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Abstract. Interfacing two liquid mixtures in a diffusion cell induces noise in the initial state of the diffusing
system, that produces a gap between the initial diffusing boundary and the ideally boundary assumed in
the theory. Measured diffusivity values systematically drift with time and they are often corrected by
using a linear shift of the zero-time of the process at sufficiently long times, when the system reaches the
free one-dimensional diffusive regime. In data analysis methods which involve correlation between pairs of
successive digital images of the cell, it is not easy to establish how long the transient lasts. We show that
when the initial perturbation between solution and solvent relaxes slowly toward the diffusive regime, no

simple zero-time correction can be applied.
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1 Introduction

Diffusion is a molecular mass transport process which in
transparent media can be suitable studied by optical ima-
ging techniques, that have a long tradition in visualization
and in flow analysis, being sensitive and non destructive
investigation techniques. A standard method for measu-
ring the diffusion coefficient in liquid binary mixtures is
that of observing a free unidimensional diffusion process:
a sharp concentration gradient is first set up between two
liquids, solution and solvent. Then, the decay of this gra-
dient is observed illuminating the cell with a laser light
beam in a direction perpendicular to the gradient. The
dynamics of the decaying process is described by Fick’s
second law of diffusion, with the initial condition that re-
ferred to the Heaviside step function for the concentration
distribution. A measurement of the time evolution of the
refractive index or of the refractive index gradient profile
gives an estimate of the mass diffusion coefficient [1].
Different experimental methods have been developed
to form an initial sharp diffusion boundary, such as by u-
sing a diaphragm cell [2], the critical temperature to make
fluids in two initial immiscible phases [3] or fluid injection
procedures controlled by capillary tubes [4].The common
objective is to set up the initial state reducing at minimum
any source of noise, which tend to perturb the relaxation
process of the concentration gradient. In any case, the ini-
tial experimental state differs from the theoretical one, be-
ing a hard task to place two miscible liquids in a Heaviside
step initial state. The gap, between experimental observa-
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tions and theoretical predictions, systematically induces a
noise on the measured value of the diffusion coefficient.

In order to bypass this problem, Longsworth [5] has
proposed modelling the initial experimental state as an
initial mixing state, and to extrapolate the zero time of
the theoretical initial step by a linear fit on data distri-
bution as a function of time, for sufficient enough time
from the initial time. The zero-time linear shift correc-
tion is then the time interval that must be added to the
recorded time in order to obtain the correct value of the
diffusion coefficient. The underlying hypothesis of having
the whole data set in the unperturbed free diffusive regime
is guaranteed by the linear fit on data.

In correlation analysis techniques is not simple to de-
termine if a data sample is all in the unperturbed free
diffusive regime in order to applied the zero-time correc-
tion. A linear shift of the initial time is sometimes assumed
a priori in data analysis methods which involve time cor-
relations between pairs of digital images of the cell, as in
optical methods developed to measure the refractive index
variation with concentration [3],[6-9]. Moreover, it takes a
finite time &ty to place two fluids into contact to form the
initial state, which also induces uncertainty on fixing the
experimental zero time on a reference frame, therefore, dtg
should be held as low as possible. By using fluid injection
procedures, a low value of §ty might induce larger noisy
fluctuations on the interfacial region of the two liquid mix-
tures and longer transient dynamics. Longsworth [5] has
also warned that, when the boundary between solution
and solvent is perturbed over the period of time during
which it is being set up, no simple linear zero-time correc-
tion might be applied. In this paper we report the result
of a data analysis investigation developed to observe the
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Fig. 1. Absolute and relative profiles of the light ray displace-
ment y, observed from the image point y of the cell at the times
t1 = 35min and t2 = 75man in a diffusion cell with thickness
£ =1.0cm and diffusion coefficient D = 1.54-10"°cm?/s. The
relative profile is d = y, (t2) — yu (t1).

