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OPTIMIZED SCHWARZ METHODS FOR THE COUPLING OF CYLINDRICAL
GEOMETRIES ALONG THE AXIAL DIRECTION

Giacomo Gigante1 and Christian Vergara2,∗

Abstract. In this work, we focus on the Optimized Schwarz Method for circular flat interfaces and
geometric heterogeneous coupling arising when cylindrical geometries are coupled along the axial direc-
tion. In the first case, we provide a convergence analysis for the diffusion-reaction problem and jump-
ing coefficients and we apply the general optimization procedure developed in Gigante and Vergara
(Numer. Math. 131 (2015) 369–404). In the numerical simulations, we discuss how to choose the range
of frequencies in the optimization and the influence of the Finite Element and projection errors on
the convergence. In the second case, we consider the coupling between a three-dimensional and a one-
dimensional diffusion-reaction problem and we develop a new optimization procedure. The numerical
results highlight the suitability of the theoretical findings.
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1. Introduction

The Optimized Schwarz Method (OSM) is a well established Domain Decomposition method based on looking
for efficient parameters in Robin-like interface conditions [25, 30]. This method has been considered for many
problems, such as the advection-reaction-diffusion problem [16,26], the Helmholtz equation [17,31], the shallow-
water equations [35], the Maxwell’s equations [5], the fluid-structure interaction problem [20,22,23,43], and the
scattering problem [38].

From a geometric perspective, this method has been used for flat unbounded interfaces [5,16,17,26,31,35,38],
circular interfaces [18,19], cylindrical interfaces [21–23,43], and spherical interfaces [22]. In this paper, we address
for the three-dimensional (3D) case a flat interface that, unlike previous works on this topic, is not an unbounded
surface. Rather, we consider here the case of a flat circular interface arising when cylindrical geometries are
coupled along the axial direction. Analogously, for the overlapping case, the interface region is given here by a
cylinder instead of a 3D strip.

The study of circular flat interfaces is of particular interest when a Partial Differential Equation (PDE) is
solved in a cylindrical domain which is split in two (or more) cylinders with interfaces orthogonal to the axial
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direction. For example, this is the case when parallel computing is performed to speed up the numerical solution
of the problem at hand, or for jumping material parameters. Here, we provide a convergence analysis of the
partitioned procedure arising in this context for a diffusion-reaction problem, and we discuss some optimal
choices of the interface parameters. We also show some numerical results that highlight the effectiveness of our
theoretical findings, and highlight the relationship between the convergence and the Finite Element errors.

In the second part of the paper, we address the split of a cylinder into two non-overlapping cylinders, where
one of them (let say the distal one) is substituted by a geometric reduced one-dimensional model, where only the
axial coordinate survives. This leads to a geometric multiscale model, where the geometric heterogeneous cou-
pling between 3D and 1D models is addressed. This coupled problem has been studied in a general framework
in [2, 29], and widely considered in hemodynamic applications, see e.g. [4, 7, 33, 37]. The interface conditions
appearing in partitioned algorithms for the 3D–1D coupled problem in hemodynamics involve Dirichlet and
Neumann data [9], the total pressure [3, 10], or the characteristic variables [7]. Other type of partitioned algo-
rithms were obtained in [4] by considering a Lagrange multipliers mortaring, and in [3, 29, 32] by introducing
the interface equation. Here, we address the case of Robin-type interface conditions for the reaction-diffusion
problem. In particular, we study the convergence of the resulting Schwarz method and we propose optimal
values for the interface parameters. Finally, we show some numerical results highlighting the effectiveness of our
theoretical findings.

The outline of this paper is as follows. In Section 2 we address the case of the generalized Schwarz algorithm
obtained in the 3D–3D splitting, whereas in Section 3 the one arising from the 3D–1D coupling. For each of
these two sections, we provide a convergence analysis of the related generalized Schwarz algorithm, we discuss
possible optimization procedures to find effective values of the interface parameters, and we show the numerical
results.

2. The 3D–3D splitting case

2.1. Problem setting

Referring to Figure 1, we consider the following coupled problem in the overlapping subdomains Ω1 =
{(r, ϕ, z) : 0 ≤ r < R, 0 ≤ ϕ < 2π, −∞ < z < H} and Ω2 = {(r, ϕ, z) : 0 ≤ r < R, 0 ≤ ϕ < 2π, 0 < z < +∞}

− µ14u1 + γ1u1 = f1 x ∈ Ω1, (2.1a)

u1|Σ = u1|z→−∞ = 0, (2.1b)

u1 = u2 x ∈ Γ1, (2.1c)

µ1
∂u1

∂z
= µ2

∂u2

∂z
x ∈ Γ2, (2.1d)

− µ24u2 + γ2u2 = f2 x ∈ Ω2, (2.1e)

u2|Σ = u2|z→∞ = 0, [−6pt] (2.1f)

where µ1, µ2, γ1, γ2 are given positive parameters, f1 and f2 given functions, Σ is the lateral surface, and we
considered the homogeneous case in view of the convergence analysis. The interfaces Γ1 and Γ2 are located at
z = H ≥ 0 and z = 0, respectively. Notice that in the non-overlapping case we could have µ1 6= µ2 and γ1 6= γ2,
due to a jump of the coefficients representing two different media located in Ω1 and Ω2, respectively. In the
overlapping case, of course we should have µ1 = µ2 and γ1 = γ2 in Ω1 ∩Ω2. However, for the sake of generality,
we consider the general framework given by (2.1) also in the overlapped case.
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Figure 1. Unsplit computational domain (up) and overlapping subdomains (bottom).

