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Abstract. The ocean–sea ice reanalyses are one of the main
sources of Arctic sea ice thickness data both in terms of
spatial and temporal resolution, since observations are still
sparse in time and space. In this work, we first aim at compar-
ing how the sea ice thickness from an ensemble of 14 reanal-
yses compares with different sources of observations, such as
moored upward-looking sonars, submarines, airbornes, satel-
lites, and ice boreholes. Second, based on the same reanal-
yses, we intend to characterize the timescales (persistence)
and length scales of sea ice thickness anomalies. We investi-
gate whether data assimilation of sea ice concentration by
the reanalyses impacts the realism of sea ice thickness as
well as its respective timescales and length scales. The re-
sults suggest that reanalyses with sea ice data assimilation
do not necessarily perform better in terms of sea ice thick-
ness compared with the reanalyses which do not assimilate
sea ice concentration. However, data assimilation has a clear
impact on the timescales and length scales: reanalyses built
with sea ice data assimilation present shorter timescales and
length scales. The mean timescales and length scales for re-
analyses with data assimilation vary from 2.5 to 5.0 months
and 337.0 to 732.5 km, respectively, while reanalyses with
no data assimilation are characterized by values from 4.9 to
7.8 months and 846.7 to 935.7 km, respectively.

1 Introduction

The variability of the Arctic sea ice has received increasing
attention from the scientific community over the past years
(e.g., Chevallier and Salas-Mélia, 2012; Stroeve et al., 2014;

Blanchard-Wrigglesworth and Bitz, 2014; Guemas et al.,
2016). The main reason lies in the fact that Arctic sea ice
plays a key role in the Earth’s climate system (Budyko, 1969;
Manabe and Stouffer, 1980b; Maykut, 1982). Among other
contributions, it has been suggested that a decline of the Arc-
tic sea ice extent and volume leads to a weakening of the
Atlantic Meridional Overturning Circulation (Sévellec et al.,
2017) and, therefore, potentially impacts the global distribu-
tion of heat (Drijfhout, 2015; Hansen et al., 2016). At the
same time, the Arctic is one of the most sensitive regions to
climate changes due to a phenomenon known as Arctic am-
plification (Manabe and Stouffer, 1980a; Holland and Bitz,
2003; Serreze et al., 2009). For instance, the current observed
warming in the Arctic is reported to be nearly twice as large
as other regions of the globe (Anisimov et al., 2007).

Other multiple specific interests from different stakehold-
ers have reinforced the importance of sea ice projections,
both at regional and larger scales, which include shorter ship-
ping lanes (Lindstad et al., 2016), travel and tourism industry
(Handorf, 2011), hunting and fishing activities (Nuttall et al.,
2005), mineral resource extraction (Gleick, 1989), potential
impact on the weather at midlatitudes (Walsh, 2014), envi-
ronmental hazards (Nelson et al., 2002), and loss of weather
predictive power by indigenous communities (Krupnik and
Jolly, 2002). In this context, the sea ice thickness (SIT) is
likely the most relevant state variable for monitoring, fore-
casting, and understanding recent and future changes of Arc-
tic sea ice, first, because this parameter provides predic-
tive information for the sea ice extent anomalies (Lindsay
et al., 2008; Holland et al., 2011) and, second, due to the
fact that SIT anomalies persist longer than sea ice extent
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anomalies, the former being reported as a forcing of the latter
(Blanchard-Wrigglesworth et al., 2011).

However, direct observations of SIT and/or related param-
eters, namely draft and freeboard, are still sparse in time and
space, despite the continuous efforts for compiling former
and recent datasets from a range of sources (Lindsay, 2010;
Lindsay and Schweiger, 2015). Some recent observational
programs, such as the Year Of Polar Prediction (YOPP)
(Jung et al., 2016) and the MOSAiC International Arctic
Drift Expedition (https://www.mosaicobservatory.org/; last
access: 15 July 2018), aim to enhance the Arctic observa-
tional system, being especially useful for improving our fu-
ture modeling and forecasting skills.

Due to this lack of direct measurements in the past and
present day, the ocean–ice reanalyses deserve special atten-
tion. A reanalysis product consists of models’ outputs, which
are generated over a certain time span by the same model,
configurations, and procedures, and so are distributed onto
regular grids, evenly stepped in time. These products are of-
ten built with assimilation of observational dataset(s) in order
to improve the estimate of a certain parameter. For instance,
SIT is often estimated by assimilating atmospheric, oceanic
and, eventually, sea ice concentration data. The ocean–ice re-
analyses are likely the main and more robust source of SIT
data in terms of spatiotemporal resolution, being also broadly
used for initialization and assimilation in other climate mod-
els (e.g., Guemas et al., 2016). Additionally, long-term re-
analyses are crucial for understanding the past Arctic sea ice
characteristics, in a period when in situ observations of ice
parameters were inexistent.

In this work we make use of 14 state-of-the-art reanalyses
in order to study two important aspects of the SIT predictabil-
ity: the timescale (or persistence) and the length scale of SIT
anomalies (see Sect. 2.3). Their importance is reinforced by
the fact that the predictability of the SIT field depends on
how long the anomalies persist over time and on how these
anomalies spread in space. Notice that, hereafter, besides
the traditional definition of time predictability, we adopt this
term also for the spatial scale. In addition, timescales and
length scales may also be useful for designing an optimal ob-
servation system when selecting ideal locations for deploy-
ing instruments as well as for defining a frequency sampling
strategy (Blanchard-Wrigglesworth and Bitz, 2014).

Blanchard-Wrigglesworth and Bitz (2014) reported SIT
anomalies with typical timescales and length scales of about
6–20 months and 500–1000 km, respectively. These results
reinforce the fact that the SIT anomaly persists longer com-
pared to the sea ice area anomaly, which is reported with
a timescale of 2–5 months (Blanchard-Wrigglesworth et al.,
2011; Day et al., 2014). Blanchard-Wrigglesworth and Bitz
(2014) suggested that the SIT anomalies from models charac-
terized by a thinner mean ice state tend to present shorter per-
sistence but larger spatial scales. Blanchard-Wrigglesworth
et al. (2011) reported a decline in the timescale of sea ice

volume anomalies, as a result of the ice thinning induced by
recent climate changes.

The first aim of this study is to evaluate the performance of
different reanalysis products regarding their SIT realism by
comparing these reanalyses against observational datasets. A
point of main interest is to identify whether or not the assim-
ilation of sea ice concentration by the reanalyses improves
the representation of SIT. Second, we seek to characterize
the timescales and length scales of the Arctic SIT anoma-
lies. Again, we verify whether or not sea ice data assimilation
plays a role in the temporal and spatial scales of SIT anoma-
lies. Furthermore, we investigate the long-term evolution of
timescales and length scales, as well as the relationship be-
tween these two parameters.

