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Abstract Arctic sea ice plays a central role in the Earth’s climate. Changes in7

the sea ice on seasonal-to-interannual timescales impact ecosystems, populations8

and a growing number of stakeholders. A prerequisite for achieving better sea9

ice predictions is a better understanding of the underlying mechanisms of sea ice10

predictability. Previous studies have shown that sea ice predictability depends on11

the predictand (area, extent, volume), region, and the initial and target dates. Here12

we investigate seasonal-to-interannual sea ice predictability in so-called “perfect-13

model” 3-year-long experiments run with six global climate models initialized in14

early July. Consistent with previous studies, robust mechanisms for reemergence15

are highlighted, i.e. increases in the autocorrelation of sea ice properties after an16

initial loss. Similar winter sea ice extent reemergence is found for HadGEM1.2,17

GFDL-CM3 and E6F, while a long sea ice volume persistence is confirmed for18

all models. The comparable predictability characteristics shown by some of the19

peripheral regions of the Atlantic side illustrate that robust similarities can be20

found even if models have distinct sea ice states. The analysis of the regional sea21

ice predictability in EC-Earth2.3 demonstrates that Arctic basins can be classified22

according to three distinct regimes. The central Arctic drives most of the pan-23

Arctic sea ice volume persistence. In peripheral seas, we find predictability for the24

sea ice area in winter but low predictability throughout the rest of the year, due25

to the particularly unpredictable sea ice edge location. The Labrador Sea stands26

out among the considered regions, with sea ice predictability extending up to 1.527

years if the oceanic conditions upstream are known.28
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1 Introduction30

Sea ice is an early indicator of climate change and an amplifier of climatic pertur-31

bations (e.g., Serreze and Barry, 2011; Vihma, 2014). At seasonal-to-interannual32

timescales, sea ice may influence the climate of mid and high latitude regions (e.g.,33

Deser et al., 2010; Francis and Vavrus, 2012; Liu et al., 2012; Yang and Christensen,34

2012), as well as the Arctic Ocean biology and atmospheric chemistry (Bhatt et al.,35

2014). The rapid decline in sea ice in the past few decades, associated with polar36

temperature amplification, resulted in the scientific community paying more at-37

tention to predictions at seasonal-to-interannual timescales. For example, reliable38

predictions of sea ice conditions in maritime shipping routes in the Arctic, e.g. the39

Northwest Passage or the Northern Sea Route, would help the planning of shorter40

and cheaper trade routes between the Atlantic and Pacific Oceans (Hassol, 2004),41

and could benefit the growing ecotourism industry in the Arctic.42

Sea ice predictability has been assessed in various frameworks, including ideal-43

ized perfect-model experiments. In such experiments, model simulations are used44

as a surrogate for the real climate, to estimate the extent to which the model can45

predict itself. Ensemble predictions are initialized from a control run by introduc-46

ing small perturbations. Potential predictability is a measure of the amplification47

of those perturbations, i.e. the fraction of the signal which is inherently not pre-48

dictable. Such experiments using state-of-the-art models also provide an indication49

of the maximum level of skill that could be achieved in real predictions if all the ob-50

servations required to initialize the predictions were available, and if all processes51

were perfectly represented by the models.52

Tietsche et al. (2014) performed the first multi-model evaluation of Arctic sea53

ice potential predictability on seasonal-to-interannual timescales, in a coordinated54

perfect-model framework defined in the Arctic Predictability and Prediction on55

Seasonal-to-Interannual Timescales (APPOSITE) project (Day et al., 2016; Ti-56

etsche et al., 2014). Each of the seven participating groups ran a set of 3-year long57

ensemble prediction experiments, initialized from a present-day control experiment58

near July 1. They showed that even if two models have significant predictability59