Introducing two linear operators S1 6=S2, we consider the following generalized Schwarz method for the
solution of the previous problem, obtained by linearly combining the interface equations (2.1c) and (2.1d):
Given u

(0)
2 , at each iteration n > 0, until convergence

1. solve the problem in Ω1:

− µ14u(n)
1 + γ1u

(n)
1 = f1 x ∈ Ω1, (2.2a)

u
(n)
1 |Σ = u

(n)
1 |z→−∞ = 0, (2.2b)

S1u
(n)
1 + µ1

∂u
(n)
1

∂z
= S1u

(n−1)
2 + µ2

∂u
(n−1)
2

∂z
x ∈ Γ1; (2.2c)

2. solve the problem in Ω2:

− µ24u(n)
2 + γ2u

(n)
2 = f2 x ∈ Ω2, (2.3a)

u
(n)
2 |Σ = u

(n)
2 |z→∞ = 0, (2.3b)

S2u
(n)
2 + µ2

∂u
(n)
2

∂z
= S2u

(n)
1 + µ1

∂u
(n)
1

∂z
x ∈ Γ2. (2.3c)

2.2. Convergence analysis

We report in what follows a convergence result of the previous partitioned algorithm. In this first analysis,
we assume that u1 and u2 do not depend on the angular coordinate ϕ, i.e. uj = uj (r, z) , j = 1, 2. Although
simplified, the following analysis will highlight important features of the coupling with a flat circular interface
in presence of cylindrical geometries. As usual, due the linearity of the problem, we consider the homogenous
case, i.e. f1 = f2 = 0, and study the convergence of the iterative algorithm with a non zero initial guess.

The main tool in this convergence analysis consists in expanding all functions defined on the circular cross
sections z = z0 of the cylinder with respect to the eigenfunctions of the 2D Laplacian on the circle satisfying
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Dirichlet homogeneous boundary conditions. The expression of the 2D Laplacian in polar coordinates is

∆w =
1
r

∂

∂r

(
r
∂w

∂r

)
+

1
r2
∂2w

∂ϕ2
·

In the radial case this reduces to

∆w =
1
r

∂

∂r

(
r
∂w

∂r

)
,

with eigenfunctions given by J0(αr) and eigenvalues −α2, for any α ∈ R, where J0 is the Bessel function of the
first kind of order zero. The Bessel functions of the first kind of order ν, ν = 0, 1, . . ., are analytic functions
oscillating around the x-axis defined by

Jν(x) =
∞∑
m=0

(−1)m

m!(m+ ν + 1)!

(x
2

)2m+ν

, ν = 0, 1, . . . ,

see [27] for further details.
The homogeneous boundary conditions w(R) = 0 finally impose α=xk/R, k= 1, 2, . . ., where {xk}+∞k=0 are the

positive zeros of J0, and R is the radius of the cylinder. It is a classic result that {J0(xkr/R)}+∞k=1 is a complete
orthogonal system of L2([0, R], rdr). Notice that the eigenfunctions of the 2D Laplacian are well known even
in the non radial case, in particular they involve other Bessel functions in addition to J0 (see e.g. [27], (6.3.14)
p. 149).

Thus, the Fourier-Bessel expansion of functions u1 and u2 are given by

uj (r, z) =
+∞∑
k=1

ûj (k, z) J0

(
xk

r

R

)
, j = 1, 2, (2.4)

where

ûj (k, z) =
2

R2J1 (xk)2

∫ R

0

uj (r, z) J0

(
xk

r

R

)
rdr, j = 1, 2.

Notice that such functions satisfy the condition uj |Σ = 0.
It is well known, and indeed easy to show, that if the linear operators Sj commute with the 2D Laplacian

(for example when Sj are just multiplications by a scalar, or differential operators), then they have the form

Sjw (r, z) =
+∞∑
k=1

σj(k)ŵ (k, z) J0

(
xk

r

R

)
, j = 1, 2,

and {σj(k)}+∞k=1, j = 1, 2, are called symbols of Sj related to the Fourier-Bessel expansion. When all σj(k) are
equal, and therefore Sj is just multiplication by a scalar, we shall denote them simply by σj .

We have the following result.

Proposition 2.1. The reduction factor related to the iterations (2.2) and (2.3), in the case u1 = u1(r, z), u2 =
u2(r, z), is given by

ρ3D−3D(k) =
σ2(k) + µ1β1,k

σ2(k)− µ2β2,k
· σ1(k)− µ2β2,k

σ1(k) + µ1β1,k
e−(β1,k+β2,k)H , (2.5)

where

βj,k =

√
γj
µj

+
x2
k

R2
· (2.6)
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Proof. Since the expression of the Laplacian in cylindrical coordinates is

∆w =
1
r

∂

∂r

(
r
∂w

∂r

)
+

1
r2
∂2w

∂ϕ2
+
∂2w

∂z2
,

and since the eigenfunctions of
1
r

∂

∂r

(
r
∂w

∂r

)
are the functions J0 (αr) with eigenvalues −α2, α ∈ R, we have for each j = 1, 2 owing to (2.4)

∆uj =
1
r

∂

∂r

(
r
∂uj
∂r

)
+
∂2uj
∂z2

=
+∞∑
k=1

ûj (k, z)
1
r

∂

∂r

r ∂
(
J0

(
xk

r

R

))
∂r

+
+∞∑
k=1

∂2ûj (k, z)
∂z2

J0

(
xk

r

R

)

=
+∞∑
k=1

(
− x

2
k

R2

)
ûj (k, z) J0

(
xk

r

R

)
+

+∞∑
k=1

∂2ûj (k, z)
∂z2

J0

(
xk

r

R

)
.

The equations γjuj − µj∆uj = 0 therefore become

γj

+∞∑
k=1

ûj (k, z) J0

(
xk

r

R

)
− µj

+∞∑
k=1

(
− x

2
k

R2

)
ûj (k, z) J0

(
xk

r

R

)
− µj

+∞∑
k=1

∂2ûj (k, z)
∂z2

J0

(
xk

r

R

)
= 0

+∞∑
k=1

((
γj
µj

+
x2
k

R2

)
ûj (k, z)− ∂2ûj (k, z)

∂z2

)
J0

(
xk

r

R

)
= 0.

This gives (
γj
µj

+
x2
k

R2

)
ûj (k, z)− ∂2ûj (k, z)

∂z2
= 0

for every k = 1, 2, 3, . . . The condition u1|z=−∞ = 0 and u2|z=∞ = 0 give

û1 (k, z) = C1 (k) eβ1,kz û2 (k, z) = C2 (k) e−β2,kz, (2.7)

where βj,k are given by (2.6) and Cj(k), j= 1, 2, are two functions determined as usual by the interface condi-
tions.

Now, by writing the Fourier-Bessel expansions of the interface conditions (2.2c) and (2.3c) and using (2.7),
we obtain

(σ1(k) + µ1β1,k)C(n)
1 (k)eβ1,kH = (σ1(k)− µ2β2,k)C(n−1)

2 (k)e−β2,kH ,

(σ2(k)− µ2β2,k)C(n)
2 (k) = (σ2(k) + µ1β1,k)C(n)

1 (k).