The paper is organized as follows: Sect. 2 introduces
the reanalysis products, the observational datasets, and the
respective methods applied in this research; Sect. 3 com-
piles all results, including the comparison between observa-
tions and reanalyses (Sect. 3.1), the comparison of reanal-
yses themselves (Sect. 3.2), and the patterns of timescales
(Sect. 3.3) and length (Sect. 3.4) scales. Lastly, Sect. 4 draws
discussion and conclusions on the findings reported in the
previous sections.

2 Data and methods

2.1 Sea ice reanalyses

Monthly fields of SIT from 14 state-of-the-art ocean–
ice reanalyses are used in this work. All but one were
compiled in the context of the ORA-IP project (Bal-
maseda et al., 2015; Chevallier et al., 2017; Uotila et al.,
2018). The ORA-IP reanalyses (and their respective au-
thor/provider institution) are C-GLORS05 (CMCC; Storto
et al., 2014), ECCO-v4 (JPL/NASA, MIT, AER; Forget
et al., 2015), ECDA (GFDL/NOAA; Zhang et al., 2013;
Chang et al., 2013), G2V3 (Mercartor Océan; Ferry et al.,
2010), GECCO2 (University of Hamburg; Köhl, 2015),
GloSea5 (UK Met Office; Blockley et al., 2014), GloSea5-
GO5 (UK Met Office; Megann et al., 2014), MERRA-Ocean
(GSFC/NASA/GMAO; Rienecker et al., 2011), MOVE-
CORE (MRI/JMA; Danabasoglu et al., 2014), MOVE-G2
(MRI/JMA; Toyoda et al., 2013), ORAP5 (ECMWF; Zuo
et al., 2015; Tietsche et al., 2017), TOPAZ4 (ARC MFC;
Sakov et al., 2012; Xie et al., 2017) and UR025-4 (Univer-
sity of Reading; Valdivieso et al., 2014). The 14th reanalysis
is the Pan-Arctic Ice-Ocean Modeling and Assimilation Sys-
tem, PIOMAS (Zhang and Rothrock, 2003). For the abbre-
viations, the reader is referred to Appendix A. The original
horizontal grids present different resolutions (Table 1), but
for comparison, all reanalyses are interpolated onto a com-
mon grid of 1◦× 1◦ spatial resolution following Chevallier
et al. (2017).
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Figure 1. Sea ice volume anomalies estimated from all reanalyses. Anomalies are calculated by excluding the trend and the seasonal cycle.
Tick labels are placed at the first day of the respective year. Reanalyses labeled in blue and red highlight whether the datasets were built with
or without sea ice data assimilation, respectively.

Specific characteristics of each reanalysis regarding hori-
zontal resolution, ocean–sea ice model, atmospheric forcing
data, subgrid-scale ice thickness distribution, ice dynamics
(VP, viscous–plastic, or EVP, elastic–viscous–plastic), pa-
rameters for the ice strength formulation, air–ice drag co-
efficient, ocean–ice drag coefficient, and the presence (and
respective method) of ice data assimilation are summarized
in Table 1. For additional information the reader is referred
to Chevallier et al. (2017) and/or to the respective providers.

2.2 Observational references

We use a compilation of 16 observational datasets available
in the Unified Sea Ice Thickness Climate Data Record (Sea
Ice CDR; Lindsay, 2010; http://psc.apl.uw.edu/sea_ice_cdr;
last access: 15 July 2018). The Sea Ice CDR is a concerted
effort to bring together a range of datasets in a consistent
format but is originally sampled by different methods and
spatiotemporal scales as well as being stored in a variety
of formats. We use the post-processed version of the Sea
Ice CDR data, which is distributed by monthly mean for

moored upward-looking sonar (ULS) point measurements or
50 km averages for submarine, airborne, and satellite obser-
vations. If applicable, the Sea Ice CDR already provides the
files corrected for data biases (e.g., Rothrock and Wensna-
han, 2007b).

From these 16 datasets, 11 provide draft measurements,
while the remaining 5 provide sea ice thickness data. Seven
draft datasets were sampled by means of moored ULSs,
namely North Pole Environmental Observatory (NPEO;
Drucker et al., 2003; Rothrock and Wensnahan, 2007b),
Beaufort Gyre Exploration Project (BGEP), Institute of
Ocean Science (IOS) – Eastern Beaufort Sea (IOS-EBS) and
– Chuck Sea (IOS-CHK), Alfred Wegener Institute – Green-
land Sea (AWI-GS; Harms et al., 2001), Bedford Institute
of Oceanography Lancaster Sound (BIO-LS; Pettipas et al.,
2008; Prinsenberg and Pettipas, 2008; Prinsenberg et al.,
2009), and Polar Science Center – Davis Strait (Davis_St;
Drucker et al., 2003). Four other draft datasets are also based
on ULS measurements but are installed on US and UK sub-
marines: US Navy Submarines – Analog (US-Subs-AN), US
Navy Submarines – Digital (US-Subs-DG; Tucker III et al.,
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2001; Wensnahan and Rothrock, 2005; Rothrock and Wen-
snahan, 2007b), UK Navy Submarines – Analog (UK-Subs-
AN), and UK Navy Submarines – Digital (UK-Subs-DG;
Wadhams and Horne, 1980; Wadhams, 1984).

From the ensemble of sea ice thickness datasets, the Ice
Thickness Program run by Environmental Canada (Can-
Coast) is the only dataset providing direct measurement of
ice thickness by means of ice boreholes. The NASA Oper-
ation IceBridge datasets (IceBridge-V2 and IceBridge-QL;
Kurtz et al., 2013) are derived from an aircraft-mounted
laser altimeter. Finally, two datasets come from satellite cam-
paigns: the laser-altimeter-derived ICESat Mission-Goddard
(ICESat1-G; Zwally et al., 2008) from National Aeronautics
and Space Administration (NASA) and the radar-altimeter-
derived CryoSat satellite data (CryoSat-AWI; Ricker et al.,
2014) from the European Space Agency (ESA).

2.3 Methods

Reanalyses are compared against observations by selecting
SIT values from the nearest grid points to the respective ob-
servational sites, during the same respective months. Com-
plementary metrics are employed to evaluate the relationship
between observations and reanalyses. When directly compar-
ing SIT from reanalyses and observations, we estimate the
root mean square error (RMSE), the correlation coefficient
(R), and the mean residual sum of squares (MRSS) from the
linear fit between both datasets, by having the reanalysis val-
ues as predictors and the observational values as predicted
variables. Since SIT and draft are different variables, here
we evaluate the strength of the linear relationship between
them. Thus, when comparing SIT from reanalyses against
draft from observations, we only estimate R and MRSS. In
this work we do not account for snow variation in order to
avoid adding uncertainties to the SIT fields.

