software/Scacchi%2C%202010.pdf
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/Reading%20Material_Open%20Source%20and%20Open%20Research%20Software/Stodden%2C%202010.pdf
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/Reading%20Material_Open%20Source%20and%20Open%20Research%20Software/Ince%20et%20al.%2C%202012.pdf
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/Reading%20Material_Open%20Source%20and%20Open%20Research%20Software/Martinez-Torres%20and%20Diaz-Fernandez%2C%202013.pdf
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/Reading%20Material_Open%20Source%20and%20Open%20Research%20Software/Sandve%20et%20al.%2C%202013.PDF
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/Reading%20Material_Open%20Source%20and%20Open%20Research%20Software/Steinmacher%20et%20al.%2C%202014.pdf
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/Reading%20Material_Open%20Source%20and%20Open%20Research%20Software/Iskoujina%20and%20Roberts%2C%202015.pdf
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/Reading%20Material_Open%20Source%20and%20Open%20Research%20Software/Smith%20et%20al.%2C%202016.pdf
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/Reading%20Material_Open%20Source%20and%20Open%20Research%20Software/Boettiger%20and%20Eddelbuettel%2C%202017.pdf
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/Reading%20Material_Open%20Source%20and%20Open%20Research%20Software/Wilson%20et%20al.%2C%202017.pdf
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/Reading%20Material_Open%20Source%20and%20Open%20Research%20Software/Jim%C3%A9nez%20et%20al.%2C%202018.pdf
https://twitter.com/alex__morley
https://twitter.com/KMMoerman

Tania Allard, Open Sourceress, Data Enchantress, University of Leeds, UK.

Simon Worthington, Book Liberationist, TIB, Germany.

Paola Masuzzo, Open Source Batman, Italy.

Ivo Grigorov, Open Source Robin, Denmark.

Rutger Vos, Open Sourceror, Naturalis Biodiversity Center, the Netherlands.

Jon Tennant, Dinosaur Whisperer.

Know a way this content can be improved?

Time to take your new GitHub skills for a test-run! All content development primarily happens here. If you have a suggested improvement to the content, layout, or

anything else, you can make it and then it w ill automatically become part of the MOOC content after verif ication from a moderator!

https://twitter.com/ixek
https://twitter.com/mrchristian99
https://twitter.com/pcmasuzzo
https://twitter.com/OAforClimate
https://twitter.com/rvosa
https://twitter.com/protohedgehog
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/content_development/MAIN.md