-based on a comparison of the ensemble spread and the natural control variability-60

for the sea ice volume (SIV; up to 3 years) for similar forecast times, differences61

in the representation of local advective processes could lead to large differences in62

the regional sea ice thickness (SIT) predictability. They suggested that advective63

sea ice processes may induce an amplification of forecast errors close to the coasts64

in the Arctic Ocean in winter.65

A similar perfect-model approach was also followed by Day et al. (2014). In a set66

of 5 models, they found similar SIE predictability reemergence mechanisms (which67

is the increase of predictability after an initial drop), consistent with the summer-68

to-summer and melt-to-freeze mechanisms described by Blanchard-Wrigglesworth69

et al. (2011). They also found that when starting the predictions in May, the70

forecasts lost skill more rapidly in the first 4 months than when initialized in71

January or July. Another robust result was that the SIE in the seasonal ice zone72

of the North Atlantic region is significantly predictable 1.5–2.5 years ahead, while73

in the central Arctic it is less than 1 year (Day et al. (2014) defined predictability74
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as the timescale for which the ensemble root-mean-square-error (RMSE) is below75

the climatological RMSE, using an f test for significance).76

Several studies have focused on the sea ice predictability of different Arctic77

basins (Bushuk et al., 2018; Cheng et al., 2016; Day et al., 2014; Koenigk and78

Mikolajewicz, 2009). However, the mechanisms behind the regional sea ice pre-79

dictability are not yet well established. To understand the Arctic sea ice cover80

predictability, a regional approach is needed to disentangle the different drivers81

of variability, which depend on the location (e.g. Bitz et al., 2005; Francis and82

Hunter, 2007; Schlichtholz, 2011; Tietsche et al., 2016). For instance, Bitz et al.83

(2005) showed that the ocean heat flux convergence is a large heat source in the84

marginal ice zone of the Barents Sea, but a relatively small source in the Labrador85

Sea. Likewise, Francis and Hunter (2007) suggested that the zonal wind anomalies86

influence the Bering Sea winter ice edge location, while the Barents Sea ice edge87

seems to be controlled primarily by anomalies in SST during the late winter and88

by anomalous meridional winds.89

Regional metrics tend to have lower predictability than integrated ones (e.g.90

Day et al., 2014; Goessling et al., 2016). Blanchard-Wrigglesworth et al. (2016)91

highlighted this contrast between pan-Arctic and regional predictability with a92

multimodel approach, where all models initialized with identical SIT could uni-93

formly predict September SIE anomalies, but did not show agreement regarding94

the spatial SIC anomalies patterns.95

In the present paper, we perform a regional sea ice assessment for six of the96

APPOSITE project models, with a focus on the European Consortium Earth97

System Model version 2.3 (EC-Earth2.3 hereafter; Hazeleger et al. (2012)), since98

mechanisms of predictability can be investigated in greater depth for this model99

by, for example, projecting water mass backward trajectories. In this context,100

we consider sub-regions in the central Arctic and in the margins connecting the101

Pacific and Atlantic Oceans. We also relate the highlighted mechanisms to those102

previously attributed to pan-Arctic sea ice predictability (including persistence103

and reemergence).104

This paper is structured as follows: In section 2, we describe our methodology,105

including the experimental protocol and the metrics used to quantify sea ice po-106

tential predictability. Section 3 presents the assessment of Arctic sea ice potential107

predictability at the pan–Arctic and regional scale for each of the APPOSITE108

models (except CanCM4). Section 4 discusses the mechanisms behind the regional109

sea ice predictability of EC-Earth2.3 and section 5 provides the main conclusions.110

2 Methodology111

2.1 Multimodel analysis and experimental setup112

We estimated an upper limit for the predictability of Arctic SIE and SIV using113

six of the seven coupled global climate models from the APPOSITE project (Day114

et al., 2016): EC-Earth2.3 (Hazeleger et al., 2012), MIROC5.2 (Watanabe et al.,115

2010), HadGEM1.2 (Johns et al., 2006; Shaffrey et al., 2009), GFDL-CM3 (Donner116

et al., 2011; Griffies et al., 2011), MPI-ESM (Jungclaus et al., 2013; Notz et al.,117

2013) and E6F (Sidorenko et al., 2015). The CanCM4 model was discarded because118

of its short control simulation length. These models have already been evaluated119
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in the multimodel assessment of Tietsche et al. (2014), and a few characteristics120

of the APPOSITE simulations are shown in Day et al. (2014).121

Each APPOSITE working group provided a control simulation (hereafter re-122

ferred to as ControlRun) and a set of predictions that started from the control123