SIT anomalies are derived by eliminating the trend and
the seasonal cycle present in the time series. To do so, the
trend is estimated separately for every month by means of a
second-order polynomial fit and subtracted from the respec-
tive month. A second-order fit seems to better reproduce the
trends when compared to the linear fit, although the results
are very similar (not shown). The same method is applied for
the analyses conducted with the pan-Arctic sea ice volume
anomaly, derived from the SIT data, as illustrated in Fig. 1.

Grid point comparisons of SIT anomalies among all re-
analyses are performed by means of RMSE and R maps, cal-
culated over an overlapping period of 15 years, from Jan-
uary 1993 to December 2007. This time span corresponds to
the period during which data are available from all reanal-
yses. Furthermore, as adopted by Blanchard-Wrigglesworth
and Bitz (2014), only grid points wherein the mean ice thick-
ness at the time of summer minimum is greater than 0.1 m are
taken into account. This condition is valid for all reanalysis-
based results, unless otherwise stated.

Figure 2. Autocorrelation curves for the draft time series sampled
in situ by upward-looking sonars deployed in the BGEP oceano-
graphic mooring (black line). This mooring was placed at 150◦W,
75◦ N (see location in Fig. 3c), and the data span from August 2003
to August 2013. The blue and red lines display the autocorrelation
estimated from the SIT anomalies time series for the ORA-IP re-
analyses, at the nearest grid point to the mooring and same time
span, for the reanalyses built with and without sea ice data assimi-
lation, respectively. The cyan line indicates the autocorrelation es-
timated for the PIOMAS reanalysis. The time in which the curves
cross the black dashed line is defined as their respective e-folding
timescales.

The timescale (or persistence) is derived from individual
time series by calculating the lagged autocorrelation stepped
forward by one measurement, equivalent to 1 month. The e-
folding reference is used so that the persistence is assumed to
be the time when the lagged autocorrelation curve crosses the
1/e (∼ 0.3679) value, as proposed in previous works (e.g.,
Blanchard-Wrigglesworth and Bitz, 2014; Guemas et al.,
2016). As an example, Fig. 2 displays the timescale derived
from the mooring-based draft anomaly sampled in the frame-
work of the BGEP at 150◦W, 75◦ N, from August 2003 to
August 2013 (Krishfield et al., 2013). Figure 2 also shows the
timescales from the allocated reanalysis-based SIT anoma-
lies. For this geographical location and time span, the draft
anomaly from BGEP persists for about 3.7 months, while
the SIT anomalies from the different reanalyses persist from
2.4 to 8 months. The persistence is estimated both from a
regional and pan-Arctic perspective. First, it is calculated at
each grid point, for all SIT anomaly time series. Second, it is
estimated for the long-term (GECCO2 and MOVE-CORE)
pan-Arctic ice volume anomalies. For the latter case, we eval-
uate how stable the e-folding timescale is over time by apply-
ing a moving (stepped by 1 month) and length-variable win-
dow (from 5 to 59 years). Here, we also investigate whether
the moving timescale is marked by significant band(s) of
variability. To do so, we applied wavelet analysis as proposed
by Torrence and Compo (1998).

www.the-cryosphere.net/13/521/2019/ The Cryosphere, 13, 521–543, 2019
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Figure 3. (a) The e-folding length scale estimated from the CryoSat seasonal data of sea ice thickness. This dataset contains 14 spring
(March–April) and autumn (October–November) fields, starting in autumn 2010 and finishing in spring 2017. (b) Same as (a), but using the
equivalent temporal averages from the PIOMAS data. The difference between the fields shown in (a) and (b) is plotted in (c). The black
circle in (c) indicates the location of the mooring from which data are used in Fig. 2.

The length scales of the SIT anomalies are estimated
for the reanalysis datasets. The first step is to determine
one-point correlation maps. In other words, we calculate
the cross-correlation between the SIT anomaly from each
grid point with the anomaly from all other points. Subse-
quently, we make use of the e-folding reference and, for ev-
ery map, we select all grid cells with a correlation coeffi-
cient higher than 1/e. The radius of a circle that yields the
area covered by these selected cells is defined as the length
scale of the SIT anomaly. This methodology is detailed and
graphically presented by Blanchard-Wrigglesworth and Bitz
(2014). Figure 3a shows an example for which the length
scale is calculated for the SIT anomalies from CryoSat
seasonal data: spring (March–April) and autumn (October–
November), from autumn 2010 to spring 2017. In turn,
Fig. 3b–c reveal that a similar length scale pattern is also
present in PIOMAS. It is worth mentioning that this illustra-
tive example allows a first assessment of how length scales
from observations and reanalyses compare to each other.
However, it can not be compared to the spatial scales of
monthly anomalies further studied in Sect. 3.4.

3 Results

3.1 Comparison of reanalyses with observations

The scatter plots shown in Fig. 4 combine SIT from each
reanalysis and the observational datasets from all sources.
The latter are separated into two parameters: draft (black
dots) and SIT (green dots). The comparisons indicate that
all reanalyses are significantly correlated to the observations,
whether these are draft or SIT. By comparing SIT and draft,
four reanalyses have correlation coefficients larger than 0.7:
TOPAZ4 (R = 0.76), C-GLORS05 (0.74), MOVE-CORE
(0.74), and UR025-4 (0.73). On the other hand, GECCO2
(0.17) and MERRA-Ocean (0.10) are marked by the weakest

correlations. If we evaluate the reanalyses’ statistical capabil-
ity for predicting the observational values, the MRSS from
the linear fit indicates that TOPAZ4 (MRSS = 0.39 m2),
UR025-4 (0.42 m2) and C-GLORS05 (0.49 m2) are the best
predictors, while MERRA-Ocean (1.42 m2) and GECCO2
(1.27 m2) provide the lowest agreement.

