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Abstract—Constant power loads combined with low inertia 

form a major challenge for future distribution grids. This 

paper presents a state-space representation to model dc 

distribution systems. Two methods are discussed to analyze the 

(small-signal) stability of these dc distribution systems; an 

algebraic method and a Brayton-Moser method. The system 

models and the methods for stability analysis were verified 

using an experimental dc microgrid set-up. Furthermore, it 

was found that the instability of dc distribution systems can be 

classified into two categories: equilibrium instability and 

oscillatory instability.  
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I. INTRODUCTION 

Future distribution grids will be subjected to significant 
changes. Firstly, large scale renewable power generation will 
be situated in areas with high resource availability rather than 
high consumption [1]. Secondly, the introduction of 
decentralized generation causes the power flow in the system 
to no longer be unidirectional [2]. Lastly, with the increasing 
participation of renewable energy resources, the uncertainty 
in distribution system is increased. Moreover, because of the 
islanding of microgrids, not only supply and demand are 
subjected to uncertainty, but also the topology of the 
distribution grid is becoming uncertain [2]-[4]. Yet, it is 
critical that the availability, accessibility and safety of future 
distribution systems are ensured. 

The application of dc distribution systems becomes 
appealing since they have several advantages compared to ac 
distribution systems. Primarily, dc distribution grids are 
foreseen to have advantages with regards to efficiency, 
control, distribution capacity, and converters [5], [6]. 

Adoption of dc distribution systems is expanding 
expeditiously. Utilization of dc systems for applications such 
as data centres, telecommunications, commercial and 
residential buildings and street lighting is growing [7], [8]. 
Furthermore, a variety of novel applications, such as 
microgrids and device level distribution, have been identified 
recently [9]. 

Stability for future (dc) distribution grids is more 
complex compared to conventional ac distribution grids. 

Firstly, with the increasing presence of power electronics and 
the increasing share of renewable energy the inertia in the 
grid is decreasing [10]. Secondly, constant power loads have 
a significant adverse effect on stability due to their negative 
incremental impedance [11]. Lastly, distribution grids are 
subjected to changes in grid topology, direction of power 
flow, and meshes [3].  

Two common stabilization methods have been identified 
to ensure stability in dc distribution systems. Firstly, passive 
stabilization which utilizes passive elements to dampen 
disturbances in the system [12]. Secondly, active 
stabilization using advanced control methods [13]. However, 
it is more cost effective to ensure inherent stability in dc 
distribution systems, when possible. 

In literature, four main approaches to analyse the stability 
of dc distribution systems can be found. Firstly, a root locus 
of the system can be drawn for the locations of the poles 
under changing system parameters [14]. However, this 
approach does not provide general insights into stability. 
Secondly, the relationship between load and source 
impedance, the minor loop gain, can be analysed [15]. 
However, unidirectional power flow is assumed and 
measurements are crucial for accurate impedance 
estimations. Thirdly, Lyapunov methods can be used to 
analyse stability [16]. However, finding and applying 
suitable Lyapunov storage functions is challenging. Lastly, 
the poles of the system can be derived from its state-space 
representation [17]. This method relies on the linearization of 
the system, and is also used in this paper. 

Previous research analyses specific topologies, uses 
oversimplified models, or do not provide general rules for 
stability. In this paper a state-space representation for any dc 
distribution system, including its converters, is presented. 
From this representation methods to analyse the stability 
algebraically and ensure stability for plug-and-play systems 
are derived.  

The main contribution of this paper is the experimental 
validation of the dc distribution system model, the stability 
analysis methods and their derived observations. 

The remainder of this paper is organized as follows: in 
Section II a generic algebraic model of dc distribution 
systems is introduced. In Section III different methods to 
analyse the stability of dc distribution systems are discussed. 
In Section IV the models and methods are verified using an 
experimental dc microgrid set-up. Lastly, in Section V 
conclusions are drawn. 
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Horizon 2020 Research and Innovation Programme. 

