1	
2	
3	
4	
5	
6	
7	Climate Models as Guidance for the Design of Observing Systems:
8	the Case of Polar Climate and Sea Ice Prediction
9	
10	François Massonnet ¹
11	¹ Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université
12	catholique de Louvain, Louvain-la-Neuve, Belgium
13	
14	francois.massonnet@uclouvain.be
15	+32 10 47 33 04

1 Abstract

2 The Arctic and Antarctic are among the regions most exposed to climate change, but ironically, 3 they are also the ones for which the least observations are available. Climate models have been 4 instrumental in completing the big picture. It is generally accepted that observations feed the 5 development of climate models: parameterizations are designed based on empirically observed 6 relationships, climate model predictions are initialized using observational products, and numerical 7 simulations are evaluated given matching observational datasets. Recent research suggests that the 8 opposite also holds: climate models can feed the development of polar observational networks by 9 indicating the type, location, frequency, and timing of measurements that would be most useful for 10 answering a specific scientific question. Here, we review the foundations of this emerging notion 11 with five cases borrowed from the field of polar prediction with a focus on sea ice (sub-seasonal to 12 centennial time scales). We suggest that climate models, besides their usual purposes, can be used 13 to objectively prioritize future observational needs – if, of course, the limitations of the realism of 14 these models have been recognized. This idea, which has been already extensively exploited in the 15 context of Numerical Weather Prediction, reinforces the notion that observations and models are 16 two sides of the same coin rather than distinct conceptual entities.

1 Introduction

2 Numerical models of the climate system, referred collectively to as "climate models" from here on, 3 are cornerstones of climate science because they allow answering questions that observations, or 4 theory alone, cannot address. Climate models fulfill at least three primary purposes. First, they can 5 be exploited to refine our understanding of how the climate system works: How are energy, water, 6 and carbon cycled in the Earth system (1,2)? What are the main spatial and temporal modes of 7 climate variability, from the deep ocean to the upper stratosphere (3)? Second, by offering the 8 possibility to run counterfactual worlds, they can be used to quantify the influence that specific 9 drivers may have on observed climatic events: What is the fraction of global warming attributable 10 to human activities (4)? By how much has the likelihood of an observed extreme event increased 11 due to background climate change (5)? Finally, by simulating the future of the climate system, 12 climate models can be used as a support for adaptation and mitigation policies: Will a world with 13 2°C warming above pre-industrial levels be fundamentally different from one with 1.5°C warming 14 (6)? Is geoengineering a viable solution for offsetting climate change (7)?

15 Here, we posit that climate models fulfill a fourth essential purpose besides the three listed above: 16 they can help to explore hypotheses regarding the use of existing or potentially new observational 17 data. More specifically, climate models can be used to optimize the design of future observing 18 systems in order to address specific climate-related questions. To support this hypothesis, we take 19 the case of Polar Regions, with the following background scientific question in mind: How can the 20 current observing system be enhanced in order to improve polar predictions from months to 21 centuries? Polar prediction is a "textbook example" for illustrating the idea that models can drive 22 the development of observational systems. Indeed, at high latitudes, the observational network is 23 sparse, the demand for environmental predictions is high, and the resources that can be allocated 24 to the deployment of new observing platforms are limited. A rational strategy for the development 25 of cost-effective observation systems is thus desirable, if not required. As will be illustrated in this 26 article, much knowledge can be inherited from methods and concepts developed in Numerical 27 Weather Prediction (NWP).

The current polar observing network provides a mixture of data that can broadly be categorized into two types: in-situ and remote sensing observations. In-situ observations have been collected for decades from automatic weather stations (8), drifting buoys (9,10), moorings (11),

1 oceanographic vessels (12), radiosonde launches (13), aircraft-borne instruments (14,15), 2 submarines (16), instruments onboard unmanned aerial (17) or underwater vehicles (18), among 3 others. These point observations are particularly invaluable to study the interior of the ocean-sea 4 ice system, which cannot be sensed remotely. In-situ observations are not free of errors, but their 5 main limitation for climate applications is their lack of representativeness in time and space, owing 6 to a lack of sufficient spatial coverage and inherent intermittency. On the other hand, remote 7 sensing observations have been collected using passive infrared and microwave instruments 8 onboard satellites (19-21) since the late 1970s, followed later by backscatter, laser (22,23) and 9 radar altimetry (24) measurements since the 1990s. While the raw measurements (e.g., radiances) 10 can be accurate as long as instruments are well-calibrated, the products derived from these 11 measurements can be tainted with significant errors due to uncertainties in the transfer models.

