Applications of coupled data assimilation at ECMWF

Patrick Laloyaux & Antje Weisheimer

Climate reanalyses at ECMWF spanning 1900-2010

- \rightarrow reconstruct the past weather (synoptic situation)
- → reconstruct climate (low-frequency variability)

ERA-20C: the ECMWF atmospheric reanalysis of the 20th century

Atmosphere

Land

ORA-20C: the ECMWF ocean reanalysis of the 20th century

Ocean

Sea ice

CERA-20C: the first ECMWF coupled ensemble reanalysis of the 20th century

Atmosphere

Land

Wave

Ocean

Sea ice

Coupled data assimilation (IFS/NEMO)

 \rightarrow 4D-VAR assimilation is an iterative algorithm

 \rightarrow CDA produces implicit cross-correlations using the physics of the coupled model

 \rightarrow Several outer iteration to ensure a consistent coupled analysis

Coupled data assimilation (IFS/NEMO)

 \rightarrow 4D-VAR assimilation is an iterative algorithm

 \rightarrow CDA produces implicit cross-correlations using the physics of the coupled model

 \rightarrow Several outer iteration to ensure a consistent coupled analysis

Coupled data assimilation (IFS/NEMO)

 \rightarrow 4D-VAR assimilation is an iterative algorithm

 \rightarrow CDA produces implicit cross-correlations using the physics of the coupled model

 \rightarrow Several outer iteration to ensure a consistent coupled analysis

Ensemble data assimilation

"An ensemble of perturbed first-guesses is transformed in an ensemble of analysis by running the assimilation system on each member"

CERA-20C ensemble spread

10-member of CERA-20C showing uncertainties in the climate reconstruction

CERA-20C improved over ERA-20C

RMSE error in geopotential height for MAM 2010

CERA-20C has reduced by 20-30% the error in the troposphere compared to ERA-20C

Issue with sea ice in CERA-20C

Arctic sea-ice thickness in March 1932

→ CERA-20C was the first application using the coupled model on an interannual time-scale

- \rightarrow lack of summer melting, leading to the accumulation of Arctic sea ice over the years
- \rightarrow sea-ice extent under control thanks to the SST relaxation

20CR reanalysis

Confidence has been improved in 20CRv3 at high latitude

(b) 20CRv3

 ∞

JFM for 1916-191

(c) 20CRv3 minus 20CRv2c

1- spread_ens/spread_clim

Slivinski et. al., Towards a more reliable historical reanalysis: Improvements for version3 of the Twentieth Century Reanalysis system

The importance of data rescue (WeatherRescue.org)

Mean-sea-level pressure from 20CRv3 without (left) and with (right) additional observations from the UK Daily Weather Reports

Extra observations improves the representation of the storm and increase the confidence (clustering of the different members)

Ed Hawkins and Philip Brohan

Skill of seasonal hindcasts initialised by climate reanalyses

Re-forecast experiments over the period 1901-2010: ECMWF's atmospheric model with prescribed SSTs and sea-ice (uncoupled) Initial condition: ERA-20C ECMWF's fully coupled atmosphere-ocean-sea-ice model (coupled) Initial condition: CERA-20C

- IFS model cycle 41R1 (in-between S4 and SEAS5), T_L255L91 (60km))
 + NEMO ORCA1L42 + LIM2
- Ensemble with 51 perturbed members
- Focus here: 4-month forecast initialised on 1^{st} of Nov each year (\rightarrow DJF)

Multi-decadal variability of NAO forecast skill (moving window)

Multi-decadal variability of NAO forecast skill (moving window)

Multi-decadal variability of NAO forecast skill (moving window)

Conclusions

Reanalysis provides a consistent and comprehensive reconstruction of the climate

Multi-decadal variability of winter NAO forecast skill in coupled and uncoupled hindcasts over the 20th Century (1901-2010)

Achieving good forecast skill for recent decades is not sufficient to guarantee similar good performance in the future

CERA-20C climate dataset

SECMWF ≡

Public Datasets Select dataset
Current activity

Contact Patrick Laloyaux-

Help-

CERA-20C, Synoptic Monthly Means

Select a year

Type of level

 Model levels Potential temperature Potential vorticity 	\bigcirc 1901	\bigcirc 1902	\bigcirc 1903	\bigcirc 1904	\bigcirc 1905	\bigcirc 1906	\bigcirc 1907	\bigcirc 1908	\bigcirc 1909	\bigcirc 1910	\bigcirc 1911	\bigcirc 1912	\bigcirc 1913
	○1914	○1915	○1916	○1917	○1918	○1919	○1920	○1921	○1922	O 1923	O 1924	O 1925	○ 1926
	○ 1927	○1928	○1929	○1930	○1931	○1932	○1933	○1934	○1935	○1936	○1937	○1938	○ 1939
Pressure levels	○1940	\bigcirc 1941	○1942	○1943	○1944	○1945	○1946	○1947	○1948	○1949	\bigcirc 1950	○ 1951	○1952
• Surface	○ 1953	\bigcirc 1954	\bigcirc 1955	○1956	\bigcirc 1957	\bigcirc 1958	\bigcirc 1959	○1960	○1961	○1962	O 1963	O 1964	○ 1965
	◯ 1966	O 1967	○1968	○1969	\bigcirc 1970	\bigcirc 1971	○1972	○1973	\bigcirc 1974	O 1975	○1976	○ 1977	○1978
Туре	○ 1979	○1980	○1981	○1982	○1983	○1984	○1985	O 1986	○1987	○1988	○1989	○ 1990	O 1991
• Analysis	○ 1992	○1993	\bigcirc 1994	\bigcirc 1995	○1996	\bigcirc 1997	○1998	\bigcirc 1999	○2000	\bigcirc 2001	○2002	○2003	○2004
• Forecast	○ 2005	○2006	○2007	○2008	○2009	○2010							

https://apps.ecmwf.int/datasets/data/cera20c

Journal of Advances in Modeling Earth Systems

RESEARCH ARTICLE CERA-20C: A Coupled Reanalysis of the Twentieth Century

10.1029/2018MS001273

Key Points:

- CERA-20C reconstructs the past climate of the atmosphere, ocean, land, waves, and sea ice
- CERA-20C provides a 10 member ensemble of reanalyses to account for errors
- CERA-20C shows significant improvements in the troposphere, compared to ERA-20C and 20CRv2c

Correspondence to:

P. Laloyaux, patrick.laloyaux@ecmwf.int Patrick Laloyaux¹ ^(D), Eric de Boisseson¹ ^(D), Magdalena Balmaseda¹ ^(D), Jean-Raymond Bidlot¹, Stefan Broennimann², Roberto Buizza¹ ^(D), Per Dalhgren¹, Dick Dee¹, Leopold Haimberger³ ^(D), Hans Hersbach¹, Yuki Kosaka⁴, Matthew Martin⁵, Paul Poli⁶ ^(D), Nick Rayner⁵, Elke Rustemeier⁷, and Dinand Schepers¹

¹European Centre for Medium-Range Weather Forecasts, Reading, UK, ²University of Bern, Bern, Switzerland, ³University of Vienna, Wien, Austria, ⁴Japan Meteorological Agency, Tokyo, Japan, ⁵Met Office, Exeter, UK, ⁶Meteo France, Paris, France, ⁷Deutscher Wetterdienst, Offenbach, Germany

Abstract CERA-20C is a coupled reanalysis of the twentieth century which aims to reconstruct the past weather and climate of the Earth system including the atmosphere, ocean, land, ocean waves, and sea ice. This reanalysis is based on the CERA coupled atmosphere-ocean assimilation system developed at ECMWF.