This paper has received funding from the European Union’s Horizon 
2020 Research and Innovation {rogramme under grant agreement No 
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II. ALGEBRAIC MODEL OF DC DISTRIBUTION SYSTEMS 

Fig. 1 shows an example of a bipolar dc distribution 
system containing sources, loads and storage. In general, dc 
distribution systems can be described by their n nodes, l 
distribution lines, o phase conductors and m converters that 
are connected to the system’s nodes.  

 
Fig. 1. Example of a dc distribution grid (subsection) containing sources, 

loads and storage 

A. DC Distribution Network Model 

A lumped element π model is used for modelling the 
system’s distribution lines. Consequently, the dc distribution 
system can then be described by the differential equations for 
the node voltages and line currents, which are given by 

 𝑪𝑼𝑵̇ = 𝑰𝑵 − 𝚪𝑻𝑰𝑳   , (1) 

 𝑳𝑰𝑳̇ = 𝜞𝑼𝑵 − 𝑹𝑰𝑳  , (2) 

where the bold face indicates a vector or a matrix. 
Furthermore, 𝑼𝑵, 𝑰𝑳, and 𝑰𝑵 are the voltages in each node, 
currents in each line, and the currents flowing from the 
converters into each node respectively. Additionally, 𝑪 , 𝑳 

and 𝑹 are the capacitance, inductance and resistance matrices 
respectively. Moreover, the interconnectivity of the system is 
described by the incidence matrix, 𝚪, which is given by 

 
𝚪(j, i) =  {

1      if 𝐼𝑗  is flowing from node 𝑖

−1      if 𝐼𝑗  is flowing to node 𝑖         
. (3) 

where the indices i and j indicate the nodes and lines 
respectively. Therefore, 𝐼𝑗  is the current flowing in line j 

[18]. 

B. Converter Model 

If it is assumed that the bandwidths of the converters are 

large enough that they instantaneously react to disturbances 

in the system, the inner control loops can be neglected and 

the ideal behavior of converters suffices for modelling [19]. 

Consequently, all power electronic converters in the 

system can be represented by either a constant voltage 

source (for voltage controlling converters), or a constant 

current source in parallel with an impedance. For example, 

the currents from droop sources and constant power loads 

flowing into its node can respectively be described by 

 
                            𝐼s =

𝑈0 − 𝑈𝑖

𝑍𝑠

= 𝐼𝑠,0 −
𝑈𝑖

𝑍𝑠

  , 
(4) 

 
𝐼l = −

𝑃𝑙

𝑈𝑖

= −
2𝑃𝑙

𝑈
+

𝑃𝑙

𝑈2
𝑈𝑖  = 𝐼𝑙,0 −

𝑈𝑖

𝑍𝑙

  , (5) 

where 𝑈0  and 𝑍𝑠  are the reference voltage and droop 

impedance of the droop source respectively. Furthermore, 𝑈 

is the voltage at which the constant power load is linearized, 

and 𝑃𝑙  and 𝑍𝑙  are the power and the linearized incremental 

impedance of the constant power load respectively [20]. 

The transformation from the ideal circuits to their 

(linearized) Norton equivalent circuits is shown for droop 

sources and constant power loads in Fig. 2. 

 
Fig. 2. Ideal and linearized Norton equivalent circuits for droop sources 
(top) and constant power loads (bottom) 

C. DC Distribution System Model 

Using (1), (2), and the Norton equivalent for converters 

(as shown in (4) and (5)) a state-space model of the whole 

dc distribution system is derived to be 

 
[
𝑼𝑵̇

𝑰𝑳̇

] = [−𝑪−𝟏𝒁−𝟏 −𝑪−𝟏𝚪𝑻

𝑳−𝟏𝚪 −𝑳−𝟏𝑹
] [

𝑼𝑵

𝑰𝑳
] + [𝑪

−𝟏

Ø
] 𝑰𝑵,𝟎 , (6) 

where 𝒁 and 𝑰𝑵,𝟎 are the impedance and the constant current 

terms of the Norton equivalent circuits of the converters. 

Since the impedances of the converters are linearized, this 

state-space representation also forms a small-signal model.    

III. DC DISTRIBUTION SYSTEM STABILITY ANALYSIS 

For any system there are two requirements for stability. 