Despite known spatiotemporal gaps and limitations, polar observations have been sufficient to formally detect high-latitude climate changes, e.g., tropospheric and stratospheric warming, Arctic sea ice retreat (25), Northern Hemisphere continental snow cover decline (26), and net mass loss from Greenland (27) and Antarctic (28) ice sheets. However, a question arises: If the observational network is adapted to detect changes that have already happened, is it necessarily adapted for feeding the climate models that will predict future changes?

18 Polar prediction has received much attention in recent years, sparked by new opportunities but also 19 inevitable risks associated with rapid climate shifts occurring at high-latitudes (29). Here, we refer 20 to "polar prediction" in a broad sense as any tentative to predict the evolution of the atmosphere, 21 the ocean, and the cryosphere on sub-seasonal to centennial time scales (thus as a result of internal 22 climate variability, external forcing, or both), with climate models. In response to the increased 23 interest in polar prediction, the scientific output on the topic has flourished in recent years (Fig. 1), 24 with about 50% of the scientific contributions published since 2014. While prediction skill has 25 overall improved in many components (atmosphere, sea ice, ocean), a key limitation is the lack of 26 satisfactory observational data, whether it is for improving process-based models, for initializing 27 predictions or for verifying them (30).

The goal of this article is not to provide actual recommendations regarding future polar observing systems, but instead to demonstrate that a wealth of conceptual tools, most of them directly inherited from NWP, can be used to improve current observing systems in order to eventually address climate-related questions in Polar Regions. We illustrate this idea with five concrete cases
 drawing from the recent literature on polar and sea ice prediction:

Case 1 Observing System (Simulation) Experiments and Quantitative Network Design. Climate
 models can be used to test the influence that an existing type of observations, or a
 hypothetical new type of observations, has on prediction skill.

- 6 Case 2 *Emulation of satellites and their retrieval algorithms*. Climate models can be used to
 7 explore how assumptions in satellite retrieval algorithms (choice of transfer model, values
 8 of geophysical parameters) affect the final observational product.
- 9 Case 3 *Constraining long-term projections*. Climate models can be used to identify the
 10 observational gaps that, if filled, would allow reducing uncertainty in projected changes
 11 thanks to improved model evaluation and selection.
- Case 4 *Evaluation of observational products*. Climate models can be used to evaluate the
 reliability and quality of large-scale observational products (satellite data, reanalyses, re gridded datasets).

Figure 1. Number of publications listed by Google Scholar (<u>https://scholar.google.com</u>) that include any of the following phrases: "Arctic ... prediction", "Antarctic ... prediction", "Southern Ocean ... prediction" or "Polar ... prediction" where "..." denotes up to any three words. The results comprise scientific papers, presentations, and conference abstracts.

Case 5 *Strategic placement of in-situ sampling sites*. Climate models can be used to optimize the
 location of future in-situ observational sites that would best monitor the main modes of
 polar climate variability.

4 Integrating climate models in the observational process: five cases

5 Case 1. Observing System (Simulation) Experiments and Quantitative Network Design

6 Observing System Experiments (OSEs) refer to sensitivity experiments conducted with weather 7 and, more recently, climate models. OSEs aim to estimate the influence that selected observations 8 can have on forecast quality, thereby indicating the added value, or the lack thereof, of a particular 9 observation type for prediction purposes (31). In practice, OSEs are conducted by adding, 10 degrading, sub-sampling, or removing a specific set of observations that are usually assimilated in 11 a forecasting system, in order to isolate the impact that such a change could have on prediction 12 error. OSEs have been used since decades in the NWP context (32,33) and have been instrumental 13 in demonstrating, for example, the added value of assimilating radiance data on geopotential height 14 forecasts (34). More recently, OSEs have been applied in the context of Arctic weather forecasting 15 (35,36) and a study based on OSEs recently suggested (37) that better use could be made of existing 16 data to improve Arctic weather predictions. Another recent study, although using a simplified setup 17 (38), showed dramatic increases in prediction skill of potentially impactful synoptic events like 18 Arctic cyclones if data acquired from 6-hr radiosonde launches was assimilated instead of data 19 acquired from 12- or 24-hr launches only. In this case, the OSE makes a strong case for sustaining 20 6-hourly radiosonde launches.

Observing System Simulation Experiments (OSSEs (39)) are a natural extension of OSEs. OSSEs follow the same principles as OSEs, except that the sensitivity study is conducted in the model world: model output is assimilated instead of real observations, and forecast skill is evaluated against simulation output and not real observations. Thus, OSSEs allow testing the influence that a hypothetical new observation type would have on prediction skill. The idea of OSSEs for highlatitude weather forecasting is progressing (40) but has not yielded concrete recommendations yet for the design of Arctic observations.