Taking as usual for the reduction factor to quantity C(n)
2 (k)/C(n−1)

2 (k) (see e.g. [16]), we obtain the thesis. �

Remark 2.2. As mentioned before, the analysis of the general case uj = uj(r, z, ϕ) requires the use of other
Bessel functions in addition to J0. Moreover, the extension of the previous analysis makes the subsequent
optimization procedures somewhat involved. This is currently under investigation.

We consider now the case without overlap, H = 0. In this case, we can use the general convergence analysis
provided in [22]. In particular, we have the following result.
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Proposition 2.3. In the case without overlap (H = 0), iterations (2.2) and (2.3), with
u1 =u1(r, z), u2 =u2(r, z), converge for a fixed value of k if and only if

σ2(k) < σ1(k) and
(
σ1(k) +

µ1β1,k − µ2β2,k

2

)(
σ2(k) +

µ1β1,k − µ2β2,k

2

)
<

(
µ1β1,k + µ2β2,k

2

)2

, or

σ2(k) > σ1(k) and
(
σ1(k) +

µ1β1,k − µ2β2,k

2

)(
σ2(k) +

µ1β1,k − µ2β2,k

2

)
>

(
µ1β1,k + µ2β2,k

2

)2

.

Proof. Referring to Theorem 1 in [22], we observe that the hypothesis for its application are satisfied since
µ2β2,k > −µ1β1,k for all k, see [22]. Thus, the thesis follows by a straightforward application of this
theorem. �

2.3. Optimization procedures

We refer again to [22], where a general way to provide optimal values of the interface parameters in the case
of constant symbols σj(k) =σj is provided for the case without overlap. We report, for the sake of exposition,
only the case µ1 =µ2 = 1. We introduce kmax, the maximum value of k assumed to be relevant. Moreover, since
k represents the index related to the roots xk, in the practice we usually set kmin = 1. We have the following
result.

Proposition 2.4. There exist three numbers ρ0 < 1, p−, p+, such that the reduction factor (2.5) for H = 0
satisfies

ρ3D−3D(k) ≤ ρ0, ∀k= kmin, . . . , kmax,

provided that σ1 = p, σ2 = 2M − p, with p ∈ [p−, p+] and M = 1
2

(√
γ2 +

x2
kmin
R2 −

√
γ1 +

x2
kmin
R2

)
. In particular,

for the case γ1 = γ2 = γ, we have M = 0,

p−=
1−√ρ0

1 +
√
ρ0
βkmax p+ =

1 +
√
ρ0

1−√ρ0
βkmin . (2.8)

and

ρ0 =

1− 4

√
R2γ+x2

kmin
R2γ+x2

kmax

1 + 4

√
R2γ+x2

kmin
R2γ+x2

kmax


2

.

Proof. The thesis follows by the application of Theorem 2 in [22]. �

The previous result gives us a range of constant values for the interface parameters which guarantees that
the reduction factor is less than ρ0 < 1, i.e. convergence independent of k.

In the case with overlap H > 0, specific optimization procedures should be considered which cannot be
derived directly from Theorem 2 in [22]. This topic is under investigation.

2.4. Numerical results

2.4.1. Generalities

The numerical results presented here have been obtained by means of the Finite Element (FE) code
FreeFem++ (www.freefem.org).

In all the numerical experiments, we consider the cylinder Ω= {(r, ϕ, z) : 0 ≤ r < R, 0 ≤ ϕ < 2π, 0 <
z < 2L} split into two non-overlapping domains Ω1 = {(r, ϕ, z) : 0 ≤ r < R, 0 ≤ ϕ < 2π, 0 < z < L} and
Ω2 = {(r, ϕ, z) : 0 ≤ r < R, 0 ≤ ϕ < 2π, L < z < 2L}, separated by the interface Γ = {(r, ϕ, z) : 0 ≤ r < R, 0 ≤
ϕ < 2π, z=L}. In our case, we have used R= 0.5 and L= 2.5. We prescribe homogeneous Dirichlet conditions

www.freefem.org
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on ∂Ωi \Γ, i= 1, 2. Moreover, if not otherwise specified, we set γ1 = γ2 = 10 and µ1 =µ2 = 1. As a consequence,
we have M = 0 in the estimates of Proposition 2.4.

The numerical solutions have been obtained by solving two-dimensional axi-symmetric problems. The cor-
responding meshes were formed by triangles, and, if not otherwise specified, the discretization parameter is
h=R/10 = 0.05.

For the sake of completeness, we report in what follows explicitly iterations (2.2) and (2.3) applied to our
context:

Given the function u(0)
2 and the real numbers σ1 and σ2, at each iteration n > 0, until

∫
Γ

|u(n)
1 −u

(n−1)
1 |2dγ ≥ ε2,

1. solve the problem in Ω1:

− µ14u(n)
1 + γ1u

(n)
1 = 0 x ∈ Ω1, (2.9a)

u
(n)
1 = 0 x ∈ ∂Ω1 \ Γ, (2.9b)

σ1u
(n)
1 + µ1

∂u
(n)
1

∂z
=σ1u

(n−1)
2 + µ2

∂u
(n−1)
2

∂z
x ∈ Γ ; (2.9c)

2. solve the problem in Ω2:

− µ24u(n)
2 + γ2u

(n)
2 = 0 x ∈ Ω2, (2.10a)

u
(n)
2 = 0 x ∈ ∂Ω2 \ Γ = 0, (2.10b)

σ2u
(n)
2 + µ2

∂u
(n)
2

∂z
=σ2u

(n)
1 + µ1

∂u
(n)
1

∂z
x ∈ Γ. (2.10c)

We set ε= 10−7. If not otherwise specified, we use P2 Finite Elements.