When comparing SIT from both datasets, the reanaly-
ses with higher correlation coefficients are PIOMAS (R =
0.66), GECCO2 (0.64), and TOPAZ4 (0.61), while ECDA
(0.43), ECCO-v4 (0.40), and MOVE-G2 (0.30) are the re-
analyses with poorest correlation. In terms of linear fit, PI-
OMAS (MRSS = 0.41 m2), TOPAZ4 (0.41 m2), GECCO2
(0.42 m2), ORAP5 (0.46 m2), and C-CGLORS05 (0.49 m2)
are the best performing predictors (MRSS < 0.5 m2), while
MOVE-CORE (0.71 m2) and ECCO-v4 (0.7 m2) provide
the lowest prediction capability. In addition, a direct com-
parison by means of RMSEs indicates which reanalyses
are closer to the ensemble of observations, as follows: PI-
OMAS (RMSE = 0.7 m), C-GLORS05 (0.8 m), GloSea5-
GO5 (0.8 m), ORAP5 (0.8 m), GECCO2 (0.9 m), GloSea5
(0.9 m), MOVE-CORE (0.9 m), TOPAZ4 (0.9 m), ECCO-
v4 (1.0 m), ECDA (1.0 m), MERRA-Ocean (1.0 m), G2V3
(1.1 m), MOVE-G2 (1.1 m), and UR025-4 (1.1 m).

For a detailed overview on how each reanalysis is linked to
each observational dataset, in terms of RMSE, MRSS, and R,
the reader is referred to the tables presented in Appendix B.

3.2 Comparison of reanalyses to each other

As a first assessment of how well the reanalyses compare to
each other, we estimate the RMSE and R between time se-
ries of the SIT anomaly, at every grid point, and between all
pairs of products. The results are organized as a square ma-
trix in Fig. 5, in which the number at the top of each panel
represents the respective global value estimated by consider-
ing the data from all grid points. The lower triangular part
of the matrix reveals that the smallest RMSE is found for
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Figure 4. Comparison between sea ice thickness from reanalyses and sea ice thickness (green points) or draft (black points) from observa-
tional datasets. The lines represent the linear fits having the reanalysis as the predictor and the observations as predicted variables. The mean
residual sum of squares (MRSS) from the fit, the correlation coefficient (R), and the root mean square error (RMSE) are also displayed for
each comparison. RMSE is calculated only when comparing SIT from both sources (green) but not when comparing SIT and draft (black).
Reanalyses labeled in blue and red highlight whether the datasets were built with or without sea ice data assimilation, respectively.

the pair ECDA–UR025-4 (RMSE= 0.21 m). Only four other
pairs present RMSE ≤ 0.25; they are the match between
the two GloSea5 products (0.23 m) and the combination of
UR025-4 with C-GLORS05 and ECCO-v4 (0.25 m). The
largest RMSE is found when comparing GECCO2–MOVE-
G2 (0.61 m).

From Fig. 5 (lower triangle), the averaged RMSE for
each individual reanalyses indicates that UR025-4 is the
reanalysis closer to the ensemble, while MOVE-G2 has
the largest errors compared to its counterparts: UR025-4
(0.30± 0.06 m), ECCO-v4 (0.33± 0.06 m), ECDA (0.33±
0.06 m), GloSea5 (0.34± 0.07 m), C-GLORS05 (0.35±
0.06 m), PIOMAS (0.35± 0.06 m), MOVE-CORE (0.36±
0.06 m), GloSea5-GO5 (0.36± 0.07 m), TOPAZ4 (0.37±
0.06 m), ORAP5 (0.38± 0.06 m), G2V3 (0.41± 0.06 m),

MERRA-Ocean (0.44± 0.04 m), GECCO2 (0.45± 0.06 m),
and MOVE-G2 (0.47± 0.06 m).

At the regional scale, most of the pairs of reanalyses have
larger differences off the coast of northern Greenland and to
the north of the Canadian Archipelago, which are more pro-
nounced in the MERRA-Ocean product. Almost all systems
present minimum errors in the central Arctic Basin.

In turn, the upper triangular part of the matrix in Fig. 5
displays the linear relationship between pairs of reanalyses,
quantified by the correlation coefficient. The strongest pan-
Arctic correlations are observed for GloSea5–GloSea-G05
(R = 0.69), ORAP5–UR025-4 (0.67), and G2V3–ORAP5
(0.65). MOVE-CORE and MOVE-G2 present a marked anti-
correlation with several other reanalyses, mainly in the cen-
tral Arctic Ocean. Such anti-correlation is also reflected in
the sea ice volume anomalies shown in Fig. 1. Notice that
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Figure 5. Square matrix plot displaying the root mean square error (RMSE) (a) and the correlation coefficient (R) maps (b), estimated from
the sea ice thickness time series, at every grid point, and between all pairs of reanalyses. The numbers at the top of each panel indicate the
respective value calculated with data from all grid points. All maps have the 0◦ longitude placed at 06:00, while the bounding latitude is
67◦ N. Reanalyses labeled in blue and red highlight whether the datasets were built with or without ice data assimilation, respectively.

negative anomalies in MOVE-CORE and MOVE-G2, for in-
stance from 2001 to 2004, occur at the same time that strong
positive anomalies in reanalyses such as GECCO2, G2V3,
and ECDA do, as well as C-GLORS05, ORAP5, PIOMAS,
TOPAZ4, and UR025-4, though in a less pronounced way
(Figs. 1 and 5). We do not have a clear understanding of why
these anti-correlations take place.

3.3 Timescales

An important property inherent to time series in general
concerns their timescale and/or persistence, as defined in
Sect. 2.3. In other words, we aim to infer how long the SIT
anomaly maintains a good correlation with future measure-
ments at the same grid cell. Persistence can also be perceived

as the skill of a self-prediction scheme, for which past data
are used to predict future values. In addition, it is a rele-
vant variable to be taken into account when designing the
sampling frequency of observational programs, especially if
these programs target the understanding of the SIT time vari-
ability.

Figure 6 displays the e-folding timescales for the SIT
anomaly at every grid point, and for all reanalyses. The
area weighted mean (AWM) timescales (in months) sorted
in ascending order are 2.5 (GloSea5), 2.6 (GloSea5-
GO5), 3.6 (PIOMAS) 3.7 (ECCO-v4), 3.8 (MERRA-Ocean),
4.0 (UR025-4), 4.3 (TOPAZ4), 4.4 (C-GLORS05), 4.7
(ORAP5), 4.9 (MOVE-CORE), 5.0 (G2V3), 6.0 (ECDA), 7.2
(MOVE-G2), and 7.8 months (GECCO2). These values were
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Figure 6. The e-folding timescales (or persistence) estimated for the SIT time series. Only grid cells in which the time mean (for the
January 1993–December 2007 period) SIT at the time of summer minimum is greater than 0.1 m are taken into account for the computations.
Averages for the systems with ice data assimilation and no data assimilation are represented by the DA and NA panels, respectively. All
maps have the 0◦ longitude placed at 06:00, while the bounding latitude is 67◦ N. Reanalyses labeled in blue and red highlight whether the
datasets were built with or without ice data assimilation, respectively.

calculated only taking into account grid points with a valid
SIT value from all reanalyses.