(hereafter referred to as IdealPred). In this paper we use the predictions that were124

started from July. Note that in this perfect-model protocol, the ControlRun is125

also the reference dataset for evaluating the performance of the idealized climate126

predictions.127

Each prediction member has a slightly different perturbation of the initial128

state obtained by introducing a 10−4 K magnitude white noise in the sea surface129

temperature (SST). The start dates were selected to sample a range of high, low130

and medium sea ice states, with consideration of the Atlantic heat transport into131

the Arctic (AHT hereafter; calculated as the heat transport through the section132

formed by the sum of the Fram Strait plus the Barents Sea Opening, represented133

by the black thick lines in Fig. 1). Start dates are spaced sufficiently apart in time134

to make them as independent as possible. More details can be found in Day et al.135

(2016).136

2.2 Diagnostics137

Our analysis is performed using monthly data for the pan-Arctic SIE and SIV.138

Regional assessment is done for the basins shown in Fig. 1.139

In this study, potential predictability is estimated both in a prognostic and140

diagnostic way (Boer, 2004). Simple estimates of the diagnostic potential pre-141

dictability are calculated using lagged anomaly correlations in the ControlRun as142

in Blanchard-Wrigglesworth et al. (2011). The prognostic potential predictability143

uses the methodology described in Pohlmann et al. (2004), and is estimated using144

both the control simulation and the idealized experiments.145

In both cases, anomalies are calculated as follows. For each date, a 40-year-146

window taken from the ControlRun and centered around that date is used to filter147

out low-frequency variability and the remaining long-term drift. The mean annual148

cycle over that period is used as a reference to compute the anomalies in the149

IdealPred experiments. To be consistent, we also apply this protocol to determine150

the anomalies across the ControlRun, using 40-year running windows, as:151

Z′g = Zg − Z
[−20y;+20y]
g (1)

where g is the selected month of the raw data Z, Zg is the average of the 40152

same calendar months around the selected date and Z′g is the anomaly of month153

g compared to the average annual cycle of the 40-year window.154

Following this, the natural variability is calculated as:155

σc(g) =

√∑Yl

Y0
(Z′g(y))2

Yl − Y0
(2)

where Z′g(y) is the anomaly for month g and year y, Y0 and Yl are the first156

and last year, respectively, considered in the summation. Note that the use of the157

40-year running windows excludes 20 years at the beginning and end of the whole158

simulation.159
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Figure 1: Map of the Arctic seas as defined in this study. The black lines indi-
cate the sections used for the calculation of the Atlantic heat transport into the
Arctic (Fram Strait plus Barents Sea Opening). The GIN region is formed by the
Greenland, Icelandic and Norwegian seas.

The level of potential predictability is estimated using the intra-ensemble spread160

(i.e. the spread around the ensemble mean), as a function of the forecast time:161

σe(t) =

√∑M
m=1

∑S
s=1 (Zm,s(t)− Zs(t))2

M · S (3)

where M is the total number of members, S is the total number of start dates,162

Zm,s(t) is the predicted value of our variable at forecast time t for ensemble mem-163

ber m initialized at start date s and Zs is the predicted value for the same start164

date and forecast time averaged across the whole ensemble.165

We consider the prognostic potential predictability (PPP hereafter; Germe166

et al., 2014; Pohlmann et al., 2004). The PPP compares the ensemble spread with167

an estimate of the amplitude of the natural variability of the system based on168

the standard deviation of the control simulation (e.g. Koenigk and Mikolajewicz,169

2009). It is an estimate of the initial predictability and is defined as:170

PPP (t) = 1− σ2
e(t)
σ2
c(g)

(4)

where σ2
e is the variance across the ensemble members (IdealPred) at forecast171

time t and σ2
c is the variance of the control integration ControlRun for the relevant172

month g. A PPP value of 1 would mean that the system is perfectly predictable173

(i.e. the ensemble members of the predictions did not diverge over time), whereas174
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a PPP value of zero or less indicates that there is no predictability because the175

ensemble spread is equal to that expected from natural variability (Holland et al.,176