2.4.2. On the choice of the frequencies in the optimization procedure

In the above Proposition 2.4, the optimal interface parameters are established after an a priori evaluation
of the relevant “frequency” parameters k. It is well known that when applying this method in a numerical
simulation, certain frequencies can be considered irrelevant to the problem. For example, in the (two dimensional)
classical approach to the problem, the interface is modeled as an unbounded line, and the continuous Fourier
transform

∫ +∞
−∞ f(x)e−ixmdx is used. When adapting this analysis to a particular case, only the frequencies

m between two values Mmin and Mmax are considered. Indeed, one can disregard all frequencies smaller than
Mmin =π/D, where D is a characteristic dimension of the effective interface used in the numerical experiment, as
well as all frequencies greater than the Nyquist–Shannon frequency Mmax =π/h. The Fourier-Bessel expansion
that we use here already takes into account the shape and dimensions of the interface. Thus, unlike the case of
analysis for an unbounded interface, there is no reason to disregard any of the lower values of the “frequency”
parameter k. On the other hand, in our two-dimensional axi-symmetric numerical simulations the interface
reduces to the interval [0, R] and the mesh size is given by h=R/N for an integer N , with nodes, say, 0 = r1 <
r2 < . . . < rN < rN+1 =R. In this situation one can disregard all the values of k greater than N . Indeed, if
k > N then the linear system

u
(0)
2 (r1, L) =α1J0

(x1r1
R

)
+ . . .+ αkJ0

(xkr1
R

)
. . .

u
(0)
2 (rN , L) =α1J0

(x1rN
R

)
+ . . .+ αkJ0

(xkrN
R

)
has more variables than equations, and therefore will never have one solution only (we have not considered
the equation corresponding to rN+1 =R since all the functions J0(xkr/R) vanish there). For this reason, when
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computing the optimal interface values in (2.8), all the values of k greater than R/h=N can be considered
irrelevant to the problem.

In conclusion, according to the previous analysis, the shape and dimension of the interface and the size of
the mesh allow us to disregard all frequency parameters k outside the interval [Kmin,Kmax], where Kmin = 1
and Kmax =R/h.

It is perhaps worth observing here that the value Kmax =R/h=N corresponds to the Nyquist–Shannon
frequency π/h in the following sense: the function J0

(xkr
R

)
with the highest possible value of k, that is

J0

(xNr
R

)
, performs exactly N half oscillations in the interval [0, R], which means on average half oscillation

for each interval of length h. Similarly, the functions eimx with the highest possible value of m, that is e±iπx/h

perform exactly half oscillation for each interval of length h.
Thus, by the above observations, it is reasonable to assume that the initial guess takes the form

u
(0)
2 (r, L) =

k2∑
k= k1

û
(0)
2 (k) J0

(
xk

r

R

)
,

with 1 ≤ k1 ≤ k2 ≤ Kmax. From a theoretical (continuous) point of view, no other frequency appears in the
iterative process other than those between k1 and k2. For this reason the best possible choice in Proposition 2.4
should be kmin = k1 and kmax = k2.

In the practical (discrete) situation, however, as the iterations proceed, frequencies other than those strictly
between k1 and k2 seem to appear, due probably to the Finite Elements approximation. These new frequencies
are not irrelevant to the computations, and it may therefore be better to choose different values of kmin and
kmax than k1 and k2, respectively, when applying Proposition 2.4.

In order to be able to detect the above described phenomenon in the practical (discrete) situations, it is
convenient to define the following effective reduction factor

ρ
(n)
h =

(∫
Γ
|u(n)

1 − u(n−1)
1 |2dγ

)1/2

(∫
Γ
|u(n−1)

1 − u(n−2)
1 |2dγ

)1/2
, (2.11)

which is computable by the numerical experiments (it is in fact the ratio between two consecutive stopping
criterium quantities). Notice that by the orthogonality of the functions J0

(xkr
R

)
,

ρ
(n)
h =

(
+∞∑
k= 1

(ρ3D−3D (k))2 wk

)1/2

, (2.12)

where

wk =

∣∣∣∣û(n−1)
1 (k)− û(n−2)

1 (k)
∣∣∣∣2 πR2J2

1 (xk)∫
Γ
|u(n−1)

1 − u(n−2)
1 |2dγ

. (2.13)

Thus, the effective reduction factor ρ
(n)
h can be considered as a weighted `2

(
N, {wk}+∞k= 1

)
average of the

reduction factor {ρ3D−3D (k)}+∞k= 1. For a generic initial guess u(0)
2 , one can a posteriori deduce that the leading

frequency in the increment
(∫

Γ
|u(n−1)

1 − u(n−2)
1 |2dγ

)1/2

is one of the values of k for which ρ
(n)
h ≈ ρ3D−3D (k).

Indeed, if ρ(n)
h ≈ ρ3D−3D

(
k
)

for some k, then one can extrapolate that in (2.12), all the weights are negligible
except for wk, and this means precisely that the kth Fourier-Bessel coefficient of u(n−1)

1 − u(n−2)
1 is sensibly

bigger than the others.



OPTIMIZED SCHWARZ METHODS 1605

Figure 2. Left: estimated reduction factors as a function of k. Right: effective reduction factors
as a function of the iteration n. For the latter plot, also the case obtained by halving the space
discretization parameter is reported (h= 0.025). The lines in the right figure represent the
values of ρ3D−3D(3) and ρ3D−3D(4). Case k1 = k2 = 1 and kmin = kmax = 1.

In the forthcoming results, we will analyze the convergence history for different choices of k1, k2, kmin and
kmax, all included in the range [Kmin,Kmax] = [1, R/h]. In order to make the exposition clearer, we recall that
Kmin and Kmax are the extreme frequencies compatible with the mesh, k1 and k2 the extreme frequencies
appearing in the initial guess, whereas kmin and kmax the extreme frequencies used in the application of (2.8)
for the optimization.

2.4.3. k1 = k2 = 1

In the first set of numerical simulations, we consider in the initial guess only the first value of k, namely
k= 1. Thus, in principle we should have u(0)

2 = J0

(
x1r
R

)
. We want to investigate first the production of sources

of error generated only by the FE error. Thus, we approximate J0

(
x1r
R

)
with a parabola, in order to have a

vanishing projection error onto the FE space. In particular, we set

u
(0)
2 = 1−

( r
R

)2

·

Observe that the corresponding Fourier-Bessel coefficients û(0)
2 (k) from (2.13) are small for k 6= 1, but not

vanishing. In particular, they decrease in modulus as k increases.
As a first choice, we set kmin = kmax = 1 in the optimization procedure, i.e. we exploit the fact that the main

contribution in the initial guess is given by k= 1, thus ignoring the presence of other frequencies. Owing to the
estimates (2.8), we obtain p−= p+ = 5.75. The numerical simulation converges in 8 iterations. In Figure 2 we
report the reduction factors as a function of k estimated a priori by means of (2.5) and the effective reduction
factors as a function of the number of the iteration n estimated by means of (2.11) (Notice that here and in the
following figures, the effective reduction factor is reported, according to its definition (2.11), for n ≥ 3).