The results reveal that the thickness anomalies from re-
analyses with no ice data assimilation (NA; Fig. 6, red labels)
present a longer persistence, mainly distinguished in MOVE-
G2 and GECCO2. Potential reasons to explain why the thick-
ness anomalies persist longer in NA systems are suggested
and discussed in Sect. 4. In contrast, the thickness anoma-
lies from the GloSea5 systems (GloSea5 and GloSea5-GO5)
have a much shorter persistence.

From a regional point of view, Fig. 6 shows that GloSea5
and GloSea5-G05 are the only reanalyses in which the SIT
anomaly persistence is remarkably short all over the Arc-
tic, presenting e-folding timescales higher than 4 months

only in a few, not evenly distributed, grid points. By con-
trast, the SIT from GECCO2 has a marked longer persistence
(> 15 months) extending from the region off the northern
coast of Greenland to the north of the Canadian Archipelago
and mid-Arctic Ocean. The ECDA product presents a rel-
atively similar pattern of the timescale over the region men-
tioned above but persisting for a shorter period (∼ 8 months).
SIT anomalies from MOVE-G2 also indicate long persis-
tence off the coast of northern Greenland, extending to the
central Arctic and East Siberian Sea. For the remaining re-
analyses, there is no common regional pattern of persistence
outstanding from their respective timescale maps.

Nevertheless, the results above should be interpreted with
caution. The e-folding timescale is a metric that depends on
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Figure 7. (a) Moving e-folding timescales estimated for the ice volume anomaly time series from the GECCO reanalysis. The window length
varies from 5 to 59 years, and it is stepped forward by 1 month over a total period of 64 years (January 1948–December 2011). (b) Moving
e-folding timescales for the 15-year window length case. The red stars in (a) and (b) indicate the 15-year overlapping period (January 1993–
December 2007, center time mid-June 2000). (c) Wavelet power spectrum of (b), with Morlet as the mother wavelet. The black lines denote
the 95 % significance levels above a red noise background spectrum, while the crosshatched areas indicate the cone of influence, in which
the edge effects become important. The color bar is omitted in panel (c) since we are not interested in the power’s magnitude but in the
frequencies outstanding as significant in the spectrum. (d) Time-integrated power spectrum from the wavelet analysis, where the dashed line
corresponds to the 95 % significance level. The bands of significant periods (4.4–6.1 years and > 10.7 years) are highlighted by the gray
horizontal bars. (e)–(h) Same as (a)–(d), respectively, but for the MOVE-CORE ice volume anomaly which has a spanning period of 60 years
(January 1948–December 2007). The horizontal gray bar in (h) highlights the only period band of significant variability, defined by periods
longer than 12.7 years.

the shape of the lagged autocorrelation curve, which in turn
may differ according to the period and time span of the orig-
inal time series being analyzed. In order to evaluate how sta-
ble the timescale is by varying the time span and also by al-
lowing it to evolve over time, we applied a time-moving and
length-variable window to calculate the e-folding timescale
of the ice volume anomaly (detrended in the same way as the
SIT time series) from the two longest reanalyses (GECCO2
and MOVE-CORE), as shown in Fig. 7a and e. The window
length varies from 5 to 59 years (stepped by 1 year) and it
moves in time, stepped forward by 1 month. Here, we use
the ice volume anomaly, rather than the SIT anomaly, for
two reasons, first, because it is computationally more effi-
cient than calculating the timescale for the SIT anomalies at
every grid cell, considering the large number of interactions
for a time-moving and length-variable window, and second,
because the volume provides a pan-Arctic perspective of the
SIT persistence.

Notice in Fig. 7a and e that the persistence overall grows
to longer than ∼ 20 months when taking into account long
time spans, remarkably for GECCO2 in which the ice vol-
ume anomaly persists for longer than 25 months at several

center times. As for the thickness anomalies, MOVE-CORE
presents a shorter persistence compared to GECCO2.

As a measure of stability, we estimate the standard devia-
tions for all computations displayed in Fig. 7a and e. Results
show that MOVE-CORE has a more stable timescale, with
standard deviation of 3.0 months from its mean (9.7 months),
while GECCO2 presents the average and standard deviation
of 15.0± 6.5 months.

Figure 7b and f show the case where the window length is
15 years, as it is for the overlapping period January 1993–
December 2007. For this case, the average (standard de-
viation) timescales for GECCO2 and MOVE-CORE are
11.4± 2.6 and 9.1± 2.5 months, respectively. Minimum to
maximum ranges are 6.2–16.5 months for GECCO2 and
4.9–13.5 months for MOVE-CORE. If we take into ac-
count the same center time of the time span January 1993–
December 2007, that is mid-June 2000, the ice volume
anomaly persistence is 13.6 and 9.2 months (red stars in
Fig. 7b and f, respectively). Note that the timescales of the ice
volume anomalies are a few months longer compared to the
persistence of the AWM thickness anomalies (9.2 months,
GECCO2; 5.4 months, MOVE-CORE).

The Cryosphere, 13, 521–543, 2019 www.the-cryosphere.net/13/521/2019/



L. Ponsoni et al.: Timescales and length scales of the Arctic ice thickness anomalies 531

Figure 8. The e-folding length scales estimated for the SIT time series. Only grid cells in which the time-mean (for the January 1993–
December 2007 period) SIT at the time of summer minimum is greater than 0.1 m are taken into account for the computations. Averages for
the systems with ice data assimilation and no data assimilation are represented by the DA and NA panels, respectively. All maps have the 0◦

longitude placed at 06:00, while the bounding latitude is 67◦ N. Reanalyses labeled in blue and red highlight whether the datasets were built
with or without ice data assimilation, respectively.

We make use of wavelet analysis (Torrence and Compo,
1998) to evaluate whether the time series displayed in Fig. 7b
and f exhibit a significant band(s) of variability. Figure 7c
and d reveal that the ice volume anomaly from GECCO2
presents two bands of significant variability, as highlighted
by the horizontal gray bars in Fig. 7d. The first spans from
4.4 to 6.1 years, and it is present in the first half of the time se-
ries but does not persist over time (black contours in Fig. 7c).
The second is marked by periods longer than 10.7 years,
which seems to be recurrent over time but should be inter-
preted with caution since it is placed near the “cone of in-
fluence”, in which edge effects become important, as indi-
cated by crosshatched areas overlapping the black contours
in Fig. 7c. The ice volume anomaly from MOVE-CORE, in

turn, is marked by a single band of significant variability,
with periods longer than 12.7 years (Fig. 7g, h). Again, this
band should be interpreted with caution since it is also placed
near the cone of influence.

