

Efficient boundary condition estimation for continuous casting machinery

Umberto Emil Morelli

Instituto Tecnológico de Matemática Industrial

Giovanni Stabile, Patricia Barral, Riccardo Conte, Federico Bianco, Gianluigi Rozza, Peregrina Quintela

Reduced Order Modelling, Simulation and Optimization of Coupled Systems (ROMSOC)

Strobl, October 15, 2019

Funded by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 765374.

Continuous casting

https://www.danieli.com/en/flat_products_43_2.htm Umberto Emil Morelli

Credits: Klimes et al.

Umberto Emil Morelli

- Copper plates
- Cooled by water flowing in channels

Credits: Carl Schreiber GmbH Neunkirchen, Pprime

Control of the Process

Control of the Process

Section of the mold

The casting is mainly controlled by changing the casting speed

Information available:

- Temperature measurements inside the mold
- Cooling water temperature increase
- Liquid steel level

Temperatures measurements

 \downarrow

Computation of heat flux at the steel-mold interface in real-time

Full Order Inverse Problem

- Alifanov's Regularization
- Levenberg-Marquardt method

2) Reduced Order Inverse Problem

Mold model Given $k \in \mathbb{R}^+$, $h \in \mathbb{R}^+$, $g \in L^2(\Gamma_{in})$ and $T_f \in L^2(\Gamma_{in})$. Find T such that $-k\Delta T(\mathbf{x}) = 0$ on $\mathbf{x} \in \Omega$, $\begin{cases} -k\nabla T(\mathbf{x}) \cdot \mathbf{n} = g(\mathbf{x}) & \text{in } \mathbf{x} \in \Gamma_{in}, \\ -k\nabla T(\mathbf{x}) \cdot \mathbf{n} = 0 & \text{in } \mathbf{x} \in \Gamma_{ex}, \end{cases}$

$$(-k\nabla T(\mathbf{x}) \cdot \mathbf{n} = h(T(\mathbf{x}) - T_f(\mathbf{x}))$$
 in $\mathbf{x} \in \Gamma_{sf}$.

Mathematical Model

- T Mold temperature
- T_f Cooling water temperature
- ▶ *h* Heat transfer coefficient
- k Copper thermal conductivity
- ▶ g Steel-mold heat flux (unknown)

Temperatures measurements ↓ Computation of heat flux at the steel-mold interface

Inverse problem

Given the temperature measurements $\tilde{T}(\mathbf{x}_i) \in \mathbb{R}^+$, i = 1, 2, ..., M, find $g(\mathbf{x}) \in L^2(\Gamma_{in})$ which minimizes the functional

$$J[g] = \frac{1}{2} \sum_{i=1}^{M} [\mathcal{T}[g](\mathbf{x}_i) - \tilde{\mathcal{T}}(\mathbf{x}_i)]^2,$$

where T[g](x) is solution of the direct problem.

Temperatures measurements ↓ Computation of heat flux at the steel-mold interface

Inverse problem

Given the temperature measurements $\tilde{T}(\mathbf{x}_i) \in \mathbb{R}^+$, i = 1, 2, ..., M, find $g(\mathbf{x}) \in L^2(\Gamma_{in})$ which minimizes the functional

$$J[g] = \frac{1}{2} \sum_{i=1}^{M} [\mathcal{T}[g](\mathbf{x}_i) - \tilde{\mathcal{T}}(\mathbf{x}_i)]^2,$$

where T[g](x) is solution of the direct problem.

Ill-posed problem \rightarrow Requires regularization

Regularization techniques:

Alifanov's regularization

- Conjugate gradient method applied to the adjoint problem
- Levenberg-Marquardt method
 - Parameterization of the heat flux $g(\mathbf{x}) = \sum_{i=1}^{N} w_i \gamma_i(\mathbf{x})$

1 Set $g^0(\mathbf{x})$: 2 while n < nMax do Solve direct problem; 3 4 Compute J; if convergence then 5 Stop; 6 Solve adjoint problem \rightarrow gradient of J, J'; 7 $\gamma^{n} = \frac{\int_{\Gamma_{s_{in}}} [J'_{g^{n}}(\mathbf{x})]^{2} d\mathbf{x}}{\int_{\Gamma_{s}} [J'_{\sigma^{n-1}}(\mathbf{x})]^{2} d\mathbf{x}};$ 8 Search direction, $P^{n}(\mathbf{x}) = J'_{\sigma^{n}}(\mathbf{x}) + \gamma^{n}P^{n-1}(\mathbf{x});$ g Solve sensitivity problem ; 10 $\beta^{n} = \arg\min_{\beta} J[g^{n} - \beta P^{n}] = \frac{\sum_{i=1}^{M} \{T[g^{n}](\mathbf{x}_{i}) - \tilde{T}(\mathbf{x}_{i})\} \delta T[P^{n}](\mathbf{x}_{i})}{\sum_{i=1}^{M} (\delta T[P^{n}](\mathbf{x}_{i}))^{2}};$ 11 $\mathbf{g}^{n+1} = \mathbf{g}^n - \beta^n P^n$ 12 n = n + 1: 13