relaxation process of the concentration gradient in time
correlation data analysis in a cell filled by injection. We
consider the diffusion of 1.75 M NaCl aqueous solution in
pure water while it is undergoing free diffusion in a cell
filled through injection. By using Digital Speckle Photo-
graphy technique [10] we observe the dynamics of speckled
patterns generated by a laser light beam which is bent
passing through the cell. Speckle’s displacements are then
measured in the correlation mode developed by the Par-
ticle Image Velocimetry (PIV) techniques [11]. We find a
noise-to-signal ratio which decays faster than expected in
the case of noise modelled by a linear shift of the zero-
time but with a long relaxation time, much greater than
the injection time, 7 >> dtg. We get the mass diffusion
coeflicient corresponding to the unperturbed free diffusion
limit.

2 Theoretical background

Emerging from a point of the exit face of a diffusion cell, a
light ray travels a path inside the diffusing medium which
depends on the optical properties of the material. The
propagation of a light ray in a refractive index field is
described by the ray equation [12]:

2 () < v o

where r is the vector position of a point on the ray path
and s a curvilinear abscissa. In a one-dimensional diffusion
process, the refractive index is function of only one spatial
variable, n = n(y,t), then the two-dimensional trajectory
of a light ray propagating along the optical z-axis of an

imaging system, in paraxial approximation, is given by
solving the system of differential equations:
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ray path. The resulting equation is:
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where v = ndz/ds = ncos¢ is constant over the path of
the ray, ¢ is the angle that the light ray makes with the op-
tical z-axis. A binary system of two liquid mixtures, solu-
tion and solvent, initially separated at the surface y = yo,
in a column with rectangular cross section, evolves follow-
ing Fick’s second law. The refractive index field of dilute
electrolyte solutions depends linearly on the concentra-
tion, and for the given initial and boundary conditions it
is expressed by [13]:

Ano Y—1Y0

2 7 <2\/E ) )
where D is the diffusion coefficient, n,,, the refractive index
of the fluid at the end of the diffusion process and An,
the initial difference between the refractive index of the
two liquid mixtures. The initial ¢ = 0 state corresponds to
a sharp gradient expressed by the Heaviside step function

with the solution in the region at y — y, < 0.
When An,/2n,, << 1, one gets from Eq. (4):

n(yvt) = Nm —

Py

dz?
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while the refractive index gradient, from Eq. (5), has a
Gaussian distribution

dn _ An, [_
dy ~ varpi P

and, therefore, Eq. (6) does not have an analytical solu-
tion. For a smooth relaxation of the concentration gradi-
ent, the refractive index and its gradient are fairly con-
stant along the path of the ray. At the end of the diffu-
sion cell the bending angle ¢, for a light ray entering the
medium in a direction perpendicular to the gradient, is
given by
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The ray is focused by a lens on the imaging recorded sy-
stem of a digital CCD cameras when tan ¢y ~ ¢, and
a linear backward extension to the input plane gives the
virtual position y,(t) = y — £¢e(t) where it is viewed
coming in by the CCD matrix at the image point y . A
relative displacement d proportional to the change of the
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Fig. 2. Experimental set-up for diffusivity measurements by Digital Speckle Photography

ray deflection is observed, at two instances in time ¢; and

to [14,15):
2
) ER e

Figure 1 reports the profile distributions as function of the
image position y, which are obtained solving numerically
Eq. (6) using a fourth-order-Runge-Kutta method [16] in
order to check the assumption made in Eq. (8) for the
experimental conditions An,/n,, = 1.3 x 1072. The ray
tracing along the cell and the backward extension, from
the image position y, are obtained for light beam crossing
the cell at times t; = 35 min and ¢t9 = 75 min for a
diffusion process with constant D = 1.54-107%cm?/s in a
cell of thickness ¢ = 1.0 cm.