From these results we observe that the a priori reduction factor in correspondence of k= 1 is as expected
vanishing, and increasing values of ρ3D−3D are obtained for increasing k. Notice that the effective reduction
factor reaches a value which is very similar to ρ3D−3D(3) = 0.257 indicated with a straight continuous line. This
means that the leading value is k= 3. This is the result of the balance between small (large) values of the
Fourier-Bessel coefficient for k large (small) and large (small) values of the corresponding ρ3D−3D. In particular,
although characterized by large values of the reduction factor (see Fig. 2, left) the high frequencies seem to
not influence the convergence. Probably, also the FE error plays a role in determining the leading value of k,
dumping and/or emphasizing some frequencies. This point is under investigation.

In order to investigate the effect of the mesh on these results, we have run the same test case for an halved
value of h (h= 0.025). Since k1 = k2 = 1, we have the same values for ρ3D−3D of above reported in Figure 2, left,
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Figure 3. Left: estimated reduction factors as a function of k. Right: effective reduction factors
as a function of the iteration n. The lines in the right figure represent the values of ρ3D−3D(1)
obtained for the two values of h. Case k1 = k2 = 1 and kmin = 1, kmax = 10 (kmax = 20 for
h= 0.025).

and again p−= p+ = 5.75. In this case 9 iterations are needed to reach convergence. From the results reported
in Figure 2, right, we observe that in this case the effective reduction factor reaches a value which is very similar
to ρ3D−3D(4) = 0.373, indicated with a straight dashed line. Thus, in this case the leading value is k= 4. We
notice that in this case, also the values k ∈ [11, 20] generated by the initial guess are “seen” by the numerical
simulation, due to the decreased value of h. Higher values of the reduction factor ρ3D−3D are associated to them,
see Figure 2, left. Since the Fourier-Bessel coefficients in the initial guess corresponding to these values of k are
small, but not vanishing, this justifies the increased number of iterations and of the leading value of k obtained
for h= 0.025.

As a second choice, we set kmin =Kmin = 1 and kmax =Kmax =R/h= 10 in the optimization procedure, i.e.
we ignore that the main contribution in the initial guess comes from k= 1 and we consider all the frequencies
appearing in the initial guess. In this case, the estimates (2.8) lead to p−= p+ = 18.79. The numerical simulation
converges in 11 iterations. In Figure 3 we report again the values of the reduction factors as a function of k
estimated a priori by means of (2.5) and of the effective reduction factors as a function of the number of the
iteration n estimated by means of (2.11).

From these results, first we observe that the a priori reduction factor given by the optimal choice (2.8) is
not vanishing for k= 1. Instead, it features its maximum values for k= 1 and k= 10, that is the extreme values
of the range of possible k’s. This is in accordance with the optimality procedure of Proposition 2.4 which is
based on finding a range of constant (i.e. independent of k) values for the interface parameters that leads
to a small reduction factor independently of k. Second, we highlight that this maximum value (0.282) is in
fact coincident with the value reached by the effective reduction factor, see Figure 3, right. This means that
k= 1 is the leading value of k in the practice computation (we exclude k= 10 since in the previous numerical
computations we deduced that the higher frequencies, although characterized by large reduction factors, do
not provide important contributions to the error). In this case, although an error due to k= 2 and k= 3
is still present (as in the previous case), it is rapidly dumped by the corresponding small reduction factor
(ρ3D−3D(2) = 0.058, ρ3D−3D(3) = 0.001).

We ran the same test for a decreased value of h, namely h= 0.025. Thus, in this case we have kmax = 20
and the values of the reduction factor ρ3D−3D are not the same of above, see Figure 3, left. The number of
iterations to reach convergence are in this case 15 and the leading value of k is again k= 1, corresponding to a
value of the reduction factor equal to 0.417, see Figure 3, right. Again, the number of iterations and the value
reached by the effective reduction factor are greater than in the case h= 0.05, only in this case this is due to
the greater contribution of the reduction factor corresponding to the leading frequency k= 1 with respect to
the case h= 0.05.
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Figure 4. Left: estimated reduction factors as a function of k. Right: effective reduction factors
as a function of the iteration n. The line in the right figure represents the value of ρ3D−3D(1).
Case k1 = k2 = 10 and kmin = kmax = 10.

We repeated the same tests with initial guess

u
(0)
2 =

√
2

RJ1(x1)
J0

(x1r

R

)
,

i.e. with only k= 1 at the beginning of the simulation. In the case kmin = kmax = 1 one should obtain convergence
in one iteration, because k= 1 is the only frequency in the initial guess, and ρ3D−3D = 0.0. In practice one obtains
convergence in 7 iterations, with an effective reduction factor converging to ρ(7)

h = 0.300 and a leading frequency
between k= 3 and k= 4. This means that the projection onto the FE space introduces new frequencies that are
not present in the initial guess. The results of the test with kmin = 1 and kmax = 10 are very similar to those
obtained in the case of the parabola, with a clear leading frequency k= 1.

2.4.4. k1 = k2 = 10

In the second set of numerical simulations, we consider in the initial guess only the value k= 10. Thus, we
set

u
(0)
2 =

√
2

RJ1(x10)
J0

(x10r

R

)
.

As a first choice, we set kmin = kmax = 10 in the optimization procedure. Owing to the estimates (2.8), we
obtain p−= p+ = 61.35. The numerical simulation converges in 22 iterations. In Figure 4 we report the reduction
factors as a function of k estimated a priori by means of (2.5) and the effective reduction factors as a function
of the number of the iteration n estimated by means of (2.11).

As expected, in this case the a priori reduction factor is vanishing for k= 10 and assumes increasing values
for k decreasing. Again, we should expect convergence in one iteration. However, the presence of error sources
due to the low values of k slows down the convergence, which is even slower than the previous case since the
a priori reduction factors are higher. In particular, the effective reduction factor reaches a value that is in fact
equal to ρ3D−3D(1) = 0.686, see Figure 4, right. Thus, the leading value is k= 1.

