Package ‘mavevis’

April 26, 2018
Title Visualization for MaveDB
Version 0.0.0.9000

Description Query data from MaveDB and visualize as genophenograms with added tracks for struc-
ture information.

Depends R (>=3.2.3)

License GPL

Encoding UTF-8

LazyData true

Imports rapimave, hgvsParseR, yogitools, httr, gdata, hash

Suggests testthat

RoxygenNote 6.0.1

Remotes github::jweile/rapimave, github::jweile/hgvsParseR, github::jweile/yogitools
SystemRequirements DSSP, OpenSASA, ClustalO

R topics documented:

calc.conservation e e 2
calcstrucfeats 2
check.async.progress e e e 3
dashboard L 3
dashboard.async.run L. e 4
find.pdbs. e e 5
geNOPNENOZIAM v v v v e e e e e e e e e e e e e e e 6
getCacheFile e 7
getUniprotSeq o e e e e 7
makeUUID e e e 8
new.amasLite L e e e 8
NEW.SIIUCLUTE o i ittt e e e e e e e e e e e e e 9
new.trackdrawer L. L. e e e 9
pdbinformative L L 11
query.pdb . . . Lo 11
retrieve.async.result.fileo L Lo 12

2 calc.strucfeats

TUNLASSD + . v v o e e e e e e e e e e e e e e e e 12
TUILSASA .« o v v v v v vt e e e e e e e e e e e e e e e e 13
subcomplex.comboS e e e e e e e 14
Index 15
calc.conservation Calculate position-wise conservation from a Uniprot accession
Description

Retrieves the 90 calculate a multiple sequence alignment and uses the AMAS algorithm to derive
the position-wise sequence conservation. If the given accession has been used as an input before, a
cached sequence alignment will be used instead.

Usage

calc.conservation(acc)

Arguments

acc the Uniprot accession

Value

a numerical vector with the position-wise conservation.

calc.strucfeats Calculate structural features

Description

Calculates structural features of a protein from a given PDB entry

Usage

calc.strucfeats(pdb.acc, main.chain)

Arguments
pdb.acc The PDB accession to use, e.g. "3UIP"
main.chain The chain identifier in the PDB file that corresponds to the protein of interest.
Should be a single uppercase letter, e.g. "A".
Value

a data.frame detailing secondary structure, solvent accessibility, and burial in interfaces.

check.async.progress 3

Examples

Not run:
sfeats <- calc.strucfeats("3UIP","A")

End(Not run)

check.async.progress Check progress on asynchronous job

Description
Retrieves the standard out log of an asynchronously launched job, if it exists. If the job doesn’t exist
or hasn’t written any log output, the function returns NULL.

Usage

check.async.progress(jobID)

Arguments

jobID the ID of the job

Value

the contents of the stdout log for the given job, or NULL if none exists

dashboard Draw dashboard for scoreset

Description

Retrieves a scoreset entry from MaveDB and renders a dashboard plot consisting of a genophenogram
heatmap, interface burial, solvent accessibility, secondary structure and conservation. The output
is controlled by the outFormats parameter and can be either on an X11 device or in PDF or PNG
format (or any combination thereof). Structural and conservation information is obtained from
UniProtKB and PDB, thus the respective database accessions are required. Multiple PDB files can
be used at once.

Usage

dashboard(ssid, uniprotId, pdbs, mainChains, wt.seq = NULL, seq.offset = @,
syn.med = NULL, stop.med = NULL, overrideCache = FALSE,
outFormats = c("pdf”, "png"), pngRes = 100, outID = ssid)

Arguments

ssid
uniprotId
pdbs

mainChains

wt.seq

seq.offset

syn.med

stop.med

overrideCache

outFormats

pngRes
outID

Examples

Not run:
dashboard(

dashboard.async.run

The MaveDB ScoreSet ID of the dataset to be visualized
The UniprotKB accession for the corresponding protein
A vector of PDB accessions to be used for the structure tracks

the chain identifiers corresponding to the protein in question for each provided
pdb accession.

An (optional) wild-type sequence for the given protein to use instead of the
sequence found in UniprotKB. This can be either a nucleotide or amino acid
sequence.

A parameter describing the start position of the map in the protein’s amino acid
sequence. For example, if only a domain was scanned.