The displacement profile in Eq. (9) has two principal
characteristics: the relative distance w between the two
turning points of reference d = 0, which are related to the
maximum and the minimum value of the concentration
difference at times ¢; and to,

o 8Dln(t2/t1)
CEN G -1/t

and the principal change of the refractive index gradient
at Y = Yo,
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dy
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3 Experimental set-up

Figure 2 shows a schematic drawing of the set-up. We use
a classical spectrophotometric glass cell of internal dimen-
sions 10mm x 45mm and path length ¢ = 10 mm along
the optical axis. The light source is a laser diode beam
of wavelength A = 638.5 nm and maximal power of 5 mW
(Lasiris by Stocker Yale). The laser beam is expanded and
then collimated to illuminate the cell. A ground glass dif-
fuser is placed at the laser entrance surface of the cell.
When the ground glass diffuser is illuminated by the laser
beam the refracted light assumes a speckled pattern cha-
racterized by random distribution of scattered light. The

phase distribution of this pattern is sensitive to the refrac-
tive index changes of the medium through which the light
travels [17-19]. Speckled fields are then used in digital i-
mage correlation methods to measure the displacements
of the laser beam in the refractive index fields of the diffu-
sion cell, they are recorded through a lens on the matrix
of the CCD camera Silicon Video 9T001C of 2048 x 1536
resolution and 3.2um x 3.2um pixel area size. A TEC-55
55mm F /2.8 Telecentric Computar Lens reduces viewing
angle error and magnification error providing good resolu-
tion and contrast. The speckled pattern visibility and the
spatial resolution are optimized for an average speckle dia-
meter of 4 pixels, relative to the pixel size in the camera,
and an aperture of f/8 of the lens [20].

Experimental measurements are performed considering
the diffusion of a 1.75 M (moles [~!) solution of NaCl in
pure water at T' = 26°C. The ambient air temperature in
the room is controlled by the air condition system of the
laboratory, the air bath temperature is confirmed near the
cell.

In dilute aqueous electrolyte solutions the refractive in-
dex increases linearly with the concentration. The specific
refractive index increment is v = 1.70 - 10~ 1mi/g for the
wavelength A\ = 638.5nm, as extrapolated from data in
the literature [21]. The refractive ratio for the binary mix-
tures is then : An,/n, = vAc/(n, +vecy) = 1.301-1072
where Ac is the initial concentration difference between
the solution of NaCl and water, ¢, their average value
and n, = 1.331 the refractive index of water [22].

The diffusion cell is first half filled with the solvent,
pure water, and then the NaCl aqueous solution is slowly
injected from the bottom using a capillary tube. Both so-
lution and solvent are allowed to equilibrate at the room
temperature before they are injected into the cell. At the
end of the injection process, which takes a time interval
ot, ~ 40s, a sequence of single exposure image are ac-
quired by the CCD camera for eighty minutes of working
camera.

Then, pairs of successive image frames are processed
off-line by means of image processing analysis based on
the cross-correlation technique used in PIV [23] in order
to measure the displacement of the refractive index gradi-
ent profile that takes place during the time interval that
separates the two recorded speckled fields. Local displace-
ments are statistically evaluated by correlating speckles
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Fig. 3. Schematic representation of the imaging set-up in PIV.
The position of the cross-correlation peak gives the displace-
ment.

contained within sub-images, the interrogation windows,
placed at the same location of the two successive recorded
images. Data analysis are performed using the adaptive
cross-correlation algorithm developed by Astarita and his
group [24-27], which is based on recursive correlation pro-
cessing techniques to iteratively arrive at the local dis-
placement, decreasing the interrogation window size du-
ring a multipass approach. The final interrogation window
size is set to Ly x L, = 10 pizel x 50 pizel to obtain a bet-
ter resolution in the direction of the diffusion, and to have
about 30 speckles as statistical sample to reduce the un-
certainty of the measurement. The cross-correlation proce-
dure results in a signal peak in the correlation plane, which
is a 2-dimensional pixel vector shift. The signal component
along the cell diffusion direction y is then set equivalent
to the relative ray displacement d of Eq.(9) by the optical
magnification of the camera, a schematic graph is given in
Fig.2. The camera calibration gives one pixel correspon-
ding to a distance of 12.57um along the diffusing cell. Ten
pairs of final windows are used for the ensemble averag-
ing, along the horizontal direction x, to get the resulting
displacement value.

