
RAFF.jl: Robust Algebraic Fitting Function in
Julia

19 May 2019

Summary

RAFF.jl is a Julia package for the adjustment of a function to a dataset coming
from some experiment. This package is an alternative to classical adjustment
techniques such as linear and nonlinear regression. The goal of this package is to
find robust adjustments free from the influence of possible outliers (discrepant
points of the adjustment).

Motivation

Let f : Rn → R be a function whose mathematical description is not available.
This function can be, for example, a black-box, a proprietary computer program
or an experiment. Suppose that a dataset S = {(x1, y1), . . . , (xm, ym)} is avail-
able, where yi is an approximation of f(xi) (from an experimental procedure,
numerical approximation, etc.) and we want to approximate f by a known model
φ. Model φ can be defined as φ(x, θ), where x are the n independent variables
of f and θ represents some parameters of φ. RAFF.jl (Robust Algebraic Fitting
Function) is a Julia package developed to find parameters θ for φ in order to
adjust it to the observed values S of the unknown function f . Following Liu and
Wang (2008) and Keleş (2018), in general, the adjustment can be related to

1. Classical least squares (algebraic fit): which considers the sum of deviations
of type |φ(xi, θ)− yi|2, also known as regression;

2. Orthogonal least squares (geometric fit): which considers the sum of
deviations of type minx ‖(x, φ(x, θ))− (xi, yi)‖2 (orthogonal projection on
the curve to be adjusted).

RAFF.jl was developed to solve a generalization of the first case.

Linear and nonlinear regression is essentially the adjustment of mathematical
functions to data and is a problem that appears in many areas of science. When

1

data comes from real experiments, non-expected errors may cause the appearance
of outliers, which might be responsible for causing the regression calculated by
sum of deviations to result in misleading approximations. Regression is strongly
connected to Statistics but practical methods to detect outliers are not very
common. Motulsky and Brown (2006), for example, develop a method for
outlier detection based on the assumption that the error follows a Lorentzian
distribution around the function and use nonlinear regression based on least
squares. RAFF.jl provides automatic detection of outliers using a voting system.
It is an optimization-based package, based on algorithms for Lower Order-Value
Optimization (LOVO) which were introduced by Andreani, Dunder, and Martínez
(2005) and revisited by Andreani et al. (2009). Recently, Martínez (2012)
performed a complete review about LOVO problems considering theoretical
aspects of algorithms to solve it and potential applications.

Background

To elucidate the essence of how RAFF.jl works, let us detail some aspects
related to the LOVO problem and its resolution. Let us consider m functions
Fi : Rn → R, i = 1, ...,m. Given θ ∈ Rn, we can sort the set {Fi(θ), i = 1, ...,m}
in ascending order:

Fi1(θ)(θ) ≤ Fi2(θ)(θ) ≤ ... ≤ Fim(θ)(θ).

Considering a value 1 ≤ p ≤ m, we can define the LOVO function as

Sp(θ) =
p∑
k=1

Fik(θ)(θ)

and the LOVO problem as
min
θ∈Rn

Sp(θ).

Assuming that Fi, i = 1, ...,m are continuous functions we have that Sp is a
continuous function, but assuming that Fi’s are differentiable functions we cannot
conclude that Sp is differentiable. This can be seen by reformulating the LOVO
problem as follows. Denoting C = {C1, ..., Cr} as the set of all combinations of
{1, ...,m} taken p at time, we can define for each i ∈ {1, ..., r} the following
function

fi(θ) =
∑
k∈Ci

Fk(θ)

and
fmin(θ) = min{f1(θ), ..., fr(θ)}.

It can be observed that, for a given θ, fmin(θ) is obtained by a combination Cj
which contains the smallest sum of p elements of the set {Fi(θ), i = 1, ...,m}.

2

Therefore fmin(θ) = Sp(θ) and, consequently, the LOVO function is non differen-
tiable. The LOVO problem description can become more clear by considering
an example. In this sense, let us consider the dataset given by

3

x y

-0.5 0.119447
0.0 0.3
0.5 0.203551
0.75 0.423998

and the model defined by φ(x, θ) = θ(sin(x) + cos(x)). Naturally, we have m = 4
and let us consider p = 3. The Fi’s can assume diferent forms. To leave the
example closest to our approach, let’s consider Fi’s as:

F1(θ) = (0.119447− φ(−0.5, θ))2,

F2(θ) = (0.3− φ(0.0, θ))2,

F3(θ) = (0.203551− φ(0.5, θ))2,

F4(θ) = (0.423998− φ(−0.75, θ))2.