Adjoint problem

$$\frac{1}{k}\Delta\lambda(\mathbf{x}) + \sum_{i=1}^{M} (T[g](\mathbf{x}_{i}) - \tilde{T}(\mathbf{x}_{i}))\delta(\mathbf{x} - \mathbf{x}_{i}) = 0, \text{ on } \Omega,$$

$$\begin{cases} \frac{1}{k}\nabla\lambda(\mathbf{x}) \cdot \mathbf{n} = 0 & \text{in } \Gamma_{in} \cup \Gamma_{ex}, \\ \frac{1}{k}\nabla\lambda(\mathbf{x}) \cdot \mathbf{n} + \frac{1}{k^{2}}h\lambda(\mathbf{x}) = 0 & \text{in } \Gamma_{sf}. \end{cases}$$

Sensitivity problem

$$-k\Delta\delta T(\mathbf{x}) = 0, \text{ on } \Omega,$$

$$\begin{cases}
-k\nabla\delta T(\mathbf{x}) \cdot \mathbf{n} = P^{n}(\mathbf{x}) & \text{ in } \Gamma_{in}, \\
-k\nabla\delta T(\mathbf{x}) \cdot \mathbf{n} = 0 & \text{ in } \Gamma_{ex}, \\
-k\nabla\delta T(\mathbf{x}) \cdot \mathbf{n} = h(\delta T(\mathbf{x})) & \text{ in } \Gamma_{sf}.
\end{cases}$$

Numerical Test

Results

Umberto Emil Morelli

Results

Regularization techniques:

- Alifanov's regularization
 - Conjugate gradient method applied to the adjoint problem
- Levenberg-Marquardt method
 - Parameterization of the heat flux $g(\mathbf{x}) = \sum_{i=1}^{N} w_i \gamma_i(\mathbf{x})$

Parameterization of heat flux $g(\mathbf{x}) = \sum_{i=1}^{N} w_i \gamma_i(\mathbf{x})$

Inverse problem

Given the temperature measurements $\tilde{T}(\mathbf{x}_i) \in \mathbb{R}^+$, i = 1, 2, ..., M, find $\mathbf{w} \in \mathbb{R}^N$ which minimizes the functional

$$J[g] = \frac{1}{2} \sum_{i=1}^{M} [T[g](\mathbf{x}_i) - \tilde{T}(\mathbf{x}_i)]^2,$$

where $T[g](\mathbf{x})$ is solution of

$$-k\Delta T(\mathbf{x}) = 0 \text{ on } \mathbf{x} \in \Omega,$$

$$\begin{cases}
-k\nabla T(\mathbf{x}) \cdot \mathbf{n} = \sum_{i=1}^{N} w_i \gamma_i(\mathbf{x}) & \text{in } \mathbf{x} \in \Gamma_{in}, \\
-k\nabla T(\mathbf{x}) \cdot \mathbf{n} = 0 & \text{in } \mathbf{x} \in \Gamma_{ex}, \\
-k\nabla T(\mathbf{x}) \cdot \mathbf{n} = h(T(\mathbf{x}) - T_f(\mathbf{x})) & \text{in } \mathbf{x} \in \Gamma_{sf}.
\end{cases}$$

1 Set
$$\mathbf{w}^{0}$$
;
2 while $n \le nMax$ do
3 Solve direct problem;
4 Compute J;
5 if convergence then
6 $[Stop;$
7 Compute the Jacobian, \mathcal{J} ;
8 Solve $[(\mathcal{J}^{n})^{T}\mathcal{J}^{n} - s^{n}I]\delta\mathbf{w}^{n} = -(\mathcal{J}^{n})^{T}\mathbf{R}^{n}$;
9 Update weights $\mathbf{w}^{n+1} = \mathbf{w}^{n} + \delta\mathbf{w}^{n}$;
10 $[n = n + 1;$

$$\blacktriangleright \mathcal{J}_{ij} = \frac{\partial T_i[\mathbf{w}]}{\partial w_j}$$

