Advanced prediction in polar regions and beyond

Update on WGSIP related activities Lauriane Batté (CNRM, CNRS & Météo-France) 21st WGSIP session, Moscow, May 2019

Credits: Thomas Jung (AWI), Pablo Ortega (BSC), François Massonnet (UCL)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727862.

Overview of APPLICATE

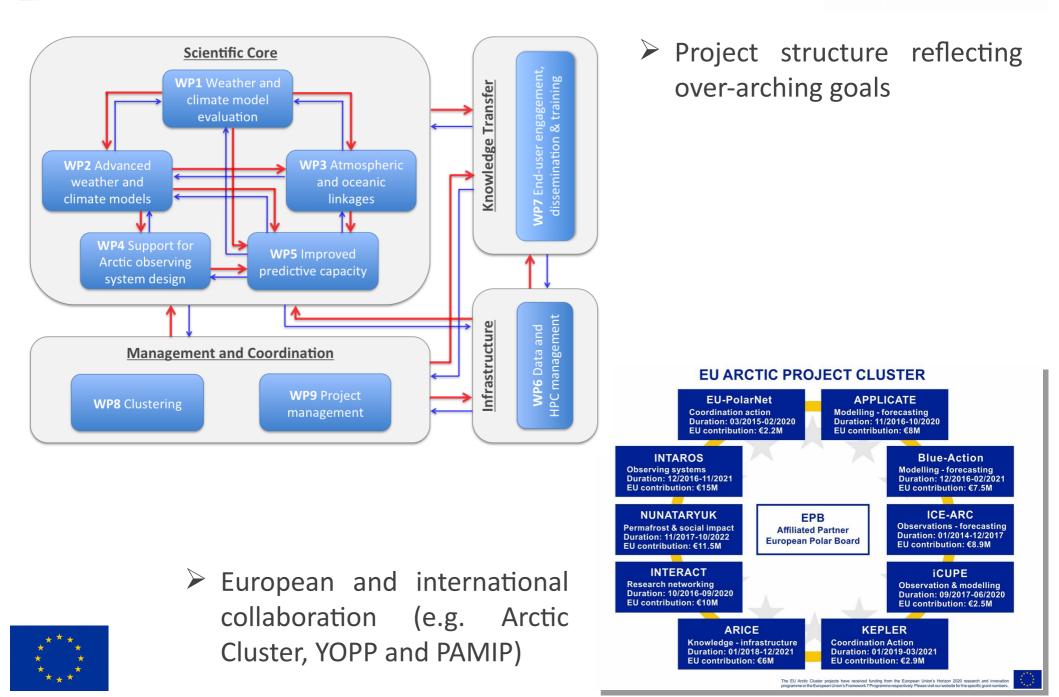
Mission statement: "Develop enhanced predictive capacity for weather and climate in the Arctic and beyond, and determine the influence of Arctic climate change on Northern Hemisphere mid-latitudes, for the benefit of policy makers, businesses and society."

Overview of APPLICATE

Decadal Prediction

Understanding Arctic-midlatitude linkages

- \succ Coordinated multi-model approach (CMIP6-PAMIP \rightarrow see Doug's talk)
- Employ atmosphere-only and coupled models
- Study linkages also from a short-term prediction perspective
- Repeat some of the experiments with enhanced models


Delivering enhanced predictions

Establish	Develop	Test	Recommen-	Enhanced
Baseline	Enhancements	Enhancements	dations	Predictions
 New metrics and diagnostics NWP Subseasonal to seasonal prediction CMIP5/6 	 Enhanced models Optimized Arctic observing systems Improved initial and boundary condition 		 Presentations Reports Publications Contribution to assessment reports 	 CMIP6-Interim and CMIP7 Enhanced operational: NWP Subseasonal to Seasonal Prediction Interannual to

Overview of APPLICATE

Advanced prediction in polar regions and beyond

Evaluation of current skill

- First step of APPLICATE WP5 activities: evaluation of baseline skill in S2S and seasonal forecast systems
- Seasonal hindcasts: "stream 1" with current state-of-the-art GCMs in partner centers

Model/ System	CNRM- CM6-1	EC-Earth 3.2.2	GloSea5	SEAS5	MF Sys6
Atmosphere	ARPEGE 6.3	IFS Cy36r4	UM v6	IFS Cy43r1	ARPEGE 6.2
Ocean	NEMO 3.6	NEMO 3.6	NEMO 3.4	NEMO 3.4	NEMO 3.6
Sea ice	GELATO v6	LIM3	CICE 4.1	LIM2	GELATO v6
Atmospheric resolution	tl127l91r (~ 1.4°)	tl255l91r (~ 0.7°)	N216L85	TCo319L91	tl359l91r (~0.5°)
Ocean resolution	eORCA1 L75	ORCA1L75	ORCA 0.25 L75	ORCA 0.25 L75	eORCA 1 L75
Initial conditions	GLORYS (Mercator)	Forced NEMO run	NEMOVAR	ORA-S5	GLORYS (Mercator)
Ensemble size	30	10	28*	25	25*

