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This work

Objective

Producing an accurate and reliable emulator of a numerical model
given sparse and noisy observations

Problem

Multidimensional time series yobs
k (1 ≤ k ≤ K) observed from an

underlying dynamical process:
yobs
k = Hk(xk) + εobs

k

•Hk is the known observation operator: Rm→ Rp

• εobs
k is a noise

Underlying dynamical model:
dx
dt

= φ(x),

where φ is unknown.
Resolvent:

xk+1 = xk +
tk+1∫
tk

φ(x) dt,

Two parts:
1 Inferring the ODE using DA: [Bocquet at al., 2019]:

dx
dt

= φA(x), φA(x) = Ar(x),

where r(x) is specified a priori.
2 Merge DA and ML to emulate the resolvent [Brajard et at al., 2019]

xk+1 = GW(xk) + εm
k ,

where GW is typically a neural network parametrized by W

Connection between data assimilation and
machine learning

Data assimilation machine learning
Dynamical system Residual deep neural network
Parametrized forecasting model Layer of a neural network
Optimization Training
Adjoint modelling Backpropagation
Locality assumption Convolutional layers

Numerical illustration: The Lorenz 96 model

• Size of the state m = 40
• Integration scheme: 4th order RK (RK4)
• Integration time step: δtr = ∆t = 0.05
• integration length : K = 50

Conclusion

• Bayesian data assimilation for state and model estimation:
• equivalent to a machine learning approach,
• makes use of locality and homogeneity to reduce the dimension of the
model parameters.

• Mixed data assimilation / machine learning approach:
• emulate the resolvent of the model,
• training of the neural nets are performed on state estimated from data
assimilation.

Part 1: Inferring the ODE using DA

Aim: Estimating A in the ODE representation of the
surrogate dynamics:

dx
dt

= φA(x), φA(x) = Ar(x),
where
• A is a matrix of coefficients of size Nx ×Np

• r(x) is a vector of nonlinear regressors of size Np. For instance, for
one-dimensional spatial systems and up to bilinear order:

r(x) =
[
1, {xn}0≤n<Nx

, {xnxm}0≤n≤m<Nx

]
.

A priori, Np =
(Nx+1

2
)

= 1
2(Nx + 1)(Nx + 2) such regressors.

−→ Intractable in high-dimension!: typically Nx = O(106)

Additional assumptions:
• Physical locality of the physics: all multivariate monomials in the
ODEs have variables xn that belong to a stencil, i.e. a local
arrangement of grid points around a given node.
In 1D and with a stencil of size 2L + 1, the size of the dense A is

Nx ×Na where Na =
2L+2∑
l=L+1

l = 3
2

(L + 1)(L + 2).

• Moreover, we can additionally assume translational invariance. In
that case A becomes a vector of size Na.

Bayesian analysis of the problem:
Bayesian view on state and model estimation:

p(A,x0:K|y0:K) = p(y0:K|x0:K,A)p(x0:K|A)p(A)
p(y0:K)

.

Data assimilation cost function assuming Gaussian error statistics and
Markovian dynamics:

J (A,x0:K) = 1
2

K∑
k=0
‖yk −Hk(xk)‖2

R−1
k

+

1
2

K∑
k=1
‖xk − FA(xk−1)‖2

Q−1
k
− ln p(x0,A),

where FA is the resolvant of the model between tk and tk + ∆t.
Typical machine learning cost function with Hk = Ik in the limit
Rk −→ 0:

J (A) ≈ 1
2

K∑
k=1
‖yk − FA(yk−1)‖2

Q−1
k
− ln p(y0,A).

Numerical experiment:
δtr

δta

δtf

∆t

t0 tK

t0 tK

T + TfT

y0 yK

generating physical states

learning step

forecast step

yk yk+1

Model scheme time step Obs. noise ‖Aa −Ar‖∞
Identifiable RK4 δta = ∆t = 0.05 0 ∼ 10−13

Non identifiable RK2 δta = ∆t/Nc 0 N/A
Identifiable RK4 δta = ∆t = 0.05 σy > 0 see Fig.(a)
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(a) Identification with noisy
observations
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Part 2: Mixing data assimilation and machine
learning

Aim: Estimating the weights W of a neural network
representing the resolvent of the model:

• xk+1 = GW(xk) + εm
k = xk +

tk+1∫
tk

φ(x) dt

Initialization: W

Fix W, Estimation of xa
1:K using yobs

DA step

Fix xa
1:K, Estimation of W

ML step

Cycle

Stop if converged
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N 4 + GW (xk)

Residual bi-linear convolutive neural network (9391 weights),
compared with Na = 18 in case of ODE inference.

Layer number of unit filter size number of weights
1 (batchnorm) 2
2 (bilinear) 24× 3 5 144× 3

3 (convolutive) 37 5 8917
4 (linear) 1 1 38

Interpolation:

RMSE (obs)= 1 RMSE-a= 0.8

Method RMSE-a
Lower bound Quadratic interpolation 2.32

DA with surrogate model 0.80
Upper bound DA with true model 0.34

Forecasting:

• Lower bound: Neural Net trained with observation interpolated
using quadratic interpolation (no data assimilation).

• Upper bound: Neural Net trained with “perfect” observations
(complete, no noise).

Long term dynamics reconstruction:

Power spectral density Lyapunov exponents

• Lower bound: Neural Net trained with observation interpolated
using quadratic interpolation (no data assimilation).

• Upper bound: True model
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