2011). Unlike the RMSE, this metric allows us to compare the dispersion of the177

ensemble with respect to the reference variability in a single number, giving us an178

idea of the proportion at every timescale, even when both of them are very small179

and similar.180

3 Multimodel potential predictability of pan–Arctic and regional sea181

ice182

Pan–Arctic sea ice. The pan-Arctic SIE PPP decreases at a similar rate for the183

first six months after initialization for all models (Fig. 2a). From the first Decem-184

ber there is a consistent predictability reemergence for HadGEM1.2, GFDL-CM3185

and E6F every winter, but a lack of significant predictability during the summer.186

The dominance of the positive ice-albedo feedback could explain the faster intra-187

ensemble spread growth (the decrease of PPP; see formula 4) during the melting188

season, whereas the increase in PPP during the freezing season could originate from189

the negative ice thickness-growth rate feedback, acting as amplifiers and damp-190

eners of the initial perturbations of the sea ice conditions, respectively (Tietsche191

et al., 2014). This seasonality in the signal is not present in MPI-ESM, for which192

SIE is not significantly predictable beyond December Year 1. For EC-Earth2.3 the193

PPP decrease is sharper after the first October, when the sea ice gradually spreads194

across the interior of the Arctic basin and peripheral seas outside the Arctic Ocean.195

The significant reemergence before the second freezing season seems to be charac-196

teristic of EC-Earth2.3, although MIROC5.2 also presents a significant PPP the197

second and third July. This might be related to an "early" summer-to-summer198

predictability mode for July, as can be seen in their correspondent lagged corre-199

lation matrices (Fig. 2 of the supplementary material). This mechanism does not200

appear for the rest of models in July, but it does in September (Fig. 2 of the sup-201

plementary material). The summer-to-summer memory reemergence has its origin202

in the summer SIT memory (from the central Arctic) (Blanchard-Wrigglesworth203

et al., 2011). Over three continuous years, the central Arctic September SIV and204

the SIE are correlated in September (Fig. 3, red line) for all models.205

The long-lasting IdealPred SIV potential predictability (Fig. 2b) is related to206

the persistence of the SIV, as shown by the lagged correlations calculated from207

the ControlRun (Fig. 3 of the supplementary material). HadGEM1.2 does not pass208

the test of significance for the PPP for any leadtime due to the strict criteria we209

applied: we removed the points where more than half of the corresponding values210

are lower than 1% of the average anomaly or zero. The persistence of the SIV at211

the pan-Arctic scale arises almost entirely from the central Arctic SIV persistence212

(Blanchard-Wrigglesworth et al., 2011), as suggested when the lagged correlation213

of the central and pan-Arctic SIV are compared (Fig. 3, blue and black lines214

correspondingly).215

In the following, we split the Arctic Ocean and surrounding basins considered216

in Fig. 1 into two groups, based on their seasonality: group one is the peripheral217

basins including the summer ice-free regions (Barents Sea, Kara Sea, GIN seas,218

Irminger Sea, Baffin Bay, Labrador Sea, Hudson Bay, Bering Sea, Sea of Okhotsk219

and Chukchi Sea), and group two is the internal Arctic seas, or the seas that are220
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Figure 2: Potential predictability of the pan-Arctic (a) SIE and (b) SIV measured
with the PPP of IdealPred using the natural variability of ControlRun as a ref-
erence. Dots indicate significant values at the 95% level, estimated by an F-test.
Significant data points where more than half of the corresponding values in the
control are zero were removed. The data points where more than half of the control
are lower than the 1% of the average anomaly, for each predictand, month and
region were also removed. September and March are marked by thin gray vertical
lines.

entirely ice covered during winter (the “central basins”; central Arctic, Canadian221

Archipelago, Beaufort Sea, East Siberian Sea, Laptev Sea).222

Peripheral basins. A regional analysis revealed large variations in the SIE and223

SIV potential predictability (Fig. 4-5). Nevertheless, some common features can be224

seen. For instance, in all the peripheral basins (except Hudson Bay and Chukchi;225