As a second choice, we set kmin = 1 and kmax =R/h= 10 in the optimization procedure, i.e. we ignore that
only k= 10 appears in the initial guess and we consider all the values of k predicted by the Shannon theorem. Of
course, the estimates (2.8) lead again to p−= p+ = 18.79. The numerical simulation converges in 11 iterations.
The values of the a priori reduction factor coincide by construction with those reported in Figure 3, left. The
values of the effective reduction factors are in principle different, but in practice they coincide for n ≥ 4 with
those reported in Figure 3, right. Again, the leading value is k= 1, but the convergence is faster with respect
to the previous case (kmin = kmax = 10) since ρ3D−3D(1) is smaller. This is a consequence of having included all
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Figure 5. Left: estimated reduction factors as a function of k. Right: effective reduction factors
as a function of the iteration n. The line in the right figure represents the value of ρ3D−3D(1).
Case k1 = k2 = 10 and kmin = 1, kmax = 5.

the values of k in the optimization procedure, thus helping to dump the errors due to the small values of k
introduced by the FE error.

As a third choice, we set kmin = 1 and kmax = (R/h)/2 = 5 in the optimization procedure, i.e. we consider
only the smallest values of k among those allowed by the Shannon theorem. The estimates (2.8) lead to
p−= p+ = 13.14. The numerical simulation converges in 9 iterations. In Figure 5 we report the reduction factors
as a function of k estimated a priori by means of (2.5) and the effective reduction factors as a function of the
number of the iteration n estimates by means of (2.11).

Interestingly, in this case the number of iterations is the lowest one among the three choices of kmin and
kmax and the effective reduction factor tends to a value which is in fact very similar to ρ3D−3D(1) = 0.153, see
Figure 5, right (notice that in this case by construction ρ3D−3D(1) = ρ3D−3D(5) and the optimization procedure
produces higher values of the a priori reduction factor for k ≥ 6). The reason of this improvement should be
ascribed to the projection error of the initial guess onto the FE space (P2 in this case). Indeed, if u(0)

2 was well
projected, the error corresponding to k= 10 (the only frequency present in the initial guess) should slow down
the convergence with an effective reduction factor close to ρ3D−3D(10) = 0.419. The same arguments hold true
for the numerical errors corresponding to 6 ≤ k ≤ 9, since the corresponding a priori reduction factors are
greater than ρ3D−3D(1). Probably, the projection error of the initial guess onto the P2 Finite Elements subspace
dumps the contribution of the higher values of k. To confirm these observations, we run the same test as above
with P3 FE. In this case, we need 12 iterations to reach convergence for the case kmin = 1, kmax = 10, with an
effective reduction factor approaching the value 0.294, and 13 iterations for the case kmin = 1, kmax = 5, with
an effective reduction factor approaching the value 0.329. Thus, the reduction of kmax does not produce an
improvement in the convergence, suggesting that in this case the smaller projection error does not dump the
high values of k. In the latter case, the effective reduction factor reaches a value (0.329) similar to ρ3D−3D(8).
Again, the contribution of the initial value k= 10 is dumped, but in this case the contribution corresponding to
k= 8 is not.

2.4.5. k1 = 1, k2 = 10

In the third set of numerical simulations, we consider all the values of k compatible with the mesh in the
initial guess, i.e. we set

u
(0)
2 =

10∑
j= 1

√
2

RJ1(xj)
J0

(xjr
R

)
. (2.14)

As a first choice, we set kmin = 1, kmax = 10 in the optimization procedure, i.e. p−= p+ = 18.79. The numerical
simulation converges in 13 iterations. The effective reduction factor approaches the value 0.283 which is again
very similar to ρ3D−3D(1) (see Fig. 3, left). As a second choice, we set kmin = 1, kmax = 5 in the optimization
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Table 1. Values of M, ρ0 and of the optimal range of p provided by the estimates reported in
Proposition 2.4. Case γ1 = 100, γ2 = 1.

FE kmin kmax M ρ0 p− p+ # iter ρ
(n0)
h

P2 1 10 −3.09 0.22 19.08 19.13 n0 = 11 0.22
P2 1 5 −3.09 0.10 12.46 12.57 n0 = 9 0.22
P3 1 10 −3.09 0.22 19.08 19.13 n0 = 11 0.22
P3 1 5 −3.09 0.10 12.46 12.57 n0 = 12 0.26

procedure, i.e. p−= p+ = 13.14. Again, the number of iterations to reach convergence decreases (10) and the
effective reduction factor approaches a value (0.165) very similar to ρ3D−3D(1) (see Fig. 5, left).

These results confirm that the projection error dumps the contribution of the highest values of k. Accordingly,
one could think to improve the convergence by considering only k= 1 in the optimization procedure, i.e. by
setting p−= p+ = 5.75 (see Sect. 2.4.1). By doing so, the number of iterations to reach convergence is 16, with
an effective reduction factor reaching the value 0.37, very similar to ρ3D−3D(4) (see Fig. 2, left). This means
that we cannot reduce too much kmax since low values of k > 1 give an important contribution to the error as
a consequence of the FE error.

Once again, we run the same test with P3 FE. In this case, we need 13 iterations to reach convergence for the
case kmin = 1, kmax = 10, with an effective reduction factor approaching the value 0.284, and 13 iterations for the
case kmin = 1, kmax = 5, with an effective reduction factor approaching the value 0.321, similar to ρ3D−3D(8), see
Figure 5, left. Again, the contribution of the initial value k= 10 is dumped, but the contribution corresponding
to k= 8 is not. Thus, also in this case, for P3 FE the reduction of kmax does not produce an improvement of
the convergence.

Remark 2.5. We notice that in practical scenarios, the non-vanishing data (forcing term, Neumann and Dirich-
let data) may introduce in the iteration procedure other frequencies in addition to those characterizing the initial
guess. So, in principle the choice kmin = 1, kmax =Kmax should be the most suitable for an effective optimization
of the interface parameters owing to Proposition 2.4, since it accounts for all the possible frequencies. Here,
we were interested in investigating what happens in the homogeneous case, in particular to study the effect of
other frequencies, not generated by the non-vanishing data and not included in the initial guess, that emerged
during the iterations.

2.4.6. The case of discontinuous coefficients

We address here the case γ1 = 100, γ2 = 1 and we consider as initial guess the function reported in (2.14),
that is a function presenting the whole range of frequencies from Kmin = 1 to Kmax =R/h= 10. Referring to
the quantities defined in Section 2.3, in Table 1 we report the results of the numerical experiments (for the
definition of p− and p+ in the case γ1 6= γ2 we refer to [22]).

