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Introduction

• Background error covariance modelling is a key aspect of
variational DA systems.

• Ensembles of perturbed backgrounds can be used to sample
the background error covariance.

• For computational cost reasons, the ensemble size is limited.

• Localization is required to remove the sampling noise.

• In variational DA systems, localization is applied in model
space (not in observation space).

• Optimal localization can be diagnosed from the ensemble.

• In practice, the localization matrix itself is not required, only
its smoothing e�ect when applied on a state vector.
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Sample covariance

An ensemble of N forecasts {xb
p
} is used to estimate the sample

covariance matrix B̃:

B̃ =
1

N − 1

N∑
p=1

δxb
p
δxbT

p
(1)

where δxb
p
is the pth ensemble perturbation:

δxb
p

= xb
p
− 〈xb〉 and 〈xb〉 =

1

N

N∑
p=1

xb
p

(2)

Asymptotic sample covariance: B = lim
N→∞

B̃

Since the ensemble size N <∞, B̃ is a�ected by sampling noise:

B̃e = B̃− B (3)
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Sample covariance

Sampling noise strongly depends on the ensemble size:
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Sample covariance

Sampling noise strongly depends on the ensemble size:

Solution: using a huge ensemble (really, really huge).
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Localized covariance

Sampling noise on B̃ can be damped via a Schur product
(element-by-element) with a localization matrix L:

B̂ = L ◦ B̃ ⇔ B̂
ij

= L
ij
B̃
ij

(4)

In practice, L damps the long-distance correlations that are small
and more a�ected by sampling noise (hence the �localization�).
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Localization: what is the optimal length-scale?

The localization length-scale is critical to remove the sampling
noise while keeping the relevant covariance signal:

No impact
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Localization: what is the optimal length-scale?

The localization length-scale is critical to remove the sampling
noise while keeping the relevant covariance signal:

Start reducing the sampling noise...
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Localization: what is the optimal length-scale?

The localization length-scale is critical to remove the sampling
noise while keeping the relevant covariance signal:

Less and less sampling noise...
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Localization: what is the optimal length-scale?

The localization length-scale is critical to remove the sampling
noise while keeping the relevant covariance signal:

Good ! Almost no sampling noise anymore...
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Localization: what is the optimal length-scale?

The localization length-scale is critical to remove the sampling
noise while keeping the relevant covariance signal:

Well, we are loosing some signal now...
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Localization: what is the optimal length-scale?

The localization length-scale is critical to remove the sampling
noise while keeping the relevant covariance signal:

Hey, stop loosing signal !
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Localization: what is the optimal length-scale?

The localization length-scale is critical to remove the sampling
noise while keeping the relevant covariance signal:

No more signal !
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How to optimize localization ?

Existing methods are empirical and costly (e.g. OSSE, brute-force
optimization). We need a new method that:

• uses only ensemble members,

• is a�ordable for high-dimensional systems.

Objectives:

• Express L minimizing the error E
[
‖L ◦ B̃− B‖2

]
→ Linear �ltering theory: L

ij
=

E
[
B
2

ij

]
E
[
B̃
2

ij

]
• Express statistics on asymptotic quantities (unknown) with
expected sample quantities (knowable).

→ Centered moments sampling theory (non-Gaussian case).
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How to optimize localization?

Optimal localization :

L
ij

=
(N − 1)2

N(N − 3)
+

N − 1

N(N − 2)(N − 3)

E
[
B̃
ii
B̃
jj

]
E
[
B̃
2

ij

]
− N

(N − 2)(N − 3)

E
[
Ξ̃
ijij

]
E
[
B̃
2

ij

] (5)

where Ξ̃ is the sampled fourth-order centered moment.

• Equation (5) involves only sampled quantities (with a limited
ensemble size), not asymptotic ones.

• Extension available for hybrid weights diagnostic (Ménétrier
and Auligné, 2015).

• Expectations E[·] have to be estimated in practice.



Intro Sampling noise Localization impact Diagnostic Application Conclusions

Practical application

Spatial ergodicity assumption to estimate expectations E
[
·
]
:

Estimation of horizontal correlation and localization
ARPEGE model, ensemble size N=25, mid-troposphere temperature
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Practical application

Spatial ergodicity assumption to estimate expectations E
[
·
]
:

Estimation of horizontal correlation and localization
ARPEGE model, ensemble size N=25, mid-troposphere temperature
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Practical application

Spatial ergodicity assumption to estimate expectations E
[
·
]
:

Fit of horizontal correlation and localization
ARPEGE model, ensemble size N=25, mid-troposphere temperature
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Ensemble size sensitivity

Correlation (black) et localization (colors) for various ensemble sizes

Localization length-scale increases as the ensemble size increases
(less sampling noise to remove)
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Example with the coupled system CERA-20C

Temperature coupled background error on August 21, 2005
for the location (130◦ W, 0◦ N) from Laloyaux et al. (2018)

Vertical correlation matrix: (a) raw and (b) localized

Coupled localization diagnostic seems possible, but it still needs
more work and re�nements.
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Explicit convolution

In variational methods, the localization matrix itself is not required,
only its smoothing e�ect when applied to a state vector.