4 Principles of measurements

An ideal classic one-dimensional free diffusion process starts

with two miscible liquids, solution and solvent, initially
separated by a sharp horizontal surface y = yo at the ini-
tial time ¢ = 0 in a diffusion cell. The variance of the
refractive index gradient profile, in Eq.(7), spreads from
the initial boundary proportionally to the elapsed time,
as 0 = 2Dt.

Real diffusion experiments set up the interface between
the two liquids mixtures by a procedure, which takes a fi-

nite time and blurred the initial diffusing boundary from
the ideal boundary assumed in the theory, that produces
an uncertainty on fixing the time of the undisturbed dif-
fusing process. The measured diffusivity values D, drift
with time.

The simplest case is when the diffusivity drift can be
modelled assuming a linear zero-time shift ¢y from the
time ¢ = 0 the boundary is experimentally formed and the
plot of the measured values D; against 1/¢ is linear. This
effect has been shown for the first time by Longsworth [5]
with a Gouy interferometer, by using two dilute electrolyte
solutions set up in a Lamm diaphragm cell.

The zero time correction is obtained first by measur-
ing the position of the most deflected ray light as function
of time, which is proportional to the maximum height
H,, = Ang//47D(t — ty) of the refractive index gradi-
ent profile, and then extrapolating linearly to 1/H2, = 0,
which gives the exact zero time ¢y of the process. The
zero time is usually located at an earlier time from the
time ¢ = 0 the boundary is set up, being related to the
thickness A ~ /Dty of the blurred initial boundary in
the diffusion cell. Thus, a constant increment t; must be
added to the observed time ¢ to obtain the corrected value
D of the diffusion coefficient. The drift with time induced
on the measured diffusion coefficient, for sufficiently large
values of ¢t and in the absence of time correction, is then

ADa o (12)
D t

with AD; = Dy — D where D, is the diffusion coefficient
measured at time t .

In data analysis methods which involve temporal cor-
relation between time points, ¢t = t and t5 = t + At,
the drift with time induced on the measured diffusivity
depends on the methods chosen for the estimation of the
diffusivity. For example, if the principal relative change h
of the refractive index gradient in Eq.(11) is detected then
this is:

h(t,t + At, Dy) = h(t + to,t + to + At, D)

from which follows

ADhN( Vi =1+ At )2_1 13)
D T \Iith-1/Nith T AL

with ADy = Dy — D, where Dj, is now an averaged co-
efficient in the time interval from ¢ to t + At, at y = yo.
Instead, considering the relative distance w between the
two turning points expressed by Eq.(10),this is:

w(t,t + At, Dy) = w(t + to, t + to + At, D)
from which follows

ADy  (t+to)(t +to + At) In[l + At/(t + to)]

~ —

D t(t + At) In(1+ At/t)

(14)
with AD,, = D, — D, where D,, is now an averaged co-
efficient in the time interval from ¢ to ¢t + At and in the
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Fig. 4. Experimental data (squares) obtained for diffusion of

NaCl solution in pure water with ¢t; = 35min and t2 = 75 min.
Solid line is the least square best fit, using Eq.(16);

range y = yo+w/2 . In both cases the underlying assump-
tion that the diffusion proceeds undisturbed is not easy to
confirm from observed data distributions because now the
zero-time of the diffusion process can not be linearly ex-
trapolated from data.