From these results, we observe that the range of optimal p predicted by Proposition 2.4 is very thin, thus
in fact providing directly the optimal value of p also in the case of discontinuous coefficients. The same type
of phenomenon described in the case of continuous coefficients can be observed here too. The projection of the
initial guess onto the Finite Element space P2 cancels the higher frequencies, and this gives a better performance
when one takes kmax = 5. On the other hand, when the P3 Finite Elements are used, the higher frequencies
remain relevant to the problem and things behave as expected.

3. The 3D–1D splitting case

As observed in the Introduction, in some applications there is the need to couple a 3D problem with the
corresponding reduced 1D model. In particular, referring to Figure 6 and to the notation of Section 2 and setting
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Figure 6. 3D–1D coupled subdomains.

Ω3D =Ω1, we consider the following coupled problem:

−4u3D + γu3D = f3D x ∈ Ω3D, (3.1a)
u3D|Σ =u3D|z→−∞= 0, (3.1b)
1
|Γ |

∫
Γ

u3Ddγ=u1D|z= 0, (3.1c)

1
|Γ |

∫
Γ

∂u3D

∂z
dγ=

∂u1D

∂z

∣∣∣∣
z= 0

, (3.1d)

− ∂2u1D

∂z2
+ γu1D = f1D z > 0, (3.1e)

u1D|z→∞= 0, (3.1f)

where we have located the point z= 0 at the 3D–1D interface and f3D and f1D are given functions.
For the solution of the previous problem, we consider again a generalized Schwarz method obtained by linearly

combining the interface conditions (3.1c) and (3.1d) (notice that in this case the linear operators S3D and S1D

are just multiplicative constants, and therefore coincide with their symbols σ3D and σ1D respectively):
Given u

(0)
1D, at each iteration n > 0, until convergence

1. solve the 3D problem in Ω3D:

−4u(n)
3D + γu

(n)
3D = f3D x ∈ Ω3D, (3.2a)

u
(n)
3D |Σ =u

(n)
3D |z→−∞= 0, (3.2b)

S3D
1
|Γ |

∫
Γ

u
(n)
3D dγ +

1
|Γ |

∫
Γ

∂u
(n)
3D

∂z
dγ=S3D

(
u

(n−1)
1D

∣∣∣
z= 0

)
+
∂u

(n−1)
1D

∂z

∣∣∣∣∣
z= 0

; (3.2c)

2. solve the problem in Ω1D:

−
∂2u

(n)
1D

∂z2
+ γu

(n)
1D = f1D z > 0, (3.3a)

u
(n)
1D |z→∞= 0, (3.3b)

S1D

(
u

(n)
1D

∣∣∣
z= 0

)
+
∂u

(n)
1D

∂z

∣∣∣∣∣
z= 0

=S1D
1
|Γ |

∫
Γ

u
(n)
3D dγ +

1
|Γ |

∫
Γ

∂u
(n)
3D

∂z
dγ. (3.3c)

Remark 3.1. We observe that the solution of the 3D problem (3.2) is not uniquely defined, since condition
(3.2c) is defective, providing only one global information rather than one for each x ∈ Γ . The numerical solution
of defective problems has been intensively addressed e.g. in [6, 8, 11–15, 24, 28, 34, 36, 39–42, 44], where suitable
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strategies to complete these conditions have been studied. In the numerical solution reported below, we made
the following concrete choice to prescribe condition (3.2c):

S3Du
(n)
3D +

∂u
(n)
3D

∂z
=S3D

(
u

(n−1)
1D

∣∣∣
z= 0

)
+
∂u

(n−1)
1D

∂z

∣∣∣∣∣
z= 0

, x ∈ Γ. (3.4)

3.1. Convergence analysis

We report in what follows a convergence analysis of the 3D–1D coupled problems (3.2) and (3.3). Again, we
assume for the 3D solution independence of the angular variable and we set f3D = f1D = 0. We have the following
result.

Proposition 3.2. The reduction factor related to iterations (3.2) and (3.3), in the case u3D =u3D(r, z), is
given by

ρ3D−1D =
∞∑
k= 1

4
x2
k

(σ1D + βk)
(
σ3D −

√
γ
)(

σ1D −
√
γ
)

(σ3D + βk)
,

with

βk =

√
γ +

x2
k

R2
. (3.5)

Proof. Referring to Section 2.2, we have that the solution of the 3D problems (3.1a) and (3.1b) is given by

u3D (r, z) =
+∞∑
k= 1

û3D (k, z) J0

(
xk

r

R

)
,

where the Fourier-Bessel coefficient is given by

û3D (k, z) =C3D (k) eβkz,

with βk given by (3.5). Instead, the 1D problems (3.1e) and (3.1f) is quickly solved by

u1D (z) =C1De−
√
γz.

The application of the Fourier-Bessel expansion to the left-hand side of (3.4) and to the right-hand side (3.3c)
leads to

S3Du
(n)
3D (r, 0) +

∂u
(n)
3D

∂z
(r, 0) =

∞∑
k= 1

(σ3D + βk)C(n)
3D (k)J0

(
xk

r

R

)
(3.6)

and to

S1D

|Γ |

∫
Γ

u
(n)
3D dγ +

1
|Γ |

∫
Γ

∂u
(n)
3D

∂z
dγ

=
2
R2

+∞∑
k= 1

(
σ1D

∫ R

0

C
(n)
3D (k) J0

(
xk

r

R

)
rdr +

∫ R

0

C
(n)
3D (k)

(
∂

∂z
eβkz

)∣∣∣∣
z= 0

J0

(
xk

r

R

)
rdr

)

=
2
R2

+∞∑
k= 1

(
(σ1D + βk)C(n)

3D (k)
∫ R

0

J0

(
xk

r

R

)
rdr

)

=
+∞∑
k= 1

(σ1D + βk)C(n)
3D (k)

2J1 (xk)
xk

, (3.7)
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where the last identity follows from the formula d
dx (xJ0(x)) =xJ1(x), see ([27], p. 103). For X = 1, 3 and for

unXD we obtain

SXD
(
u

(n)
1D

∣∣∣
z= 0

)
+
∂u

(n)
1D

∂z

∣∣∣∣∣
z= 0

= (σXD −
√
γ)C(n)

XD.