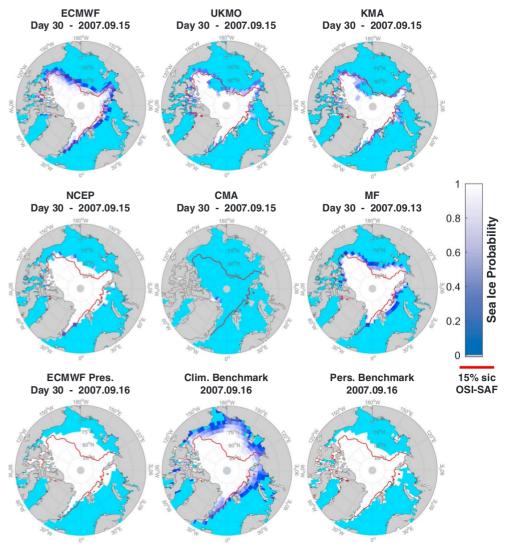


Part of stream 1

Other systems

Evaluation of current skill

Advanced prediction in polar regions and beyond



Integrated ice edge error vs. NSIDC for September 1993-2014 (May forecasts) in each model/system and two multi-models

Evaluation of current skill: S2S

- Assessment of sub-seasonal hindcasts from the S2S database
- > Use of IIEE / SPS metrics
- Case study for 2007
- Lower-performing systems are those that do not directly assimilate sea ice for initial conditions

Advanced prediction in polar regions and beyond

Figure 3. 30-day forecasts for 15 September 2007 of the sea ice probability (probability that sea ice concentration exceeds 15%) as obtained from different forecast systems and from climatological and persistence benchmarks. The observed sea ice edge (15% contour of OSI-SAF sea ice concentration) is also shown (red contour). ECMWF = European Centre for Medium-Range Weather Forecasts; UKMO = UK Met Office; KMA = Korea Meteorological Administration; NCEP = National Centers for Environmental Prediction; CMA = China Meteorological Administration; MF = Météo-France.

Fig. 3 from Zampieri et al. 2019 (GRL)

AGU100 ADVANCING EARTH AND SPACE SCIENCE

Geophysical Research Letters

RESEARCH LETTER 10.1029/2018GL079394

Bright Prospects for Arctic Sea Ice Prediction on Subseasonal Time Scales

Special Section:

Bridging Weather and Climate: Subseasonal-to-Seasonal (S2S) Prediction

Key Points:

- The skill in predicting the location of the Arctic sea ice edge differs substantially among subseasonal forecasting systems
 The most skillful system beats
- climatological forecasts more than 1.5 months ahead, with then highest skills in late summer • Major improvements are possible by reducing errors in initial states and
- model formulation

Supporting Information

Lorenzo Zampieri¹, Helge F. Goessling¹, and Thomas Jung^{1,2}

¹ Alfred-Wegener-Institut Helmholtz-Zentrum fur Polar- und Meeresforschung, Bremerhaven, Germany, ² University of Bremen, Bremen, Germany

Abstract With retreating sea ice and increasing human activities in the Arctic come a growing need for reliable sea ice forecasts up to months ahead. We exploit the subseasonal-to-seasonal prediction database and provide the first thorough assessment of the skill of operational forecast systems in predicting the location of the Arctic sea ice edge on these time scales. We find large differences in skill between the systems, with some showing a lack of predictive skill even at short weather time scales and the best producing skillful forecasts more than 1.5 months ahead. This highlights that the area of subseasonal prediction in the Arctic is in an early stage but also that the prospects are bright, especially for late summer forecasts. To fully exploit this potential, it is argued that it will be imperative to reduce systematic model errors and develop advanced data assimilation capacity.

Model enhancements

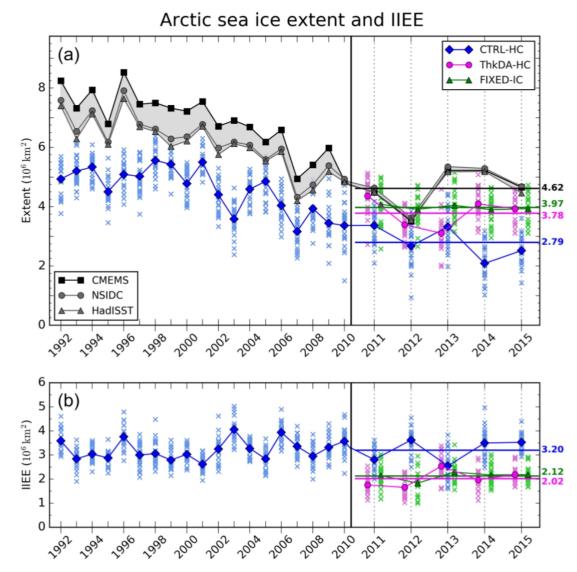
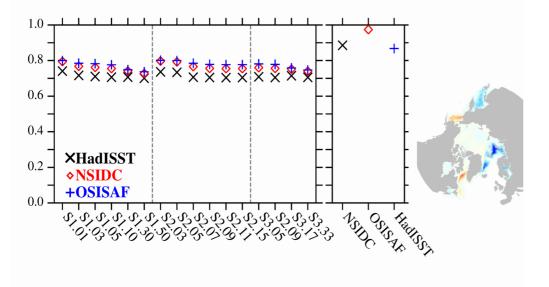