Firstly, an equilibrium must exist. Secondly, the system 

must move to the equilibrium and the system’s variables 

must be stable around the equilibrium. 

To find the equilibrium the time derivatives of the 

system are set to zero. Consequently the state variables at 

the equilibrium can then be found by 

 
[
𝑼𝑵

𝑰𝑳
] = [−𝑪−𝟏𝒁−𝟏 −𝑪−𝟏𝚪𝑻

𝑳−𝟏𝚪 −𝑳−𝟏𝑹
]
−1

[𝑪
−𝟏

Ø
] 𝑰𝑵,𝟎  , (7) 

Simplifying this equation the node voltages at the 

equilibrium are derived to be 

 𝑼𝑵 = (𝒁−𝟏 + 𝚪𝑻𝑹−𝟏𝚪)−𝟏 𝑰𝑵,𝟎   , (8) 

which is equivalent to deriving the equivalent impedance of 

the network and multiplying it with the constant current 

terms. 

The stability around the equilibrium can be determined 

by determining the eigenvalues of the left-hand matrix in 

(6). If and only if all eigenvalues have negative real parts the 

system will be stable. Moreover, the eigenvalues can be 

determined by solving 

 
|  [−𝑪−𝟏𝒁−𝟏 −𝑪−𝟏𝚪𝑻

𝑳−𝟏𝚪 −𝑳−𝟏𝑹
] − 𝜆𝑰  | = ∅  , (9) 

where 𝝀 represents the eigenvalues and 𝑰  is the identity 

matrix. 



A. A Simple DC Distribution System 

A simple dc distribution is shown in Fig. 3. This system 

contains a droop controlled source at node N1 which is 

connected to a constant power load at node N2 via a 

distribution line. Both are represented by their (linearized) 

Norton equivalent circuit. 

 
Fig. 3. Simple dc distribution grid with a constant power load (CPL) and a 

droop source connected via a distribution line. 

Utilizing (6), the state-space formulation of this dc 

distribution system is then given by 

 

[

𝑈1̇

𝑈2̇

𝐼𝐿̇

] =

[
 
 
 
 
 
 
−1

𝑍1𝐶1

0
−1

𝐶1

0
−1

𝑍2𝐶2

−1

𝐶2

1

𝐿

−1

𝐿

−𝑅

𝐿 ]
 
 
 
 
 
 

[

𝑈1

𝑈2

𝐼𝐿

] +

[
 
 
 
 
1

𝐶1

0

0
1

𝐶2

0 0 ]
 
 
 
 

[
𝐼1
𝐼2

] , (10) 

where it is important to realize that 𝑍1 is positive and 𝑍2 is 

negative (because of the negative incremental impedance of 

constant power loads).  

The characteristic equation for the state-space system 

can be obtained by utilizing the left-hand side from (9), 

|𝑨 − 𝜆𝑰|. This characteristic equation is given by 

 
𝜆3 + 𝜆2 (

𝑅

𝐿
+

1

𝐶1𝑍1
+

1

𝐶2𝑍2
)                                  

+ 𝜆
1

𝐿
(

𝐿

𝑍1𝑍2
+

𝑅

𝑍1𝐶1
+

𝑅

𝑍2𝐶2
+ 𝐶2 + 𝐶1 )

+
1

𝐿𝐶1𝐶2
(

𝑅

𝑍1𝑍2
+

1

𝑍1
+

1

𝑍2
)                       . 

(11) 

It is required that all coefficients of the characteristic 

polynomial are positive for it to have poles with negative 

real parts. To make the conditions not only necessary but 

also sufficient one additional constraint is required. The 

product of the second and third coefficient of the 

polynomial must be greater than the fourth coefficient [21]. 

Consequently, if the resistance of the line is neglected, the 

system is stable if and only if 

 |𝑍2| > |𝑍1|  , (12) 

 𝐶2|𝑍2| > 𝐶1|𝑍1|  , (13) 

 
𝐶2 + 𝐶1 >

𝐿

|𝑍1||𝑍2|
  , (14) 

 
    

𝐿

𝐶2𝑍1𝑍2
2 +

𝐶2

𝐶1𝑍1

>
𝐿

𝐶1𝑍1
2|𝑍2|

+
𝐶1

𝐶2|𝑍2|
 . (15) 

A couple of interesting observations can be made from this 

result.  