3.4 Length scales

The e-folding length scale is a metric used for indicating
how well a variable from a certain grid cell compares to the
neighboring cells. In other words, it shows how the anoma-
lies spread in space. As for the timescale, the length scale is
a promising parameter to be explored when designing obser-
vational systems, but in terms of spatial coverage of instru-
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Figure 9. (a) Moving e-folding length scales estimated for the ice
volume anomaly time series from the GECCO reanalysis. The win-
dow length is 15 years, and it is stepped forward by 12 months over
a total period of 64 years. (b) Same as (a), but for the MOVE-CORE
reanalysis, which has a time span of 60 years.

ments. Simplistically, regions marked with high length scales
would require fewer instruments to be monitored better.

Figure 8 shows the length scales for the SIT anomaly at
every grid point. The AWM length scales, in kilometers and
ascending order, for each system are 337.0 (GloSea5), 420.7
(GloSea5-GO5), 544.6 (C-GLORS05), 681.5 (MERRA-
Ocean), 724.3 (TOPAZ4), 728.2 (G2V3), 596.9 (ORAP5),
597.4 (UR025-4), 730.2 (PIOMAS), 732.5 (ECCO-v4),
846.7 (MOVE-G2), 835.8 (MOVE-CORE), 934.0 (ECDA),
and 935.7 km (GECCO2).

A similar pattern to the timescale is observed here, with
GloSea5 and GloSea5-GO5 presenting the minimum length
scales, rarely higher than 500 km, while the reanalyses with-
out sea ice data assimilation are characterized by higher
length scales, sometimes higher than 1200 km. In all systems
the length scales are relatively longer near the central Arctic.
This suggests that higher length scales could be somehow
associated with thicker ice. The relationships between mean
ice thickness, timescale, and length scale will be explored in
detail in Sect. 4.

The stability of the length scale over time (Fig. 9) was
tested by means of a moving window with 15 years length,
as follows: first, we calculate the one-point correlation maps
for every grid point; second, we estimate the length scale
for each one-point correlation map; third, the AWM length
scale was calculated taking into account only grid points with
a valid SIT value from all reanalyses; fourth, the process
was repeated by stepping forward the 15-year window by
12 months. It is worthwhile mentioning that, computation-
ally, it is much more expensive to calculate the length scale
than the timescale. This is the reason why, here, we just use
a time-moving but not length-variable window. The results
suggest that the length scale is relatively more stable than the
timescale (Fig. 7b and f), as further discussed in Sect. 4.

4 Discussion and conclusions

The first aim of this study was to evaluate how the SIT from
the reanalyses compares against observational datasets, ei-
ther draft or SIT. We have used three different metrics to per-
form this comparison: the correlation coefficient (R), as a
measure of the linear correlation between datasets; the mean
residual sum of squares (MRSS), as an indicator of whether
reanalysis values are good predictors for the observations;
and the root mean square error (RMSE), which directly com-
pares how the SIT from the reanalyses approaches the SIT
from observations. The results show that some of the reanal-
yses have a relatively good correspondence either comparing
SIT and draft or SIT from both sources of data. This is the
case, for instance, for the TOPAZ4 product. A direct compar-
ison between SIT from all reanalyses and observations indi-
cates RMSEs ranging from 0.7 to 1.1 m. PIOMAS has the
best agreement with the observational datasets. A particular
case is GECCO2, which presents a relatively small RMSE
and a good correlation with the SIT observational datasets,
as well as a linear relationship. However, this same product
is weakly correlated with the draft observational datasets as
well as having poor predictive skill.

One of our main goals in performing such a comparison
was to identify whether or not systems built with assimilation
of sea ice concentration data are closer to observations, com-
pared to the products built with no sea ice data assimilation.
The results suggest that reanalyses with sea ice data assimi-
lation do not necessarily perform better. One could speculate
that some reanalyses do not reflect the covariances between
sea ice concentration and SIT well.

We have compared the mean state (mean SIV) and respec-
tive variability (SD SIV) of all reanalyses against the speci-
fications and parameters displayed in Table 1. Nevertheless,
for such a comparison, where each system has its own config-
uration with several varying parameters, we were not able to
distinguish the effect that the selected parameters may have
on the mean state and variability. The comparison among SIT
from the different reanalyses (Sect. 3.2) is not straightfor-
ward and does not necessarily improve due to common spec-
ifications and key parameters from the two systems being
compared. For instance, the pair C-GLORS05–G2V3 shares
a set of common assumptions (ocean–sea ice model, atmo-
spheric forcing, vertical discretization, number of ice thick-
ness categories, EVP dynamics, ocean–ice drag coefficient,
analysis window, and both assimilate sea ice data), but this
pair still presents a relatively high RMSE (0.39 m) and not
such a strong correlation (R = 0.4), as shown in Fig. 5. Only
a few different assumptions and parameters, as well as their
nonlinear interactions, may result in systems with consider-
ably distinct mean state and variability. Although the pair C-
GLORS05–G2V3 shares several common aspects, these two
systems assume different air–ice drag coefficient and also as-
similate the sea ice data in a different way, for instance. The
same statement could be applied to other pairs of systems,
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Figure 10. Time-mean sea ice volume vs. the mean RMSE. This last
parameter is an average of the RMSEs that each reanalysis has when
its SIT field is compared individually to the other 13 reanalyses, as
shown in Fig. 5. Shades of blue and purple indicate the reanalyses
which do assimilate sea ice data, while shades of red indicate the
reanalyses without sea ice data assimilation.

e.g., G2V3–ORAP5, which also share some similarities but
are still distinct in terms of mean state and variability.

The pair with the smallest RMSE (Fig. 5), ECDA–UR025-
4, at the same time has a weak linear relationship (R = 0.21).
This reinforces the importance of looking at different met-
rics when comparing different products. If we average the
RMSEs that one specific reanalysis presents against all the
others (Fig. 5), thus comparing with the pan-Arctic mean
ice volume of this same reanalysis, it becomes clear that
products with relatively low sea ice volume (i.e., thin ice)
present small RMSEs when compared with their counter-
parts (Fig. 10), although MERRA-Ocean is an outlier in this
pattern by presenting thin sea ice but a large RMSE com-
pared to the other reanalyses (Fig. 10, left upper corner).
Figure 10 helps to explain why ECDA and UR025-4 have
a small RMSE, though their anomalies are marked by a rel-
atively weak correlation, as suggested in Fig. 5. This is also
evident in the respective sea ice volume anomalies from these
two reanalyses shown in Fig. 1. In the same way, Fig. 5
also indicates that the large differences in the SIT field take
place near the coast of northern Greenland and the Canadian
Archipelago, which are regions marked by the thickest sea
ice over the studied domain.