In measurements which involve Gaussian refractive in-
dex gradient profiles, a noise can be modelled by adding a
noise variance term o2. Thus, at the time ¢, the variance
of the dynamic process is 0? = 2Dt + 02 = 2D;t. The
measured diffusivity D, is scattered by time as:

Dy =D+ 02 /2t. (15)
If the diffusion process evolves undisturbed then the noise
variance o2 is expected to be constant. This is equivalent
to having a linear zero time shift o = 02 /2D on the mea-
sured time ¢. In order to separate signal from noise, we
have extracted the temporal behaviour of the diffusivity
Dy, in time correlation analysis, by fitting the experimen-
tal displacement profile of the refractive index gradient
to the theoretical prediction of Eq. (9) at the two diffe-
rent time correlation points ¢; and t5. The data profile has
been fitted through the least-square method [28] by mini-
mizing the sum of the squares of the differences between
data and the model, with the diffusivity D; at t = t; and
D5 at t =ty as free parameters:

d= M[;ex <_ y2 >+
N Qnmﬁ \/Dgtg b 4D2t2

+

1 )] (16)
exp | — .

VDit, P\ 1D,
The central position, fixed at yo = 0, had been previously
found by using a polynomial fit in order to detect the
position of the principal change of the data profile. The
spatial interval used for fitting is [—7mm, Tmm] in order
to cut off the tail of the gradient profile, at the lower

and the upper range, avoiding board effects. Moreover,
this interval always encompasses the relative distance w
between the two turning points d = 0 of Eq. (16), which
is now expressed as

o 81H(D2t2/D1t1)
YN D) T (Datn)

Figure 4 shows a comparison between experimental data
and the model after fitting. Table 1 reports the values of
the apparent diffusion coefficient D; obtained for different
time correlation points ¢; and t5. The fitting procedure
also returns the values of diffusivity for the two regions
which are separated by the interface at yy = 0, these are
Dyt for positive values of i, and D, for negative values of
y, for each of the two values of time t; and t3. The two
regions are not symmetric as is expected in the case of an
undisturbed free diffusion process. In each region, a small
change ¢ = DF — D, of the diffusivity, at each time, is
related to the relative change % of the position of the two
turning points of Eq. (16) as

(17)

1 ow
oy Lo
t=1,2 20D,
2 DE — D,
= Doty — 1
U)[(Dltl)71 — (Dgtg)fl} |: D1 (’)/ 2t2 ) +
D, — DF
+ % (vDrty — 1)} (18)
2

where v = (D2t2 — Dltl)*lln(Dgtg/Dltl).

In the low concentration region, y > 0, we observe
DY > D; and Df < D,, which both give 6+ > 0. Instead,
the opposite behaviour is detected in the high concentra-
tion region, y < 0, where D] < D; and D, > D, with
6~ ~ —¢6*, which leave the width w almost unchanged.
Table 1 depicts evaluated % values at time correlation
points t; and ts.

The asymmetry of the diffusivity detected in the two
regions decreases with time. This suggests that for suffi-
ciently long times the refractive index gradient profile will
converge to the Gaussian profile of the unperturbed free
diffusion process. The validity of the zero-time correction
depends upon the assumption that the concentration di-
stribution is expressed by Eq. (5) and, then, the gradient
distribution is Gaussian.

Figure 5 shows the diffusivity values D; as function of
time, the uncertainty is set equal to the average diffusivi-
ty changes € detected in the two regions separated by the
boundary yg = 0. This plot shows that the diffusivity rate
of decay is faster than that expected assuming a constant
noise variance o2 in Eq. (15). Therefore, it might be con-
nected to a more complex noise dynamics induced during
the injection of fluid in the cell, assuming the diffusion
constant independent of concentration.

Fluid injected in a cell can generate long range com-
ponents of noise, varying temporally and spatially, as a
consequence of initial macroscopic caotic environmental
fluctuations around the interfacial region and their subse-
quent decay bounded by gravity and the finite dimensions
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Table 1. Diffusivity values at times ¢, and ¢ and relative displacements 8% of the two turning points by Eq.(18). DT and D~
are the diffusion coefficients obtained by fitting through Eq.(16) only negative and positive y values, respectively.

t D Df Dy ta Dy Dy  D; 5t 5
(min) (107%m/s?) (min) (107%m/s?) (%)