Fig. 4a–j) the PPP shows the same temporal pattern for the SIE as for the SIV (for226

each model individually), which reflects the correlation between ice concentration227

and ice thickness in those regions with a thin ice cover. In the Barents, Kara and228

GIN seas, and in Baffin Bay, sea ice is present in July at the start of IdealPred229

for all models. The PPP initially decreases, before peaks of reemergence occur at230

different lead times depending on the model and basin. The Barents, Kara and231

Chukchi seas SIV PPP exhibit a significant predictability reemergence in summer232

for most models. This might be directly linked to the retreat/advance mechanism233

of predictability (Blanchard-Wrigglesworth et al., 2011; Stammerjohn et al., 2012).234

We can cluster the GIN and Baffin Bay within the same group: there is an initial235

predictability drop followed by a memory reemergence in winter, which seems236

robust for all models. On the Pacific side (Bering and Okhotsk seas) sea ice is not237

present at the start of the predictions (except for HadGEM1.2). For these seas238

the PPP is noisier and less significant than in the Atlantic sector. We could not239

group the rest of peripheral seas because of the differences shown in the temporal240

variability of PPP between the models. This is mainly due to the differences in241
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Figure 3: In blue, the July central Arctic SIV autocorrelation. In black, the Septem-
ber ControlRun lagged autocorrelation for the pan-Arctic SIV. In red, the lagged
correlation between the September central Arctic SIV and the central Arctic SIE.
Dots indicate significant values at the 95% level as estimated from a one-sided
student-T distribution.

the mean sea ice state between the different models. To know more about these242

differences, please see Day et al. (2016). In the following section we consider these243

regions in greater detail in EC-Earth2.3.244

Central basins. The SIE PPP in the interior basins other than the central Arctic245

(Fig. 4l–o) is null during the winter due to the extremely low sea ice variability. The246

central Arctic SIE PPP reflects how the different model sea ice conditions (and the247

cycle of variance) impact predictability. In most central regions, the PPP of the248

SIV continuously decays over time while remaining statistically significant up to 6-249

14 months (even until the third year for MIROC5.2 in the Canadian Archipelago).250

This suggests that the regional SIV is potentially predictable up to one year in251

advance for the seas with perennial sea ice. The significant reemergence of SIV252

PPP in the Beaufort Sea stands out for all models except for EC-Earth2.3 and253

HadGEM1.2. The central Arctic region exhibits the same PPP characteristics as254

the pan-Arctic region for the SIV, which is an indicator of the origin and sources255

of predictability of the pan-Arctic sea ice.256
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Figure 4: Regional SIE potential predictability measured as the PPP of IdealPred
using the natural variability of ControlRun as a reference. Dots indicate significant
values at the 95% level, estimated by an F-test. September and March are marked
by thin gray vertical lines.
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Figure 5: Regional SIV potential predictability measured as the PPP of IdealPred
using the natural variability of ControlRun as a reference. Dots indicate significant
values at the 95% level, estimated by an F-test. September and March are marked
by thin gray vertical lines.



An assessment of regional sea ice predictability in the Arctic ocean 11

4 Identification of mechanisms behind the regional sea ice257

predictability in EC-Earth2.3258

In this section we focus on the predictability mechanisms of EC-Earth2.3 since a259

few regional predictability characteristics are specific -and distinct- for this model.260

4.1 Ocean persistence in the Barents/Kara/GIN Seas/Baffin Bay261
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Figure 6: The persistence of the SIE (blue), the SST (green) and the OHC (0-300
m depth, yellow) in the (a) Barents, (b) Kara, (c) GIN, (d) Irminger, (e) Baffin
Bay and (f) Bering seas for EC-Earth2.3. In red, the lagged correlation between
the July SST and the SIE for the same seas. Correlations were calculated using the
ControlRun during the three subsequent years. Dots represent significant values
at the 95% level as estimated from a one-sided student-T distribution.