Another main goal of this work was to characterize the
timescales and length scales of the sea ice thickness anomaly
as well as to report whether these parameters are influenced
by the fact that a respective reanalysis assimilates sea ice data
or not. In this case, sea ice data assimilation plays a clear role
in the scales referred to: systems with sea ice data assimila-

Figure 11. Grid-point differences (G2V3–G2V1) of timescale
(a) and length scale (b) between two versions of the GLORYS sys-
tem: G2V3 which assimilates sea ice data and G2V1 which does
not assimilate sea ice data.

tion are characterized by shorter timescales and length scales
compared to the systems which do not assimilate sea ice data.
Nevertheless, a comparison between the same system but
built with (G2V3) and without (G2V1; not included in the 14
reanalyses of the present study) assimilation of sea ice con-
centration data (Fig. 11) suggests that this finding is valid in
terms of pan-Arctic averages but not necessarily at every grid
cell. This may explain why in the specific location addressed
in Fig. 2 the reanalyses with data assimilation showed rela-
tively longer timescales compared to the reanalyses without
data assimilation. The pan-Arctic AWM timescale and AWM
length scale from G2V3 are 5 months and 728.2 km, respec-
tively. Without sea ice data assimilation (G2V1), the AWM
timescale and AWM length scale increase to 5.5 months and
745.3 km, respectively.

Likely, the main reason why the assimilation of sea ice
concentration data impacts the timescales and length scales
of the SIT field is linked to the fact that when a reanaly-
sis assimilates sea ice information, the system is forced to-
wards the assimilated conditions, different from what occurs
with free-running models. Eventually, data assimilation in-
troduces SIT increments that are not necessarily physical and
so contributes to an attenuation in the correlation of this vari-
able at a certain grid cell both in time, with their future esti-
mations, and in space, with the neighboring grid points.

We have shown that timescales and length scales are
clearly influenced by whether or not the reanalyses assim-
ilate sea ice data, as represented graphically in Fig. 12a–b.
However, are these two properties also clearly influenced by
other specifications and parameters? Figure 12c–h show how
timescales and length scales are linked to the choices of at-
mospheric forcing, sea ice model, and dynamics for ice–ice
interactions that control ice deformation (VP or EVP). Even
though the atmospheric forcing fields are reported to play a
major role in the sea ice simulations (Gerdes and Köberle,
2007; Rothrock and Wensnahan, 2007a), we could not iden-
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Figure 12. Histograms showing how the AWM timescale (left-hand panels) and AWM length scale (right-hand panels) are related to different
reanalysis specifications: (a–b) whether or not the system assimilates sea ice data, (c–d) the source of atmospheric forcing data, (e–f) the sea
ice model used, and (g–h) the dynamics used (viscous–plastic or elastic–viscous–plastic) for ice–ice interactions that control ice deformation.
Shades of blue and purple indicate the reanalyses which do assimilate sea ice data, while shades of red indicate the reanalyses without sea
ice data assimilation.

tify distinguished patterns between the two main sources
of atmospheric forcing used by the ensemble of reanaly-
ses: ERA-Interim and NCEP/NCAR (Fig. 12c–d). Likewise,
timescales and length scales are not clearly linked to the
choices of sea ice model (Fig. 12e–f) and ice deformation
dynamics (Fig. 12g–h), although a certain coherence in the
timescales and length scales is observed for the systems that
use the Louvain-la-Neuve sea ice model (LIM; Fig. 12e–f).

Besides the spread among the points, the scatter plots dis-
played in Fig. 13a–b indicate a certain correlation between
the time-mean SIV (mean state) and the studied scales, where

relatively thin ice leads to shorter scales, in agreement with
Massonnet et al. (2018). In contrast, the timescales have
a marked anti-correlation with the sea ice drift as shown
in Fig. 13c: reanalyses with faster sea ice present a short
timescale. Such correlation is less pronounced for the length
scale (Fig. 13d). Different parameters from the reanalyses
could potentially influence the sea ice velocity. For instance,
high air–ice and low ocean–ice drag coefficients each con-
tribute to faster ice velocities (Tandon et al., 2018). As an
example, ECCO-v4 has the second highest air–ice (smaller
only compared to MOVE-CORE) and the smallest ocean–ice
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Figure 13. Scatter plots showing how the (a, c, e) AWM timescale and (b, d, f) AWM length scale are related to the (a, b) mean state,
(c, d) mean sea ice (SI) drift, and (e, f) drag air–ice coefficient. (g) Relation between drag air–ice coefficient and mean state. (f) Relation
between drag air–ice coefficient and mean sea ice drift. Black dashed lines indicate the linear fit, while the coefficient of correlation R (and
its respective p value) is also displayed in each panel. The black cross in panels (e)–(h) indicate that MOVE-CORE was not used in the
respective regressions (black dashed lines), since this reanalysis adopts a much higher drag air–ice coefficient compared to the other 13
reanalyses. Shades of blue and purple indicate the reanalyses which do assimilate sea ice data, while shades of red indicate the reanalyses
without sea ice data assimilation.

drag coefficients (see Table 1). This may explain why ECCO-
v4 has relatively high ice velocities (Fig. 13c) and, therefore,
low timescales and length scales (Figs. 6 and 8). For our
ensemble of reanalyses, Fig. 13e shows a close correlation
between sea ice velocity and the drag air–sea coefficients.
Again, this correlation is less pronounced for the length scale
(Fig. 13f).

The ice strength formulation is a major player in the sea ice
velocity (Ungermann et al., 2017). All reanalyses follow the
linear parameterization proposed by Hibler (1979), except

the GloSea5 products and PIOMAS, which employ the ice
strength formulation following Rothrock (1975). A higher
ice strength parameter P ∗ in Hibler’s formulation leads to
thicker and slower-moving ice, which would potentially lead
to larger scales. Nevertheless, a relation between P ∗ and the
scales is not so clear for the ensemble of reanalyses (not
shown). In addition, Ungermann et al. (2017) presented a de-
tailed study comparing Hibler’s and Rothrock’s methods and
showed that, for systems characterized by relatively thinner
ice, model simulations with Rothrock’s formulation result in
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Figure 14. Scatter plot of the average weighted mean (AWM)
timescale vs. the AWM length scale. The black dashed line indicates
the linear regression between both parameters, while the coefficient
of correlation (R) is also displayed in the plot. The gray rectangle
compares the two GLORYS systems: G2V1, built without sea ice
data assimilation, and G2V3, built with sea ice data assimilation

lower ice strength, and therefore faster ice velocities, com-
pared to Hibler’s formulation. We do not have a clear un-
derstanding of why the GloSea5 products present such short
timescales and length scales; however, we could speculate
that the combination between relatively thin ice (Fig. 13a)
and the use of Rothrock’s ice strength formulation could sup-
port this result.