Fig. 4 from Blockley and Peterson 2018 (The Cryosphere)


- MetOffice: using nudging towards CryoSat-2 thickness data (Oct. 2010-2015) to initialize sea ice thickness in seasonal re-forecasts (May → September)
- Number of years restricted to CryoSat-2 data availability
- But promising improvements in terms of SIE and IIEE

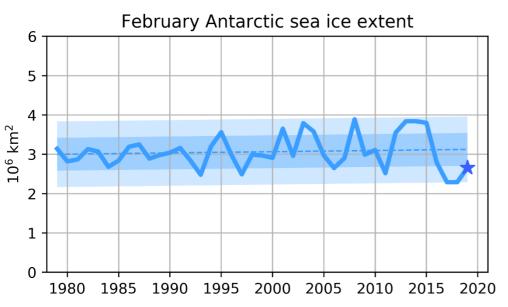
Model enhancements

Number of sea-ice categories in LIM3 (E. Moreno-Chamarro)

Spatial correlation between simulations and observations: JFM first cluster

 Impact of snow and soil moisture initialization (GloSea) > Impact of higher resolution
 (e.g. NEMO 1° → NEMO 0.25°)

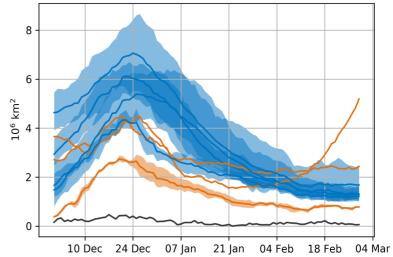
- Impact of melt ponds and landfast ice parameterization
- ⇒ Definition of stream 2 experiments



SIPN-South

Table 1. Information about contributors to the summer 2018-2019 coordinated sea ice forecast experiment.

In recent years, summer Antarctic sea ice has experienced **high year-to-year variability**. While several mechanisms for seasonal predictability have been established, **the actual skill of prediction systems has yet to be established**.


⇒ Activity led by F. Massonnet (UCL)

Want to contribute? More information? Feedback? http://acecrc.org.au/sipn-south/

	Contributor name	Short name (in figures)	Forecasting method	Nb. of forecasts	Initialization date	Diagnostics providea
1	Naval Research Lab	nrl	Coupled dynamical model	9	Oct. 31st, 2018	SIA + rSIA + SIC
2	Nico Sun	Nico-Sun	Statistical model	3	Nov. 30th, 2018	SIA + SIC
3	NASA- GMAO	nasa-gmao	Coupled dynamical model	10	Nov. 27 th , 2018	SIA + SIC
4	FIO-ESM	FIO-ESM	Coupled dynamical model	1	Nov. 1 st , 2018	SIA
5	ECMWF	ecmwf	Coupled dynamical model	50	Dec. 1 st , 2018	SIA + rSIA
6	Lamont Sea Ice Group	Lamont	Statistical model	1	Oct. 31 st , 2018	SIA + rSIA + SIC (monthly, interp. daily
7	Alek Petty	Petty-NASA	Statistical model	1	Nov. 30 th , 2018	SIA (monthly, interp. daily
8	Modified CanSIPS	Modified- CanSIPS	Coupled Dynamical Model	20	Nov. 30 th , 2018	SIA + rSIA
9	Met Office	MetOffice	Coupled Dynamical Model	42	Nov. 25th, 2018	SIA + rSIA + SIC
10	CMCC	CMCC	Coupled Dynamical Model	50	Nov. 1 st , 2018	SIA
11	UCL	ucl	Ocean—sea ice Dynamical Model	10	July 1 st , 2018	SIA + rSIA + SIC
12	Sandra Barreira	Barreira	Statistical model	1	Dec. 1 st , 2018	SIA + rSIA + SIC (monthly, interp. daily

Dec-Jan-Feb 2018-2019 Integrated Ice Edge Error

Forecasts based on **dynamical modeling approaches** appeared to have **larger errors than** those based on **statistical modeling approaches**. However, the **robustness of this finding has to be confirmed** at the occasion of future coordinated forecasts.

Thanks for your attention!