▶ *s* - Regularization factor

Basis functions $\gamma_i(\mathbf{x})$ are Gaussian Radial Basis Functions centered at the projection of the thermocouples on the boundary Γ_{in}

$$\gamma_i(\mathbf{x}) = e^{-\alpha^2 r_i(\mathbf{x})^2}$$

Positions of the thermocouples

- Approx. **40 seconds** required for the solution
- For real time computation the we have to reduce the computation time to less than 1 second
- We use Reduced Basis Method to reduced the cost of solving the direct problem

1) Full Order Inverse Problem

- Alifanov's Regularization
- Levenberg-Marquardt method

2 Reduced Order Inverse Problem

Reduced Basis

Parameterized PDE

Direct problem

$$-k\Delta T(\mathbf{x}) = 0 \text{ on } \mathbf{x} \in \Omega,$$

$$\begin{cases}
-k\nabla T(\mathbf{x}) \cdot \mathbf{n} = \sum_{i=1}^{N} w_i \gamma_i(\mathbf{x}) & \text{ in } \mathbf{x} \in \Gamma_{in}, \\
-k\nabla T(\mathbf{x}) \cdot \mathbf{n} = 0 & \text{ in } \mathbf{x} \in \Gamma_{ex}, \\
-k\nabla T(\mathbf{x}) \cdot \mathbf{n} = h(T(\mathbf{x}) - T_f(\mathbf{x})) & \text{ in } \mathbf{x} \in \Gamma_{sf}.
\end{cases}$$

The parameters are the weights w

```
POD-Galerkin approach
↓
we have to sample the parameter space
↓
Reduction of the parameter space, i.e. the dimension of w
```


Experimental measurements from a real mold, $\tilde{T}_i, i = 1, 2, ..., M$ \Downarrow Solve inverse problem, obtain $g(\mathbf{x})$ for each set of measurements \Downarrow Perform a Proper Orthogonal Decomposition (POD) on the obtained set of heat flux, $g(\mathbf{x})$ \Downarrow Use the first few modes, $\gamma_r(\mathbf{x}), r = 1, 2, ..., R$, as basis for the heat flux, $g(\mathbf{x}) = \sum_{r=1}^R w_r \gamma_r(\mathbf{x})$

Heat Flux POD Modes

Umberto Emil Morelli

 Having reduced the number of parameters, we can sample the parameter space and obtain a set of solutions of the direct problem (snapshots)

$$\mathbb{V}_{\mathcal{T}} = \mathsf{span}(\mathcal{T}_1, \mathcal{T}_2, \dots, \mathcal{T}_S)$$

- POD on solution space to obtain orthonormal basis $oldsymbol{\phi}$

$$\mathbb{V}_T = \operatorname{span}(\phi_1, \phi_2, \dots, \phi_S),$$

- Select the first few modes to have a reduced basis spaces $\mathbb{V}_{T_{RB}}$

$$\mathbb{V}_{\mathcal{T}_{\mathcal{R}\mathcal{B}}} = \mathsf{span}(oldsymbol{\phi}_1, oldsymbol{\phi}_2, \dots, oldsymbol{\phi}_{\mathcal{N}_{r}}), \mathcal{N}_{r} << \mathcal{N}_{h}$$

- Approximation of full order fields by linear combinations of the modes

$$T\approx\sum_{i=1}^{N_r}T_{r_i}\phi_i$$

- Galerkin projection of the full order model on the reduced basis

$$L := \begin{bmatrix} | & | \\ \boldsymbol{\phi}_1 & \dots & \boldsymbol{\phi}_{N_r} \\ | & | \end{bmatrix} \in \mathrm{IR}^{N_h \times N_r}, \mathbf{T} = L\mathbf{T}_r$$

Full order,
$$N_h$$
 unknowns
 $AT = \mathbf{b}_g + \mathbf{b}$
 $\downarrow^T ALT_r = L^T \mathbf{b}_g + L^T \mathbf{b}_T$
 \downarrow^U
Reduced order, N_r unknowns
 $A_rT_r = L^T G\mathbf{w} + \mathbf{b}_r = G_R \mathbf{w} + \mathbf{b}_r$

Reduced Order Levenberg-Marquardt Regularization

Offline

- Solve full order inverse problem with meaningful set of experimental measurements
- Perform POD on heat flux samples
- Compute snapshot for direct problem
- POD on snapshot set
- Assemble A_r, G_r, \mathbf{b}_r

Online

 Use Levenberg-Marquardt Regularization

ROMSOC

Umberto Emil Morelli

Conclusions

- Implemented full order methodology
- Developed reduced method for inverse problem

Future Work

- Error estimate
- Move to Bayesian approach
- Study noise on input

Thank you