Quantitative Network Design (QND) is a technique that has deep methodological connections with 1 2 OSSEs. Like OSSEs, QND is based on data assimilation theory but had initially emerged from the 3 area of seismology (instead of NWP). The goal was then to develop an optimal network of 4 seismographs that could best estimate the process of earthquake faulting, based on aftershocks 5 measurements (41). In OND, one seeks to optimize a measurement strategy through the 6 minimization of a cost function based on a specific forecast target (42). QND allows estimating the 7 contributions of various sources of uncertainty (observational, model, parameter, initial-condition) 8 to forecast error through a rigorous mathematical framework and, as such, can be applied to study 9 the benefit of assimilating new hypothetical observations in terms of forecast skill.

10 The use of OSEs, OSSEs and QND for high latitudes has been relatively limited beyond weather 11 time scales, and in particular for polar climate prediction. One reason is that these approaches 12 require a full data assimilation system, which is not present in most climate models. Alternative 13 approaches have been followed. For example, in a seasonal Arctic sea ice prediction study, Day 14 and colleagues (43) showed that the neglection of sea ice thickness information in July degrades 15 predictive skill of late-summer sea ice concentration and thickness but also impacts near-surface temperature up to following early fall. These results confirmed earlier predictability studies (44,45) 16 17 that had shown the critical role of sea ice thickness distribution preconditioning on seasonal sea ice 18 concentration skill. However, sea ice thickness and its distribution are not easily observed from 19 space and are subject to significant errors (see Case 2). Proper OSSEs can be salutary in that respect 20 by providing hints on alternative geophysical variables to assimilate. For example, Zhang and colleagues (46) showed that the joint assimilation of total and multi-year sea ice concentration (two 21 22 relatively well-observed geophysical variables) could reduce the forecast error or Arctic sea ice 23 volume error by 50% compared to no assimilation at all. The use of QND also bears promise to 24 better isolate the measurements that could lead to enhanced forecast skill. In a re-forecast of the 25 September 2007 Arctic sea ice minimum, Kaminski and colleagues (47) found that additional sea 26 ice thickness and wind stress measurements would have been beneficial to increase forecast skill 27 in the Chukchi Sea region at short (10 days) and long (90 days) time scales, respectively. A later 28 study using the same approach (48) confirmed the importance of joint snow and sea ice freeboard 29 observations for summer sea ice volume predictions along the Northern Sea Route.

Research on OSEs, OSSEs and QND is currently significantly Arctic biased. The observing system of the Antarctic is sparser than the Arctic one, especially over sea ice and in the Southern Ocean. Thus, the potential impact of new observations there, even a few ones, can be enormous for polar prediction. This reality should encourage more systematic use of climate models to quantify this potential of new Antarctic observations, in order to inform the future development of major observing initiatives like the Southern Ocean Observing System (SOOS, (49)).

Despite its attractive aspects, the approach has several limitations. The error statistics that are prescribed in synthetic observations used in OSSEs and QND might not match the error statistics of real observations (50). An adverse consequence is that one could erroneously overstate the importance of a new type of observation while it would, in reality, have little impact on prediction skill. It could also be that climate models have predictability mechanisms that are not present in the real world. In that case, the choice to observe a new variable based on model experiments could lead to no or unsignificant improvement in prediction skill.

14 Case 2. Emulation of satellites and their retrieval algorithms

15 The advent of satellite information, first from passive (since the late 1970s) and then active (since 16 the 1990s) sensors, has been a leap forward in the study of polar regions and in particular by 17 providing near real-time monitoring of sea ice concentration and thickness. In theory, the combined 18 measurements of sea ice concentration and thickness would allow reconstructing the global mass 19 balance of sea ice, a diagnostic of interest from a climate point of view. In practice, both retrievals 20 of concentration and thickness are uncertain. The deduced volume estimates are thus even more 21 uncertain (51,52). This uncertainty, combined with the presence of substantial interannual 22 variability, complicates the evaluation of climate models (53,54). A natural question arises: can 23 observational uncertainty be better quantified and how can it be reduced?

Satellites do not directly measure physical variables like sea ice concentration or thickness but instead rely on indirect measurements (e.g., emitted radiance by a surface, distance traveled by an electromagnetic signal). These measurements are then converted into model-like variables such as concentration or thickness using an appropriate transfer model, or "retrieval algorithm." Because these algorithms are imperfect, uncertainty is introduced in the final product. For example, the Synthetic aperture Interferometric Radar Altimeter (SIRAL) onboard the CryoSat-2 satellite sends 1 electromagnetic pulses that allow locating the snow-ice interface within stated precision. Sea ice 2 freeboard, the height of the emerged part of the sea ice floe, is then deduced from the surface elevation measurement and neighboring measurements of sea surface height. Finally, freeboard is 3 4 converted to thickness using hydrostatic equilibrium assumption. However, solving for thickness 5 requires among others to know about the depth of the snow layer on top of the sea ice floe. In the Arctic, it is most often assumed that snow depth takes climatological values based on late 20th 6 7 century measurements (55) on multi-year ice and half the values on first-year ice. Sea ice, snow 8 and seawater densities are assumed constant. The reader is redirected to reference (56) for further 9 details on the methodology.