Firstly, increasing the source’s capacitance does not 

benefit stability as long as the load’s capacitance is large 

enough. On the other hand increasing the load’s capacitance 

is almost always beneficial to stability. This can be 

explained by realizing that increasing the capacitance of a 

converter reduces it’s time constant. Therefore, increasing 

capacitance of a dc distribution system without considering 

the location is not a good practice. 

Secondly, increasing inductance always has a negative 

effect on stability. Even in (15), as long as (12) is adhered 

to, the inductance has a negative effect on the stability 

constraint. 

B. Complex DC Distribution System 

A state-space representation in the form of (6) can also 

be made for more complex dc distribution systems. 

Subsequently the coefficients of the characteristic equation 

can be found utilizing traces of powers or the principal 

minors of the left-hand matrix utilizing 

 𝑎1 = 1   , (16) 

 

𝑎1+𝑘 = −
1

𝑘
∑ 𝑎𝑚Tr(𝐴𝑘−𝑚+1)

𝑚=𝑘

𝑚=1

 , (17) 

 𝑎1+𝑘 = (−1)−𝑘 ∑ 𝛥𝑘 , (18) 

where Tr is the trace and 𝛥𝑘 is the principal minor of 𝐴 of 

order k, and 𝐴 is the left-hand matrix in (6) [22], [23]. 

Algebraically deriving these coefficients for complex 

systems results in long equations for each coefficient. 

However, the results for a few simpler systems confirm the 

observations from the previous subsection [24].  

C. Plug-and-Play DC Distribution Systems 

Many applications exist for dc distribution systems with 

a changing topology and/or participants. Ensuring stability 

for these plug-and-play system is especially challenging. 

This is because the incidence matrix for these systems is 

unknown and therefore deriving and optimizing stability 

becomes beyond the bounds of possibility. 

However, sufficient, but not necessary, requirements can 

be derived for plug-and-play dc distribution systems. A 

Brayton-Moser representation of (6) can be used to derive 

two sufficient conditions for stability. These conditions are 

 
                𝑃Σ ≤

𝑈min(𝑈0 − 𝑈min)

𝑍𝑠 + 𝑅Σ

  , 
(19) 

 
𝐶𝑖 >

𝜏max 𝑃𝑙,𝑖

𝑈min 
2   , (20) 

where 𝑃Σ  is the total sum of the consumed power in the 

system, 𝑈min is the minimum allowed voltage of the system, 

𝑅Σ is the total sum of the line resistance in the system, 𝐶𝑖 is 

the output capacitance of the constant power load with 

power 𝑃𝑙,𝑖 at node i, and 𝜏max  is the maximum time constant 

of the system’s lines [20]. 

Since it is unlikely to have knowledge about the total 

sum of power and line resistance in the system, (19) can be 

adhered to by ensuring loads disconnect when the voltage 

drops below 𝑈min. Accordingly, stability is then ensured by 

sizing the output capacitors of constant power loads by 

utilizing (20). 



IV. EXPERIMENTAL RESULTS 

The experimental set-up that is used in this paper is 

shown in Fig. 3. The laboratory scale microgrid consists of 

four power electronic converters connected to a dc bus via a 

line with defined resistance, and inductance. Furthermore, a 

discharging resistor is connected to the bus to ensure all 

capacitors are discharged after operation. 

    
Fig. 4. Schematic (left) and photograph (right) of the DC microgrid set-up 

consisting of four power electronic converters connected to a dc bus 

The four power electronic converters in the microgrid 

set-up use the topology shown in Fig. 5. The topology 

consists of three parallel half-bridges that operate, 

depending on the control, as a three-phase ac/dc converter or 

a interleaved boost dc/dc converter. 