In spite of the initial decay, the PPP still has significant values in the Barents,262

Kara, and GIN seas and in Baffin Bay for the SIE and SIV (Fig. 4/5a–c & e).263

The memory of the sea ice cover in these regions can be related to the long-term264

persistence of the July SST anomalies at the same location (Fig. 6a–c & e, green265

lines), which also varies with the ocean heat content (integrated over the first 300266

meters depth; OHC hereafter). Thus, the memory of sea ice cover in the peripheral267

seas has a partially oceanic origin (Fig. 6a–c & e, yellow lines).268
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The SIE lagged correlations (Fig. 6a–c & e, blue lines) show a melt-to-freeze269

reemergence and significant predictability over the first year. The PPP highly270

depends on the start dates and the mean climate state, as we have already shown271

in section 2.2, so in this case the ControlRun provides a more robust idea of the272

regional predictability, but the mechanisms are comparable. The SST during the273

previous spring provides predictability of the December SIE (Fig. 7a–c & e). The274

maps of the correlation between the grid point SST in December and the averaged275

December to February SIE in the Barents and Kara seas (Fig. 8a–b) agree with276

the time series in Fig. 7 .277

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

Barents

Time (months)

C
o
rr

e
la

ti
o
n

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Corr SST & SIE (Dec)

(a)

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

Kara

Time (months)

C
o
rr

e
la

ti
o
n

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

(b)

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

GIN

Time (months)

C
o
rr

e
la

ti
o
n

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

(c)

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

Irminger

Time (months)

C
o
rr

e
la

ti
o
n

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

(d)

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

Baffin

Time (months)

C
o
rr

e
la

ti
o
n

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

(e)

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

Bering

Time (months)

C
o
rr

e
la

ti
o
n

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

(f)

Figure 7: Correlation between December SIE and SST in the previous year in the
(a) Barents, (b) Kara, (c) GIN, (d) Irminger, (e) Baffin Bay and (f) Bering
seas for EC-Earth2.3. Correlations were calculated using the ControlRun. Dots
represent the significant values at the 95% level as estimated from a one-sided
student-T distribution.

4.2 Ocean reemergence in the Labrador Sea278

We investigated the peak of PPP in January–April in the Labrador Sea, which is279

not present in other peripheral seas and does not seem to project onto the changes280

in the pan-Arctic PPP in Fig. 2a. This peak cannot be attributed to a reemergence281

mechanism due to sea ice, since sea ice is not present at the start of the prediction282

in this area for EC-Earth2.3.283
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Figure 8: Maps of correlation between the gridpoint December SST and (a) Bar-
ents and (b) Kara SIE for December, January and February (mean correlation)
for EC-Earth2.3. Black dots indicate significant correlations at the 95% level as
calculated from a one-sided student-T distribution.

We tested the hypothesis that this memory reemergence had a remote origin.284

We calculated several backward water mass trajectories using the off-line mass285

preserving Lagrangian Ariane scheme (Blanke et al., 1999; Blanke and Raynaud,286

1997). Here, 25 tracers were seeded uniformly, all at a 5-m depth (depth of the287

uppermost ocean level) in the Labrador Sea in February, and their origin was288

traced using the 40-year average monthly velocity fields from the ControlRun.289

Our target was to find the locations of those water parcels in the first July month,290

8 (i.e. target February Year 1), 20 (i.e. target February Year 2) or 32 (i.e. target291

February Year 3) months before. The trajectories are shown in Fig. 9a–c.292

The trajectories reveal that the water parcels present in the Labrador Sea at the293

time of the first two SIE PPP peaks originate from the subpolar gyre area. During294

the first year, the local correlations, ie. Labrador SST and OHC correlated with295

Labrador SIE (Fig. 9d, red and green lines), show that the reemergence is related to296

the subpolar gyre persistence (Fig. 10a). The second year, the correlations between297

the Irminger Sea SST and OHC at the time of the initialization and the Labrador298

Sea SIE are higher than the local correlations, and they match exactly the time299

when the PPP reemergence in the Labrador Sea occurs (Fig. 9d, blue and black300

lines). For longer timescales, these parcels have their origins in the North Atlantic.301