Owing to the previous identity and to (3.6) and (3.7), the Robin interface conditions (3.4) and (3.3c) become

∞∑
k= 1

(σ3D + βk)C(n)
3D (k)J0

(
xk

r

R

)
= (σ3D −

√
γ)C(n−1)

1D = (σ3D −
√
γ)C(n−1)

1D

∞∑
k= 1

2
J1(xk)xk

J0

(
xk

r

R

)
which becomes

(σ3D + βk)C(n)
3D (k) = (σ3D −

√
γ)C(n−1)

1D

2
J1(xk)xk

,

and
∞∑
k= 1

(σ1D + βk)C(n)
3D (k)

2J1(xk)
xk

= (σ1D −
√
γ)C(n)

1D .

This gives
C

(n)
1D

C
(n−1)
1D

=
∞∑
k= 1

4
x2
k

(σ1D + βk)(σ3D −
√
γ)

(σ1D −
√
γ)(σ3D + βk)

and the thesis follows. �

3.2. Optimization procedures

First of all, we notice that the choice σ3D =σopt
3D =

√
γ gives ρ3D–1D = 0, and therefore convergence in two

steps.
In order to fix an effective value for σ1D for all the relevant k, we propose the following argument. Due to

the source of error introduced by the numerical discretization of the two subproblems, at the discrete level the
optimal choice of σ3D may differ from the exact value of

√
γ by a small quantity ε. Thus assume

σ3D =
√
γ + ε.

This gives

ρ3D–1D =
∞∑
k= 1

4
x2
k

σ1D + βk(
σ1D −

√
γ
) (√

γ + ε+ βk
)ε.

When ε→ 0, each term
σ1D + βk(

σ1D −
√
γ
) (√

γ + ε+ βk
)ε

is asymptotic to
σ1D + βk(

σ1D −
√
γ
) (√

γ + βk
)ε.

Our goal is now to search for the value of σ1D that minimizes the maximum value

max
βk∈[βkmin ,βkmax ]

∣∣∣∣∣ σ1D + βk(
σ1D −

√
γ
) (√

γ + βk
) ∣∣∣∣∣ .
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Observe that

max
βk∈[βkmin ,βkmax ]

∣∣∣∣∣ σ1D + βk(
σ1D −

√
γ
) (√

γ + βk
) ∣∣∣∣∣ = max

βk∈[βkmin ,βkmax ]

∣∣∣∣ 1
√
γ + βk

− 1
√
γ − σ1D

∣∣∣∣
= max
y∈
[

1
βkmax+

√
γ ,

1
βkmin

+
√
γ

] ∣∣∣∣y − 1
√
γ − σ1D

∣∣∣∣

=


1

βkmin +
√
γ
− 1
√
γ − σ1D

if 1√
γ−σ1D

≤ 1
2

(
1

βkmax+
√
γ + 1

βkmin+
√
γ

)
− 1
βkmax +

√
γ

+
1

√
γ − σ1D

if 1√
γ−σ1D

≥ 1
2

(
1

βkmax+
√
γ + 1

βkmin+
√
γ

)
.

Clearly, the value of σ1D that minimizes the above quantiy is the one for which

1
√
γ − σ1D

=
1
2

(
1

βkmax +
√
γ

+
1

βkmin +
√
γ

)
=

βkmin + βkmax + 2
√
γ

2
(
βkmax +

√
γ
) (
βkmin +

√
γ
) ,

that is

σopt
1D =

√
γ −

2
(
βkmax +

√
γ
) (
βkmin +

√
γ
)

βkmin + βkmax + 2
√
γ

. (3.8)

This gives the asymptotic (when βkmin 6= βkmax), as ε→ 0,

ρ3D–1D ∼
(

1
βkmin +

√
γ
− 1
βkmax +

√
γ

)( kmax∑
k= kmin

2
x2
k

)
ε=

βkmax − βkmin(
βkmin +

√
γ
) (
βkmax +

√
γ
) ( kmax∑

k= kmin

2
x2
k

)
ε.

Notice that if only one frequency is involved (i.e. βkmin =βkmax =β), the optimal value (3.8) reduces to σopt
1D =−β

and from the previous estimate of the reduction factor, we have ρ3D–1D = 0.

3.3. Numerical results

The numerical results for the 3D part have been obtained by means of FreeFem++, whereas the 1D ones with
Matlab. The results have been post-processed for a “manual” coupling at each iteration. We have considered
Ω3D = {(r, ϕ, z) : 0 ≤ r < R, 0 ≤ ϕ < 2π, −L < z < 0}, with R= 1.0 and L= 2.5, and Ω1D = (0, L). The
numerical solution in the 3D geometry has been obtained by solving a two-dimensional axi-symmetric problem
in a rectangle. The corresponding meshes were formed by triangles. The stopping criterion corresponds to the
residual of a block Gauss-Seidel scheme and it is given by (see [1]):(

1
|Γ |

∫
Γ

(
σ3Du

(n)
3D +

∂u
(n)
3D

∂z

)
dγ − σ3Du

(n)
1D −

∂u
(n)
1D

∂z

)2

≤ ε2,

where ε= 10−5. We used P1 Finite Elements and we chose as initial guess u(0)
1D = 1.

The value of the space discretization parameter was h= 0.05, so that the number of samples along the interface
Γ was N = 20 and, according to Section 2.4, we set kmin = 1 and kmax = 10 (i.e. we account for the dumping of
the projection). We considered two values of the reaction parameter, namely γ= 1 and γ= 10.

Referring to the quantities defined in Section 3.2, in Table 2 we report the results of the numeri-
cal experiments. In particular, for each scenario, we have considered four schemes: the Dirichlet-Neumann
(DN, σ3D = +∞, σ1D = 0), the Neumann-Dirichlet (ND, σ3D = 0, σ1D = +∞), the Robin-Neumann (RN,
σ3D =σopt

3D , σ1D = 0), and the Robin-Robin (RR, σ3D =σopt
3D , σ1D =σopt

1D ) schemes.
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Table 2. Values of σopt
3D and σopt

1D and number of iterations for the four schemes considered. X
means no convergence achieved.

γ σopt
3D σopt

1D # iter DN # iter ND # iter RN # iter RR

1 1.00 −5.47 X 11 3 2
10 3.16 −8.63 X 19 4 3

We observe an excellent behavior of the Robin-based schemes in comparison with the classical ones. Moreover,
the estimate provided by (3.8) seems to improve the convergence properties of the optimized Robin-Robin scheme
with respect to the Robin-Neumann one.
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