25 1.759 1.794 1.724 50 1.559 1.540 1.580 || 0.27 -0.24
25 1.716 1.766 1.665 55 1.541 1.524 1.560 || 0.57 -0.55
30 1.645 1.670 1.621 60 1.570 1.550 1.590 || 0.14 -0.12
30 1.650 1.670 1.630 65 1.553 1.539 1.567 || 0.14 -0.14
30 1.665 1.700 1.630 70 1.540 1.530 1.550 || 0.45 -0.45
35 1.591 1.619 1.561 60 1.524 1.517 1.531 || 0.37 -0.40
35 1.612 1.640 1.583 65 1.535 1.525 1.545 || 0.33 -0.34
35 1.635 1.670 1.600 70 1.550 1.540 1.560 || 0.74 -0.74
35 1.633 1.662 1.602 75 1.540 1.530 1.550 || 0.35 -0.39
40 1.585 1.611 1.559 80 1.542 1.534 1.550 || 0.34 -0.34
45 1.553 1.572 1.533 80 1.543 1.535 1.553 || 0.22 -0.21

of the cross section of the cell. These perturbations are
expected to die away through a homogenization process,
relaxing toward the dominant dynamic process in the cell.
The variance of noise in Eq. (7) is then expected to be time
correlated and its decay rate characterizes the fluctuating
field [29-31]. As a rough estimation, we fit the data on
the plots of Fig. 5 by assuming an exponentially decaying
mode of the Gaussian noise variance, 02 = \exp(—t/7),
with A related to the initial contour domain of the noise
field and 7 the mean life time of the decaying process.
We model the noise dynamics on the time scale of the
diffusion as a superposition of normal mode with differ-
ent wavelengths with A = v2D7 the dominant average
wavelength, this gives:

T exp(—t/T)
t

D;=D |1+ (19)

where the diffusion coefficient D and the noise life time
7 are the fitting parameters. The weighted least square
fitting technique is now performed to obtain the corre-
sponding parameter values, with the weights given by the
uncertainty on Dy taking into account the different impact
of noise on measurements.

The estimated diffusion coefficient, at a confidence level
of 95%, is D = (1.539 £ 0.013) - 10~?m?/s. The mean life
time of decaying noise field is 7 = (15 £ 2)min, which
is much greater than the injection time dtg = 0.67min,
it could be considered as the timescale crossover to the
unperturbed free diffusion process. The dimension of our
sample, data collected up to time ¢ = 80 min, is not large
enough to be also sensitive to the zero-time correction in
the unperturbed free regime.

5 Conclusion

There are few data available to check the result. The most
useful are those obtained by Riquelme et al. [32], through
optic interferometric measurements, in similar experimen-
tal condition of the binary mixture and the diffusion cell.

They have developed two methods to measure the dif-
fusion coefficient in time correlation data analysis. They
have also detected asymmetry of the diffusion coefficients
at positive and negative y values. No zero-time correction
was applied to their data.

Results were D = (1.587 £ 0.05) - 1079m?/s and D =
(1.602+0.05) - 1072m? /s, both are in agreement with the
behaviour of the mean value and the standard deviation of
all our diffusivity values reported in the Table 1: < D; >=
(1.593 4 0.064) - 10~2m?/s.

Riquelme et al.[32] also extrapolated some experimen-
tal data from literature to obtain expected values of the
diffusion coefficient in order to compare them with their
experimental results. The extrapolated values are in the
range (1.522 — 1.559) - 10~9m?/s.

In this range we also find the diffusion coefficient value
D = (1.539 £ 0.013) - 10~9m?/s obtained by extrapo-
lating the diffusivity data sample in Fig. 5 toward the
unperturbed one-dimensional diffusion regime. No zero-
time correction was applied.

1.80 —————————— 11—

1.75 4 B

1.70 4 B

1.65 -

-9 2
D, (10°m/s?)

1.60 -

1.55 4 -

1.50 T T T T T T T T T T T T
20 30 40 50 60 70 80

t (min)

Fig. 5. The diffusivity D; as function of time. Solid line is the
weighted least square best fit, using Eq.(19);
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