Thus, the first winter peak of the PPP of the SIE in the Labrador Sea seems302

related to the subpolar gyre persistence, while the second is caused by anomalies303

in the SST advected from a remote location in the Irminger Sea.304

As a result of advective ocean processes, sea ice predictability in the Labrador305

Sea may be related to predictability in the subpolar gyre circulation. Indeed, pre-306

vious studies have highlighted the high SST predictability in the subpolar gyre307

area (Boer, 2004; Collins, 2002), including studies using the same climate model308

(Wouters et al., 2013). Koenigk and Mikolajewicz (2009) confirmed that advection309
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Figure 9: Map of the backward trajectories followed by water masses travelling
from different locations in the Labrador Sea from (a) the first, (b) the second
and (c) the third February until the first July for EC-Earth2.3. Each lead time
is marked with a dot, while the initial positions (corresponding February) are
marked with bigger dots. (d) Correlation between the Irminger Sea SST, the
Irminger Sea OHC, the Labrador Sea SST and the Labrador Sea OHC the first
July and the Labrador Sea SIE the three following years for the ControlRun.
Dots represent the significant values at the 95% level estimated from a one-sided
student-T distribution. The vertical grey lines represent the months of February.
The SST and OHC were integrated for the corresponding area in Fig. 1.

of SST anomalies may lead to an increase in the predictability of the Barents sea310

ice in winter. This result, consistent with previous studies, suggests that the ini-311

tialization of the ocean is important when running real initialized sea ice forecasts.312

4.3 Sea ice thickness persistence in the internal Arctic basins313

We mentioned above that the summer peaks of the PPP for the pan-Arctic SIE314

could be attributed to the persistence of the SIT in the central Arctic, as suggested315
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Figure 10: Maps of correlation between the local SST the first July and the
Labrador SIE (a) the first, (b) the second and (c) the third February for EC-
Earth2.3. Correlations were calculated using the ControlRun. Dots represent the
significant values at the 95% level as estimated from a one-sided student-T distri-
bution.

by Blanchard-Wrigglesworth et al. (2011). In September, anomalies of the pan-316

Arctic SIE are well correlated with anomalies of the SIT in the central Arctic,317

thus anomalies of the SIE re-emerge from one summer to the next due to the318

memory of the corresponding SIT anomaly.319

In a similar way, peaks of the SIE PPP in the internal Arctic basins during the320

summers, can be linked to the persistence of the SIT, coherent with the long-lasting321

persistence of the SIV (Fig. 1 of the supplementary material). In these areas, little322

connection with the upper ocean should be expected, due to the insulating role323

played by the sea ice cover during most of the year.324
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5 Conclusions325

In this paper, we analyzed six different control experiments and their correspon-326

dent set of 3-year ensemble predictions initialized on 1st July from the control327

experiment for various start dates. Using this perfect-model protocol, the main328

objectives of our study were to assess the regional sea ice predictability of the AP-329

POSITE project models, highlight in EC-Earth2.3 some sources and mechanisms330

for the predictability of the sea ice extent and volume in sub-basins of the Arctic331

Ocean and the surrounding North Atlantic and Pacific Oceans and investigate how332

understanding of the regional-scale mechanisms helps to clarify the predictability333

at the pan-Arctic scale.334

The potential predictability was estimated by measuring the growth of the335

ensemble spread in the idealized predictions, and comparing it to the natural336

variability derived from the control experiment. We also calculated lagged correla-337

tions in the control simulation, as a diagnostic approach to assess the persistence338

or lagged relationships in the control experiment and thus infer some mechanisms339

explaining the potential predictability in the idealized predictions. The compari-340

son of the prognostic and diagnostic approaches indicated that lagged correlation341

is an informative measure of SIE and SIV predictability.342

We quantified to what extent the regional Arctic sea ice would be potentially343

predictable, if we had a perfect knowledge of the initial conditions of the predictions344

and the simulated processes matched perfectly the observed ones. More focus was345

put on the mechanisms behind EC-Earth2.3 predictability. For this model the346

regions could be clustered into three groups according to their predictability: the347

peripheral seas, the Labrador Sea and the interior Arctic basins.348

The main conclusions from this study are:349

– Consistent SIE predictability reemergence is found in winter for HadGEM1.2,350

GFDL-CM3 and E6F, which could be related to the winter negative ice thickness-351

growth rate feedback (Tietsche et al., 2014). The SIV shows greater predictabil-352

ity, attributable to the long-lasting persistence of the SIT in the central Arctic353

for all models.354

– The summer-to-summer reemergence of the PPP of pan-Arctic SIE is consis-355

tently related in all models to the persistence of SIT anomalies in the central356