 

Fig. 5. Topology of the converters that are used in the experimental set-up  

For all the experiments three of the converters were 

operated as dc/dc converters, while one is operated as a 

grid-connected ac/dc converter (which is connected to the 

grid via an isolation transformer).  

To model the converters a simple average model is used, 

which are controlled by an inner current control loop and an 

outer voltage, power or droop control loop. Furthermore, the 

grid is modelled using (6). The state-space equations of the 

system are implemented directly via the system’s matrices. 

A. Modelling Verification 

TABLE I.  CONVERTER AND LINE PARAMETERS 

Converter 
Parameters 

Lc [mH] Co [mF] RL [Ω] LL [mH] 

Grid 1.3 3.0 0.12 1.3 

Battery 2.6 1.5 0.08 2.6 

PV 2..6 1.5 0.08 2.6 

Load 2.6 1.5 0.08 2.6 

 

To verify the combined models of the system and 

converters an experiment under normal conditions was 

conducted. The ac/dc converter (labeled “Grid”) and a dc/dc 

converter (labeled “Battery”) were operated as power-droop 

controlled converters. The other two converters operated as 

constant power converters (labeled “PV” and “Load”). The 

parameters of the converters and the lines connecting the 

converters to the bus are given in Table I. 

During the experiment several changes in the operating 

points of the converters were made. First the reference 

voltage (𝑈0) of the Grid and Battery is stepped down and 

later stepped up again. Subsequently, the output powers of 

the PV and Load converters are changed. The exact scenario 

is detailed in Table II. 

TABLE II.  MODELLING VERIFICATION SCENARIO 

Time  

[ms] 

Control Set Points 

Grid  

[U0] 
Battery  

[U0] 

PV 

[P] 
Load 
[P] 

0.0 380 V 380 V 0 0 

1.0 360 V 360 V 0 0 

3.0 380 V 360 V 0 0 

5.0 380 V 380 V 0 0 

7.0 380 V 380 V 3.15 kW 0 

9.0 380 V 380 V 3.15 kW -3.30 kW 

 

The experimental results and the results from 

simulations for the voltages at each converter’s output 

capacitor are shown in Fig. 6.  

 

Fig. 6. Simulation and experimental results for the verification of the 

converter and dc distribution system models 

The figures show strong congruency with the simulation 

models. The experimental results coincide with the 

simulation results for both the steady state values as well as 

the peak values during dynamics.  

It is important to note that the disturbances on the Grid 

converter’s voltage were caused by nearby activity in the 

grid, which also reflects to the other converters’ voltage.  



B. Equilibrium Instability 

From (12) – (15) it can be seen that, as long as the 

constant power load has a large enough output capacitance, 

either a too low or too high droop constant can cause 

instability. Therefore, in this subsection experiments are 

conducted to experimentally verify this observation for a 

more complex system.  

For these experiments the Grid tied converter was 

disconnected from the dc microgrid. This was done to 

prevent the ac/dc converter to operate in uncontrolled 

rectifier mode when the voltage drops below 325 V. 

However, the grid voltage could not drop below 130 V, 

since the dc/dc converters were fed using a 130 V source. 

Furthermore, the PV converter was also operated as a 

constant power load. Additionally, the bus discharge 

resistance was set at 380 Ω. 

First, the Load converter steps up its consumed power 

from 0 to 2.4 kW. Afterward, the PV converter steps up its 

consumed power from 0 to 1.6 kW. Furthermore, the 

Battery converter’s reference voltage is set at 380 V. The 

experimental and simulation results for the Battery 

converter’s output voltage with a droop constant of 26 W/V 

and 13 W/V are shown in Fig. 7. 

  

Fig. 7. Simulation and experimental results for the Battery converter’s 

output voltage with a droop constant of 26 W/V (left) and 13 W/V (right) 

From Fig. 7 it is clear that the system models follow the 

experimental results close enough. Furthermore, the system 

models correctly predict when it becomes unstable. It is seen 

that when the droop constant becomes too low and the 

consumed power too high the voltage drops to sharply to 

zero (or 130 V in this case, since the dc/dc converters’ 

bypass diodes start conducting). 