The median value of synonymous variants as an estimate of wild-type function.
This is only necessary of no synonymous variants are present in the dataset.

The median value of nonsense variants as an estimate of complete loss of func-
tion. This is only necessary if no nonsense variants are present in the dataset.

defaults to FALSE. If set to TRUE, data will always be re-downloaded from remote
locations instead of using a local cache.

a vector containing any of the following strings: x11, pdf, png . Using two or
all three at once is allowed and will result in multiple output files.

Resolution of PNG output in DPI. Defaults to 100.

a name for the output file to which the plot will be written. Defaults to ssid.

$sid="SCS000VR1A.1", uniprotId="P46937",
pdbs=c("2LAY","2LTW"), mainChains=c("A","A"),

wt.seq="GACGTTCCACTGCCGGCTGGTTGGGAAATGGCTAAAACTAGTTCTGGTCAGCGTTACTTCCTGAACCACATCGACCAGACCACCACGTGGCAGGACCCGC(

seq0ffset=170, syn.med=0

)

End(Not run)

dashboard.async.run

Launch asynchronous dashboard job

Description

Launches a job running the dashboard function in a separate system process in the background. The
job is given a unique ID, which is returned by this function.

find.pdbs 5
Usage
dashboard.async.run(ssid, uniprotld, pdbs, mainChains, wt.seq = NULL,
seq.offset = @, syn.med = NULL, stop.med = NULL,
overrideCache = FALSE, outFormats = c("pdf”, "png"), pngRes = 100)
Arguments
ssid The MaveDB ScoreSet ID of the dataset to be visualized
uniprotId The UniprotKB accession for the corresponding protein
pdbs A vector of PDB accessions to be used for the structure tracks
mainChains the chain identifiers corresponding to the protein in question for each provided
pdb accession.
wt.seq An (optional) wild-type sequence for the given protein to use instead of the
sequence found in UniprotKB. This can be either a nucleotide or amino acid
sequence.
seq.offset A parameter describing the start position of the map in the protein’s amino acid
sequence. For example, if only a domain was scanned.
syn.med The median value of synonymous variants as an estimate of wild-type function.
This is only necessary of no synonymous variants are present in the dataset.
stop.med The median value of nonsense variants as an estimate of complete loss of func-

tion. This is only necessary if no nonsense variants are present in the dataset.

overrideCache defaults to FALSE. If set to TRUE, data will always be re-downloaded from remote

locations instead of using a local cache.

outFormats a vector containing any of the following strings: x11, pdf, png . Using two or
all three at once is allowed and will result in multiple output files.
pngRes Resolution of PNG output in DPI. Defaults to 100.
Value
the job ID
find.pdbs Find PDB structures for a Uniprot accession
Description

Finds PDB structures that contain the protein indicated by the given Uniprot accession. Checks
for a local cache file of previous results. If such a cache exists, the pre-calculated results will be

returned, otherwise queries to Uniprot and PDB will be made.

Usage
find.pdbs(acc)

6 genophenogram
Arguments
acc the Uniprot accession
Value
a data.frame with the following columns:
* pdb: the PDB accession of the structure
* method: the experimental method for this structure, e.g NMR, X-ray or Model
* resolution: the resolution of this structure, in Angstrom.
* mainChains: a /-separated list of chain IDs that correspond to the protein with the given
Uniprot accession.
* start: the first amino acid of the protein represented in the structure
* end: the last amino acid of the protein represented in the structure
e partners: a comma-separated list of interaction partners if the structure is of a complex. Each
item follows the syntax chainD=UniprotID/ProteinName
genophenogram Draw genophenogram plot
Description
Draws a genophenogram plot from given data
Usage
genophenogram(wt.aa, pos, mut.aa, score, syn.med, stop.med, error = NULL,
a = 0, grayBack = FALSE, img.width = 12, tracks = NULL)
Arguments
wt.aa wildtype amino acid sequence as a vector of single characters.
pos vector of amino acid positions
mut.aa vector of mutant AAs
score vector of scores
error vector of stderr values
a bezier transformation intensity (with -0.5 <=a <=0.5)
grayBack draw a gray background for incomplete maps
img.width optional parameter to inform the drawing function of the chosen image width,
allowing it to adjust the size of the legend
tracks an optional trackdrawer object to add structural information to the plot

getCacheFile 7

getCacheFile Find cache file location by name

Description

Finds the location for a cache file. The file does not necessary need to exist yet, as this function is
meant to be used determine to a location for both storage and retrieval.