Standard methods:

• Spectral/wavelet transforms → regular grid required

• Recursive �lters → regular grid required
+ normalization issue

• Explicit/implicit di�usion → potentially high cost
+ normalization issue

Advantages of an explicit convolution C :

• Work on any grid type

• Exact normalization (C
ii

= 1)

Drawback: the computational cost scales as O(n2), where n is the
size of the model grid...
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Explicit convolution

To limit the computational cost, we approximate C on a subgrid
(subset of ns points of the model grid):

C ≈ SCsST (6)

where

• S is an interpolation from the subgrid to the model grid

• Cs is a convolution matrix on the subgrid

If ns � n, then the total cost scales as O(n) (interpolation cost).

Issues with this approach:

• If the subgrid density is too coarse compared to the
convolution length-scale, the convolution is distorded.

• Normalization breaks down because of the interpolation: even
if Cs is normalized, SCsST is not.
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Explicit convolution

The NICAS method (Normalized Interpolated Convolution from an
Adaptive Subgrid) is given by:

C̃ = NSCsSTNT (7)

where N is a diagonal normalization matrix.

Features:

• The subgrid is locally adapted to the convolution length-scale.

• The convolution function is the Gaspari and Cohn (1999)
function, modi�ed to use heterogeneous length-scales,
or even anisotropic local tensors.

• Communications are local, on the subgrid only.

• Hybrid MPI-OpenMP parallelization is enabled.
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Illustrations

Heterogenous convolution length-scale → heterogenous subgrid:

A fast trial-and-error algorithm using a K-D tree ensures that the
horizontal subsampling is well distributed.
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Illustrations

Convolution with a heterogeneous length-scale
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Illustrations

Complex boundaries can be taken into account for both
interpolation and convolution steps:

Implicit di�usion (left) and NICAS (right) on the ORCA grid.
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Illustrations

Complex boundaries can be taken into account for both
interpolation and convolution steps:

Implicit di�usion (left) and NICAS (right) on the ORCA grid.

Since NICAS can deal with any kind of grid, it should also work for
coupled systems. Again, more work is needed to con�rm this hope.
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Conclusions

• Localization is required to remove the sampling noise for small
ensembles, very large ensembles being una�ordable.

• In variational DA systems, localization is applied in model
space (not in observation space).

• Optimal localization can be diagnosed from the ensemble.

• Localization application can be performed e�ciently on any
grid with the NICAS smoother.

• For coupled DA systems, ensemble-variational methods
(EnVar) could be a powerful class of algorithms, but it requires
a fully coupled sample covariance localization.

• Tests are underway to apply our recent methods to coupled
systems, in order to build such a fully coupled localization.
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The BUMP software

• An open-source library, the Background error on Unstructured
Mesh Package (BUMP) is available at:

https://github.com/benjaminmenetrier/bump-standalone

• BUMP is also interfaced within OOPS, a generic DA system
developed at ECMWF and at the JCSDA (JEDI project):

https://www.jcsda.org/jcsda-project-jedi

https://github.com/benjaminmenetrier/bump-standalone
https://www.jcsda.org/jcsda-project-jedi
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The BUMP software

• An open-source library, the Background error on Unstructured
Mesh Package (BUMP) is available at:

https://github.com/benjaminmenetrier/bump-standalone

• BUMP is also interfaced within OOPS, a generic DA system
developed at ECMWF and at the JCSDA (JEDI project):

https://www.jcsda.org/jcsda-project-jedi

Thank you for your attention!
(and for the invitation)

https://github.com/benjaminmenetrier/bump-standalone
https://www.jcsda.org/jcsda-project-jedi




Sampling noise properties

Homogeneous variance / length-scale
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Heterogeneous variance / homogeneous length-scale

Sampling noise amplitude related to the asymptotic variance
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Sampling noise properties

Homogeneous variance / heterogeneous length-scale

Sampling noise length-scale related to the asymptotic length-scale
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