Arctic.357

– The Baffin Bay and the GIN seas SIE exhibit a robust PPP signal among358

all models, characterized by a winter memory reemergence. For the rest of359

the regions, we found significant inconsistencies, which we attribute to the360

differences in the average states of the sea ice.361

– For EC-Earth2.3 and in the peripheral seas of the Atlantic Sector, significantly362

high PPP values over 1 year, including the 1-year reemergence, are driven by363

the persistence of local oceanic thermal anomalies (SST and OHC).364

– In the Labrador Sea (for EC-Earth2.3), which is ice-free in July, the PPP peaks365

between January and April during the first year are a result of the subpolar gyre366

persistence. However, the January to April peaks of the second year seem to367

be related to the advection of ocean temperature anomalies from the Irminger368

Sea and the Eastern North Atlantic Ocean.369
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– In the interior Arctic seas in EC-Earth2.3, winter SIE potential predictabil-370

ity is trivial due to complete ice coverage. In contrast, the SIV has a longer371

predictability in these seas as a result of the long SIT persistence.372

Considering mechanisms which act at regional scales illustrates that sea ice373

predictability arises from a variety of different sources in the Arctic sectors con-374

sidered. For instance, we have seen that in EC-Earth2.3 the ocean is a potential375

source of predictability in the peripheral seas, while the SIT plays a dominant role376

in the interior seas. These results provide guidance for the design of operational377

forecasting systems: for lead times beyond a single season, the ocean initial state378

would play a role in providing skilful forecasts in the marginal ice zone.379

Moreover, there are some processes that were not investigated in this paper,380

but that have been reported in previous studies as sources of sea ice predictability.381

For instance, the melt-to-freeze reemergence in the Barents and GIN seas has been382

related to the local SST memory (Bushuk et al., 2015; Schlichtholz, 2011). Other383

studies have shown that the winter Barents Sea SIA is highly correlated with the384

heat transport from the Atlantic waters through the Barents Sea Opening (Årthun385

et al., 2012; Nakanowatari et al., 2014; Onarheim et al., 2015). This inflow of warm386

water is also driven by the atmospheric variability with 1–2 years lag between the387

cyclonic anomalies and the ice response (Sorteberg and Kvingedal, 2006).388

Previous studies have shown that state-of-the-art coupled models exhibit sim-389

ilar sea ice predictability properties, like the melt-to-freeze or summer-to-summer390

correlation reemergence (Day et al., 2014). However, Tietsche et al. (2014) sug-391

gested some model dependency: for instance, they suggested that the representa-392

tion of advective processes could be more model-dependent than the thermody-393

namic ones. The extent to which some of the mechanisms are documented in the394

present paper for EC-Earth2.3 should be discussed, especially by applying similar395

diagnostics to other models. One important aspect is the possible role of model396

biases in shaping some mechanisms, especially on the Pacific side where there is397

virtually no potential predictability in EC-Earth2.3 (Guemas et al., 2014).398

Prior works addressed the dependence of predictability on the initialization399

month (Blanchard-Wrigglesworth et al., 2011; Day et al., 2014) and on the mean400

climate. For instance, Goosse et al. (2009) suggested an initial decrease of the pre-401

dictability of summer Arctic SIE due to increased variability during the twenty-first402

century. Our present study may provide some insight into possible future regimes403

of the pan-Arctic sea ice cover in the future. Summer-to-summer reemergence in404

the pan-Arctic SIE PPP is due to the presence of perennial sea ice surviving the405

melt season. In a warmer climate, predictability of the Arctic sea ice cover may406

be closer to that of the peripheral seas, with predictability dominated by more407

ocean-related mechanisms.408
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