Usage

getCacheFile(name)
Arguments

name the name of the file, e.g. "P12456_alignment.fasta"
Details

Depending on the execution context, the storage location may differ. The cache location can be
controlled with the environment variable $MAVECACHE. This will be made use of within the mavevis
server docker container. If the variable is not set, a directory ".mavecache/" will be created in the
user’s home directory to be used as the storage location.

Value

the full path to the file

Examples

file <- getCacheFile("P12345_alignment.fasta")

getUniprotSeq Retrieve Uniprot Sequence

Description

Retrieves the amino acid sequence for the protein indicated by a Uniprot accession.

Usage

getUniprotSeq(uniprot.acc)

Arguments

uniprot.acc the accession

8 new.amasLite

Value

the amino acid sequence

makeUUID Create universally unique ID (UUIDv4)

Description
Creates a universally unique identifier compatible with the UUID v4.0 standard. See https://en.
wikipedia.org/wiki/Universally_unique_identifier#Version_4_(random)

Usage

makeUUID()

Value

the UUID as a character string

new.amasLite Calculate AMAS conservation

Description

Uses the AMAS method (Livingstone & Barton 1993) method to calculate position-wise conserva-
tion from a protein multiple sequence alignment. Creates an object of type amasLite, which features
a single method: run(alignmentFile).

Usage

new.amasLite()

Details

The run(alignmentFile) method takes the name of a file as its parameter. The file must be a
FASTA formatted multiple sequence alignment. The method returns a numerical vector listing the
position-wise conservation with respect to the first entry in the alignment.

Value

an object of type amasLite

https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_(random)
https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_(random)

new.structure

new.structure Create new Structure object

Description

Constructor for a PDB structure object.

Usage

new.structure(pdb.file)

Arguments

pdb.file The PDB structure file to use

Details

The resulting object offers the following methods:

* get.sequence(chain) Returns the amino acid sequence of the given chain

* get.aa(chain,pos) Returns a data.frame with the atomic information for the amino acid deter-

mined by the given chain and position.

* get.chains() Returns a vector detailing the chain indentifiers in the structure

 get.atom(chain,pos,name) Returns the atomic information associated with the given chain,

amino acid position, and atom name.

 subcomplex.combos(chain) !Deprecated! Does not work with NMR structures

* get.chain.info() Returns a dataframe listing which chain corresponds to which protein.

Value

a PDB structure object

new.trackdrawer New Trackdrawer object

Description

This constructor creates a new Trackdrawer object. The object can be used to draw a plot contain-
ing amino-acid resolution structural information tracks, such as conservation, secondary structure,

solvent accessibility or burial.

Usage

new. trackdrawer(l, nox = FALSE)

10 new.trackdrawer

Arguments
1 the length of the tracks (i.e. the number of amino acids)
nox no x-axis. Removes the x-axis and decreases the bottom margin to 0. This
option is for use with the layout () function, to support adding tracks on top of
an existing graph that uses amino acid postion as the x-axis.
Details

The object has the following methods:

* add.track(values,label,col,minVal=0,maxVal=max(values)) adds a new numerical track,
which will be visualized in heatmap style. values are the numerical values for the heatmap.
label is the label that will be shown on the y-axis for this track. col is the color that will be
used to generate the color ramp (from white to col). minVal is optional and is the minimum
value that will be mapped to the color white (default 0). maxVal is also optional and is the
maximum value in the scale, which will be mapped to col.

* add.constrack(values) adds a new conservation track, which will be visualized as a barplot.
values are the conservation values to use.

* add.ss.track(values) adds a new secondary structure track, which will be visualized using
spriral and arrow symbols. values are the character values representing the secondary struc-
ture type for each amino acid. Permissible values are: "AlphaHelix","H","G","I" for alpha
helices, "Strand","E" for beta strands and "Disorder" for disordered regions. Any other string
is interpreted as no specific secondary structure.

e draw() draws the plot

* num. tracks() returns the number of tracks currently added to the plot.