When the droop constant becomes too low the system 

does not have an equilibrium (or in other words a steady 

state) and therefore becomes unstable. This instability can 

also be explained by impedance matching. The droop 

controlled source supplies its maximum power to the output 

when the voltage at its output is half the reference voltage. 

Therefore, if the consumed power forces the output voltage 

to go below 190 V the source cannot provide the consumed 

power in the system. 

In practical systems this instability can be prevented by 

disconnecting loads from the system when a certain voltage 

is reached (assuming that the droop constant cannot be 

adjusted). For example, in this system the loads must be 

disconnected before the voltage drops below 190 V to 

maintain stability. This observation is congruent with the 

results for the stability of plug-and-play dc distribution 

systems presented in Section III-C. 

C. Oscillatory Instability 

The experiments for when the droop constant becomes 

too high are identical to the previous experiments besides a 

change in droop constant of the Battery converter. The 

results for the Battery converter’s output voltage with a 

droop constants of 790 W/V is shown in Fig. 8. 

 

Fig. 8. Simulation and experimental results for the Battery converter’s 

output voltage with a droop constant of 790 W/V 

It is again seen that the experimental results follow the 

simulation results closely even during transients in the 

system. Although the dc microgrid is stable, the system is 

becoming somewhat oscillatory, because the damping of the 

oscillations takes a significant amount of time.  

The droop constant of the Battery is further increased to 

1050 W/V. The resulting voltage for the Battery converter is 

shown in Fig. 9. 

 

Fig. 9. Simulation and experimental results for the Battery converter’s 

output voltage with a droop constant of 1050 W/V 

Although the voltage becomes unstable immediately in 

the simulations, in the experiment the system only becomes 

unstable as soon as a transient occurs in the system. 

However, once the experimental set-up becomes unstable, 

the frequency and amplitude of the oscillations are correctly 

predicted by the simulations. 

In dc distribution systems oscillations naturally occur in 

the present CLRC circuits formed by the distribution lines 

and output capacitors of the converters. Constant power 

loads enhance these oscillations since they exhibit negative 

incremental impedance, while droop controlled sources and 

line resistance provide damping.  

The destabilizing factor of constant power loads increase 

with power consumption, while the damping of droop 

controlled sources increases with decreasing droop constant. 

Therefore, when the droop constant is increased too much, 

the system becomes unstable. If the droop constant is 

increased the droop source becomes more and more like a 

constant voltage source, providing no damping to the 

system. 

These observations are again congruent with the results 

for the stability of plug-and-play dc distribution systems 

presented in Section III-C. 



V. CONCLUSIONS 

The introduction of renewable energy resources has 

significant consequences to distribution systems’ stability in 

terms of inertia. Furthermore, the increasing presence of 

power electronic converters, especially constant power 

loads, further complicates establishing stable distribution 

systems. 

This paper models dc distribution systems by their node 

voltages and line currents, while modelling the power 

electronic converters as their (linearized) Norton equivalent. 

A state-space representation of the system is created that 

allows for the analysis of the system’s eigenvalues. 

Two methods to analyze dc distribution systems’ 

stability are presented. Firstly, the eigenvalues of the state 

matrix can be determined either directly or via determining 

the coefficients of the characteristic equations. Secondly, a 

Brayton-Moser representation of the system can constructed 

to arrive at sufficient conditions for plug-and-play systems. 

The models and algebraic methods were verified using 

an experimental dc microgrid set-up. The models showed 

strong congruency with the microgrid behavior. 

Furthermore, the experiments confirmed that the instability 

of dc distribution systems can be classified in two 

categories; equilibrium instability and oscillatory instability. 

Equilibrium instability occurs when the system does not 

have an equilibrium, and can be caused by a droop constant 

that is too low. Oscillatory instability occurs when 

oscillations are not damped sufficiently, and can be caused 

by a droop constant that is too high. 

In the future the presented analytical methods can be 

used to analyze, optimize and/or ensure the stability of dc 

distribution systems. Furthermore, a focus can be made on 

preventing the two distinct forms of instability while 

designing a dc distribution system. 
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