Since m = 4 and p = 3, we have 4 possible subsets with 3 elements each from
set {1, 2, 3, 4}:

C1 = {1, 2, 3}, C2 = {1, 2, 4}, C3 = {1, 3, 4} and C4 = {2, 3, 4}.

Thus, associated to each Ci, i = 1, ..., 4, we can define function fi as follows

f1(θ) = F1(θ) + F2(θ) + F3(θ),
f2(θ) = F1(θ) + F2(θ) + F4(θ),
f3(θ) = F1(θ) + F3(θ) + F4(θ),
f4(θ) = F2(θ) + F3(θ) + F4(θ),

and consequently,

fmin(θ) = min{f1(θ), f2(θ), f3(θ), f4(θ)} = S3(θ).

As previously pointed out, this function is continuous but it is not differentiable
as illustrated in Figure 2.

Andreani et al. (2009) introduced line search methods and handled the possible
singularities in a clever way, using the following approximation for ∇fmin(θ)

∇fmin(θ) = ∇fi(θ),

where i ∈ I(θ) = {k ∈ {1, ..., r}; fk(θ) = fmin(θ)}. This approach can naturally
be extended for second order derivatives.

An important point for practical purposes is when we consider the LOVO problem
with p = m and Fi(θ) = (φ(xi, θ)−yi)2. In this case, the LOVO problem coincides
with classical least squares and, consequently, it can be seen as a generalization
of the least squares problem. When p < m and Fi(θ) = (φ(xi, θ) − yi)2, the

4

Figure 1: The red function represents the LOVO function. Observing the interval
[0.2, 0.25] we can note a singular point even considering f1, f2, f3 and f4 as
differentiable functions.

5

solution θ provides a model φ(x, θ) free from influence of the m− p points with
the highest deviation. The number p can be interpreted as the number of trusted
points, that is, m− p possible outliers were identified.

One of the most usual ways to solve the problem of nonlinear least squares
is by using the Levenberg-Marquardt method (Moré 1978). This method is
a first-order method, where derivatives of the model φ with respect to θ are
used to compute the gradient of the objective function in the associated least
squares problem. The reason for the wide use of Levenberg-Marquardt method
is, in general, associated with quadratic convergence properties even using only
first-order derivatives. In this direction, it is relevant to ask about Levenberg-
Marquardt-based methods to solve LOVO problems in the context of adjustment
functions.

RAFF.jl implements a Levenberg-Marquardt algorithm in the context of LOVO
problems, i.e., it solves the problem of minimizing fmin(θ), where Fi(θ) =
(φ(xi, θ)−yi)2, for i = 1, . . . ,m. In this sense, first-order derivatives are necessary
and the same strategy of Andreani et al. (2009) is used. It uses first-order
derivatives of the model φ with respect to θ to approximate the gradient of
fmin(θ), which is a non differentiable function. Moreover, LOVO problems have
the limitation that the number p of possible trusted points needs to be given by
the user. RAFF.jl solves this limitation by implementing a voting system. In this
voting system, several LOVO subproblems are solved with different values for p,
the number of possible trusted points. Each solution of a LOVO subproblem
is associated to a vector parameter θ. The vector parameters are compared
against each other using the Euclidean distance, where small distances (using
a threshold) are considered the same solution. The parameter θ∗ which most
occurs among them is declared as the solution.

Functionality

RAFF.jl main methods expect as input a dataset of the observed data and a
model function, whose parameters one intends to adjust. The model function is
a regular Julia function with 2 arguments: θ represents the parameters of the
model and x represents the arguments of function f . The following function is
an example of a model representing the logistic function

φ(x, θ) = θ1 + θ2

1.0 + exp(−θ3x+ θ4) .

The observed data can be represented by the following table:

x y

0.0000 1166.0892
3.3333 1384.4495

6

x y

6.6666 4054.1959
10.0000 2692.4928
13.3333 3011.5096
16.6666 3882.4381
20.0000 4612.4603
23.3333 6605.6544
26.6666 5880.1774
30.0000 5506.3050

In this example, the true function was given by

f(x) = 1000 + 5000
1.0 + exp(−0.2x+ 3) .

