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This work

Producing an accurate and reliable emulator of a numerical model
oiven sparse and noisy observations

Problem

Multidimensional time series y%™ (1 < k < K) observed from an
underlying dynamical process:

i = Ha(xy) + €

« H;. is the known observation operator: R” — RP

- €9 is a noise

Underlying dynamical model:
dx
T ¢(x),

where ¢ is unknown.

Resolvent:
Uh+1

Xk+1 = Xk T / @(x) dt,
lk

Two parts:
o Inferring the ODE using DA Bocquet at al., 2019]:

dx
Fr da(X), da(x) = Ar(x),

where r(x) is specified a priori.
® Merge DA and ML to emulate the resolvent [Brajard et at al., 2019
X1 = Gw(xk) + €,

where Gw is typically a neural network parametrized by W

Connection between data assimilation and
machine learning

machine learning

Residual deep neural network
Layer of a neural network
Training

Backpropagation
Convolutional layers

Data assimilation

Dynamical system
Parametrized forecasting model
Optimization

Adjoint modelling

Locality assumption

Numerical illustration: The Lorenz 96 model

= Size of the state m = 40

« Integration scheme: 4th order RK (RK4)
« Integration time step: ot, = At = 0.05

= integration length : K = 50

Conclusion

= Bayesian data assimilation for state and model estimation:
= equivalent to a machine learning approach,
= makes use of locality and homogeneity to reduce the dimension of the
model parameters.
- Mixed data assimilation / machine learning approach:

= emulate the resolvent of the model,
« training of the neural nets are performed on state estimated from data
assimilation.
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Part 1: Inferring the ODE using DA

Aim: Estimating A in the ODE representation of the
surrogate dynamics:

dX_

T Pa(X), Pda(Xx) = Ar(x),

where
= A is a matrix of coefficients of size N, X N,

- r(x) is a vector of nonlinear regressors of size N,,. For instance, for
one-dimensional spatial systems and up to bilinear order:

r(%) = | L {2 Yocpen, » {20mbocnemen, |-

A priori, N, = (Nx;l) = (N, + 1)(N, + 2) such regressors.

— Intractable in high-dimension!: typically N, = O(10°)

Additional assumptions:

= Physical locality of the physics: all multivariate monomials in the
ODEs have variables x,, that belong to a stencil, i.e. a local
arrangement of grid points around a given node.
In 1D and with a stencil of size 2L + 1, the size of the dense A is
2L+2 9
N, x N, where N,= Y [==(L+1)(L+2).
I=L+1 2
= Moreover, we can additionally assume translational invariance. In
that case A becomes a vector of size N,.

Bayesian analysis of the problem:
Bayesian view on state and model estimation:

p(yo-r|X0.10, A)p(x0.5| A)p(A)
p(YO:K) .

Data assimilation cost function assuming Gaussian error statistics and
Markovian dynamics:

p(Aa XO:K‘YO:K) —

| K
T (A, xp.) = 5 kz% lyr — Hk(Xk)“%{kl ™

| K
5 Z |7 — FA(Xk—l)Hizkl — Inp(xo, A),
k=1

where F' A is the resolvant of the model between ¢ and ¢, + A,.
Typical machine learning cost function with H; = I, in the limit
Rk — 0:

| K
J(A) =~ 52 lyr — FA(Yk—l)H%QI;l — Inp(yo, A).
k=1

Numerical experiment:
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Part 2: Mixing data assimilation and machine
learning

Aim: Estimating the weights W of a neural network

representing the resolvent of the model:
L1

= Xpi] = gw(Xk) + €, = Xp + / ¢(X) dt

7

Initialization: W

—————————————————————————————————————————————————————————————————————————

Fix W, Estimation of x% .- using y°"

ML step & >
Fix x{.;-, Estimation of W

Stop if converged

Ow (xk)

CNNj3
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CNNy

— Batch Norm
CNNs,
CNNsy,
CNNs,.

| | ]

Residual bi-linear convolutive neural network (9391 weights),
compared with NV, = 18 in case of ODE inference.

Layer number of unit filter size number of weights
1 (batchnorm) 2
2 (bilinear) 24 x 3 5 144 x 3
3 (convolutive) 37 G 8917
4 (linear) 1 1 38
Interpolation:
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RMSE (obs)=1 RMSE-a= 0.8

Method RMSE-a

Lower bound Quadratic interpolation 2.32
DA with surrogate model 0.80

Upper bound DA with true model 0.34

Forecasting:
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« Lower bound: Neural Net trained with observation interpolated
using quadratic interpolation (no data assimilation).

« Upper bound: Neural Net trained with “perfect” observations
(complete, no noise).

Long term dynamics reconstruction:

Power spectral density Lyapunov exponents
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« Lower bound: Neural Net trained with observation interpolated
using quadratic interpolation (no data assimilation).

« Upper bound: True model
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