Value

an object of type TrackDrawer.

Examples

Not run:

td <- new.trackdrawer(50)

td$add. track(runif(50,0,1),"SASA", "blue")

td$add. constrack(runif(50,0,11))

td$add.ss. track(sample(c("AlphaHelix","Strand”,"”"),50,replace=TRUE))
td$draw()

End(Not run)

pdb.informative 11

pdb.informative Select smallest informative subset of PDB structures

Description

Given the results of find.pdbs(), this function finds the smallest informative subset among them.
That is, the smallest set of PDB structures, that still represent all available interaction partners.

Usage

pdb.informative(pdb. table)

Arguments

pdb.table The result of find. pdbs()

Value

a vector with the IDs of the selected PDB structures.

query.pdb Query PDB

Description

Queries the Protein Data Bank (PDB) for protein structure data for a given database accession and
writes the result to file

Usage

query.pdb(pdb.acc, pdb.file = paste@(pdb.acc, ".pdb"))

Arguments

pdb.acc the PDB accession to query

pdb.file the name of the file to which the output will be written.
Value

the name of the output file.

12 run.dssp

Examples

Not run:

#with a pre-determined output file
outfile <- "sumo_conjugase_structure.pdb”
query.pdb("”3UIP",outfile)

#with an autogenerated output file
outfile <- query.pdb(”3UIP")

End(Not run)

retrieve.async.result.file
Retrieve result file from asynchronous job

Description

Retrieves the output file from an asynchronous job if it exists. The file is copied to the working
directory, so that OpenCPU can expose it on the webservice.

Usage

retrieve.async.result.file(jobID, ext = "png")
Arguments

jobID the ID of the job.

ext the file extension. Defaults to "png".
Value

TRUE if successful, otherwise FALSE.

run.dssp Run DSSP on a PDB structure

Description

Calculates secondary structure information from a PDB file using the external software DSSP,
which must be installed and available via $SPATH

Usage
run.dssp(pdb.file)

run.sasa 13

Arguments

pdb.file The PDB file on which to run DSSP

Value

a data.frame with the output of DSSP

Examples

Not run:
dssp.out <- run.dssp(pdb.file)

End(Not run)

run.sasa Run FreeSASA on a PDB structure

Description

Calculates solvent accessible surface area on a given structure using the external software FreeSASA,
which must be installed and available via $SPATH.

Usage

run.sasa(pdb.file)

Arguments

pdb.file The PDB file on which to run FreeSASA

Value

a data.frame with the output of FreeSASA

Examples

Not run:
sasa <- run.sasa("3UIP.pdb")

End(Not run)

14 subcomplex.combos

subcomplex.combos Generate PDB files for complex components

Description
This function finds the component chains of a given PDB structure and generates new PDB files for
any desired set of combinations of these components

Usage

subcomplex.combos(pdb.file, chain.sets)

Arguments
pdb.file the input PDB file for the complex
chain.sets a list of character vectors, detailing the combinations of chains to produce. E.g.
list("A",c("A","B"),c("A","C")) produces one file for chain A, one for the
combination of chains A and B, and one for the combination of chains A and C.
Value

a vector of file names corresponding to the elements of chain.sets

Examples

Not run:
subcplx.files <- sub.complex.combos("3UIP.pdb",chain.sets=1ist("A",c("A","B"),c("A","C")))

End(Not run)

Index

calc.conservation, 2
calc.strucfeats, 2
check.async.progress, 3

dashboard, 3
dashboard.async.run, 4

find.pdbs, 5

genophenogram, 6
getCacheFile, 7
getUniprotSeq, 7

makeUUID, 8

new.amaslLite, 8
new.structure, 9
new. trackdrawer, 9

pdb.informative, 11
query.pdb, 11

retrieve.async.result.file, 12
run.dssp, 12
run.sasa, 13

subcomplex.combos, 14

15

	calc.conservation
	calc.strucfeats
	check.async.progress
	dashboard
	dashboard.async.run
	find.pdbs
	genophenogram
	getCacheFile
	getUniprotSeq
	makeUUID
	new.amasLite
	new.structure
	new.trackdrawer
	pdb.informative
	query.pdb
	retrieve.async.result.file
	run.dssp
	run.sasa
	subcomplex.combos
	Index