The discussion above indicates that timescales and length
scales are mainly driven by the fact of whether or not the
reanalyses assimilate sea ice data, but that they are also in-
fluenced by the air–ice drag coefficient and sea ice drift. Fig-
ure 14 shows a strong correlation between both timescales
and length scales, whereby long timescales are associated
with large length scales. Notice in this plot the difference in
the timescales and length scales from G2V1 and G2V3 sys-
tems, highlighted by the gray rectangle placed near the center
of the figure.

As mentioned before, the ice thickness timescales and
length scales are interesting properties to be explored when
designing and planning an optimal observation system both
in terms of temporal sampling and spatial placement of in-
struments. Nevertheless, these properties also vary over time
(Figs. 7 and 9). The stability over time of timescales and
length scales can be estimated by the coefficient of variation
(Cv = SD/Mean). The Cv is a non-dimensional metric used
to evaluate the extent of a certain variability in relation to its
mean, allowing different properties to be compared. The Cv
for the GECCO2 and MOVE-CORE moving timescales, es-
timated from the time series shown in Fig. 7b and f, is 0.23
and 0.27, respectively, while the Cv for moving length scales
(Fig. 9) is 0.13 and 0.07.

Lastly, it is worthwhile mentioning that both timescales
and length scales are promising properties to support the de-
sign of an optimal observing system. As suggested by the Cv
presented above, and by the fact that the timescale is more
sensitive to the reanalysis specifications and parameters (see
Fig. 13c–f), the length scale is considerably more stable than
the timescale; therefore it is a more reliable variable to be
taken into account for deploying observing systems. For in-
stance, the multiple linear regression model used by Lind-
say and Zhang (2006), for determining optimal locations to
predict sea ice extent from SIT, could be combined with the
length scale information, thereby avoiding two or more sta-
tions placed into the same radius of correlation (length scale)
being selected. The timescale would be more useful if used
in combination with the knowledge of its variability. Further
studies are required to evaluate the performance of timescales
and length scales in providing support for the optimal design
of observational programs, though this work already shows
some promising results in that direction.

Data availability. All datasets used in this work are freely avail-
able, as follows: Reanalyses data are from https://icdc.cen.
uni-hamburg.de/1/daten/reanalysis-ocean/oraip.html (University of
Hamburg, 2019). PIOMAS is from http://psc.apl.uw.edu/research/
projects/arctic-sea-ice-volume-anomaly/ (Zhang and Rothrock,
2003). Observational data are from http://psc.apl.uw.edu/sea_ice_
cdr/ (Schweiger, 2017).

The Cryosphere, 13, 521–543, 2019 www.the-cryosphere.net/13/521/2019/

https://icdc.cen.uni-hamburg.de/1/daten/reanalysis-ocean/oraip.html
https://icdc.cen.uni-hamburg.de/1/daten/reanalysis-ocean/oraip.html
http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/
http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/
http://psc.apl.uw.edu/sea_ice_cdr/
http://psc.apl.uw.edu/sea_ice_cdr/


L. Ponsoni et al.: Timescales and length scales of the Arctic ice thickness anomalies 537

Appendix A: List of abbreviations

This appendix displays all abbreviations and their respective
written-out names referred to in the text and used in the fig-
ures. The long names of some abbreviations were previously
omitted in order to preserve the readability of text, while oth-
ers were already defined. All of them will be mentioned be-
low so that the reader can easily consult their meaning at any
time.

AER Atmospheric and Environmental Research
AWI Alfred Wegener Institute
AWM Area-weighted mean
BIO-LS Bedford Institute of Oceanography

Lancaster Sound
BGEP Beaufort Gyre Exploration Project
C-GLORS05 CMCC – Global Ocean

Reanalysis System
CDR Climate Data Record
CHK Chuck Sea
CMCC Centro Euro-Mediterraneo sui

Cambiamenti Climatici
CryoSat CRYOgenic SATellite
Cv Coefficient of variation
DAv Data assimilation
EBS Eastern Beaufort Sea
ECCO-v4 Estimating the Circulation and Climate

of the Ocean – version 4
ECDA Ensemble Coupled Data Assimilation
ECMWF European Centre for Medium-Range

Weather Forecasts
ESA European Space Agency
EVP Elastic–viscous–plastic
GECCO2 German – Estimating the Circulation

and Climate of the Ocean
GFDL Geophysical Fluid Dynamics Laboratory
GLORYS Global Ocean reanalysis and Simulation
GloSea5 Global Seasonal forecasting system
GloSea5-GO5 Global Seasonal forecasting system –

Global Ocean 5.0
GMAO Global Modeling and Assimilation Office
GS Greenland Sea
GSFC Goddard Space Flight Center
G2V3 GLORYS 2 – version 3
ICESat Ice, Cloud, and land Elevation Satellite
IOS Institute of Ocean Science
JMA Japan Meteorological Agency
JPL Jet Propulsion Laboratory
MERRA Modern Era Retrospective-analysis for

Research and Applications
ARC MFC Arctic Marine Forecasting Center
MIT Massachusetts Institute of Technology
MOVE-CORE Multivariate Ocean Variational Estimation –

Coordinated Ocean-ice Reference Experiment
MOVE-G2 Multivariate Ocean Variational Estimation –

Global version 2
MRI Meteorological Research Institute
MRSS Mean residual sum of squares
NAv No data assimilation
NASA National Aeronautics and Space Administration
NOAA National Oceanic and Atmospheric Administration
NPEO North Pole Environmental Observatory
ORA-IP Ocean Reanalysis Intercomparison project
PIOMAS Pan-Arctic Ice-Ocean Modeling and

Assimilation System
R Correlation coefficient
RMSE Root mean square error
SIT Sea ice thickness
TP4 TOPAZ4
UK-Subs-AN UK Navy Submarines – Analog
UK-Subs-DG UK Navy Submarines – Digital
ULS Upward-looking sonar
US-Subs-AN US Navy Submarines – Analog
US-Subs-DG US Navy Submarines – Digital
UR025-4 University of Reading,

1/4◦ deg – version 4
VP Viscous–plastic
YOPP Year Of Polar Prediction
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Appendix B: Tables

This appendix presents the comparison of all reanalysis prod-
ucts with all different observational datasets. This compari-
son is based on three different metrics: the root mean square
error (RMSE), the mean residual sum of squares (MRSS),
and the correlation coefficient (R).
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