The observed data was generated as random normal perturbations around the
graphic of f and is shown in Figure 1. The dots and triangles represent the
observed data, where the red triangles were manually set to be the outliers.
Using the least squares technique with the model above, the green function is
found. When RAFF.jl is applied to the same problem, it correctly identifies the
two outliers. The resulting function is depicted as the red one, very close to f .

Figure 2: Points representing the logistic function. The red triangles are two
outliers that should be ignored. The blue dashed function is the true one, while
the green was obtained by traditional least squares techniques and the red one
was obtained by RAFF.jl.

7

Additional features

The user may also provide more information to RAFF.jl, such as an rough
approximation to the expected number of trusted observations. Additional
methods and options are also available to more advanced users, such as generation
of random test data and multistart strategies. First-order derivatives of the model
φ with respect to θ can also be provided, which results in a faster executing time.
When they are not provided by the user, RAFF.jl uses Julia’s ForwardDiff.jl
package (Revels, Lubin, and Papamarkou 2016).

RAFF.jl can be run in serial, parallel and distributed environments. Parallel and
distributed methods use the native Distributed.jl package. The distributed
version is a primary-worker implementation that does not use shared arrays,
therefore, can be run both locally or on a cluster of computers.

This package is intended to be used by any experimental researcher with a little
knowledge about mathematical modeling and fitting functions.

Installation and usage

RAFF.jl is an open-source software that can be downloaded from Github. It is
a registered package and can be directly installed from Julia’s package repos-
itory. The whole description for first time usage or its API is available at its
documentation.

Acknowledgments

This project was supported by Fundação Araucária under grant 002/17.

References

Andreani, R., C. Dunder, and J. M. Martínez. 2005. “Nonlinear-Programming
Reformulation of the Order-Value Optimization Problem.” Mathematical Methods
of Operations Research 61 (3). Springer: 365–84. doi:10.1007/s001860400410.

Andreani, R., J. M. Martínez, L. Martínez, and F. S. Yano. 2009. “Low Order-
Value Optimization and Applications.” Journal of Global Optimization 43 (1):
1–22. doi:10.1007/s10898-008-9280-3.

Keleş, Taliha. 2018. “Comparison of Classical Least Squares and Orthogonal
Regression in Measurement Error Models.” International Online Journal of

8

https://docs.julialang.org/en/v1.0/stdlib/Distributed/
https://github.com/fsobral/RAFF.jl
https://fsobral.github.io/RAFF.jl/stable/
https://doi.org/10.1007/s001860400410
https://doi.org/10.1007/s10898-008-9280-3

Educational Sciences 10 (3): 200–214. doi:10.15345/iojes.2018.03.013.

Liu, Y., and W. Wang. 2008. “A Revisit to Least Squares Orthogonal Distance
Fitting of Parametric Curves and Surfaces.” In Advances in Geometric Modeling
and Processing, edited by Falai Chen and Bert Jüttler, 384–97. Berlin, Heidelberg:
Springer Berlin Heidelberg. doi:10.1007/978-3-540-79246-8_29.

Martínez, J. M. 2012. “Generalized Order-Value Optimization.” Top 20 (1).
Springer: 75–98. doi:10.1007/s11750-010-0169-1.

Moré, J. 1978. “The Levenberg-Marquardt Algorithm: Implementation and
Theory.” Numerical Analysis. Springer, 105–16. doi:10.1007/BFb0067700.

Motulsky, H. J., and E. R. Brown. 2006. “Detecting Outliers When Fitting
Data with Nonlinear Regression – a New Method Based on Robust Nonlin-
ear Regression and the False Discovery Rate.” BMC Bioinformatics 7 (123).
doi:10.1186/1471-2105-7-123.

Revels, J., M. Lubin, and T. Papamarkou. 2016. “Forward-Mode Automatic
Differentiation in Julia.” arXiv:1607.07892 [cs.MS].

9

https://doi.org/10.15345/iojes.2018.03.013
https://doi.org/10.1007/978-3-540-79246-8_29
https://doi.org/10.1007/s11750-010-0169-1
https://doi.org/10.1007/BFb0067700
https://doi.org/10.1186/1471-2105-7-123
https://arxiv.org/abs/1607.07892

	Summary
	Motivation
	Background
	Functionality
	Additional features
	Installation and usage
	Acknowledgments
	References