Retrieval algorithms thus rely on several choices (a functional form for the transfer model, values of geophysical parameters, geometrical assumptions). These choices explain why some spread can be seen in the various available products of sea ice concentration (57–59) or sea ice thickness (60,61). Producers of satellite-based climate data are aware of this spread and typically face two questions:

15 (a) How sensitive are the estimates of the retrieved variables to assumptions in the transfer model?

(b) What is the ideal level of post-processing for optimal use of the observational product bymodelers?

18 A possible solution to address these observational questions is to ask them from the standpoint of 19 climate models, in what is commonly referred to as "satellite simulation" (62) (a common practice in NWP data assimilation). The idea of satellite simulation is to project the climate model state 20 21 (while it is running or after the simulation using available output) on the observational space using 22 an appropriate operator, thereby facilitating the model-observation comparison. Loosely speaking, 23 the idea behind satellite simulation is to diagnose what a satellite would "see" if it was flying over 24 the model's Earth. In a recent study (52), Bunzel and colleagues used an ocean-sea ice model to 25 explore how retrieved sea ice thickness would differ from the known model thickness if various 26 assumptions were varied in the Cryo-Sat2 algorithm described above and applied to their model. 27 Uncertainties in the snow depth were found to dominate to retrieved sea ice thickness uncertainty, 28 followed by freeboard measurement error. Uncertainty in density parameters was found to play a 29 smaller role. Such a study is valuable in that it confirmed snow depth as the current bottleneck of sea ice thickness retrieval from radar altimetry (51), thereby bringing an answer to question (a) and
 prioritizing future observational needs.

3 The satellite simulation approach for polar climate research has initially been pioneered by the 4 cloud community (63-66), allowing a consistent evaluation of cloud biases in climate models and 5 addressing the question (b). More recently, some work in that direction has been devoted to sea 6 ice. Roberts and colleagues (67) proposed that freeboard should be calculated in the model based 7 on the model's own values of snow density, and subgrid-scale ice thickness distribution, before 8 being matched to freeboard in observations (thus moving away from the classical thickness-9 thickness evaluation). Another example involves sea ice dynamics: the evaluation of velocity fields 10 in sea ice models is now done by deploying virtual buoys/tracers in the model and comparing their 11 trajectories to observed ones (68) (see also the Sea Ice Drift Forecast Experiment, 12 https://rdrr.io/github/helgegoessling/SIDFEx/, for similar evaluation procedures).

13 One of the main obstacles to climate model evaluation is the lack of definition- and scale-awareness 14 in model-data comparisons (65). Climate model evaluation should be carried out at some mid-point 15 between the raw model output and the raw measurements collected by observational devices, in 16 such a way that the resulting metrics of evaluation are the least uncertain. Where this mid-point 17 lies is case-dependent but a few answers can be obtained by the use of satellite simulators 18 implemented in climate models (69), which can then orient the development of transfer models 19 processed by developers of observational products. One of the lessons learned from recent 20 workshops on model-data comparison in polar regions is that the developers of observational 21 products should not necessarily process their products down to model space (70) as this has been 22 most often the case until now. In that respect, recent results obtained from model-based studies 23 could be exploited to inform space agencies and satellite product developers about the optimal level 24 of processing required for modelers.

25 Case 3. Constraining high-latitude climate projections

While state-of-the-art climate models generally agree on the essential traits of future Arctic climate changes (reduced Arctic sea ice (71), polar amplification with larger increases in temperature in winter than in other seasons (72), intensification of the Arctic hydrological cycle (73,74)), the magnitude of these changes varies considerably from model to model and remains consequently uncertain. How to evaluate climate models with past observations in order to narrow uncertainty

1 in future changes is a critical question that applies not just to the Arctic (75). Nonetheless, the 2 Arctic bears remarkable properties. Indeed, in many cases, future simulated changes are tightly 3 related to present-day characteristics in models. For example, changes in modeled wintertime 4 surface air temperature along the Arctic ice edge are significantly anti-correlated to the baseline 5 mean temperature (76); September Arctic sea ice extent change over 2021-2040 is well correlated 6 to historical (1979-2007) trends (77,78), and the timing of a summer ice free Arctic is correlated to 7 the baseline model state (79); models with larger fall (September-October-November) sea ice 8 concentration over the present-day experience larger reductions in near-surface air temperature 9 variability in the future (80); models with larger annual mean Arctic sea ice volume over the 10 present-day display more pronounced volume losses for a given scenario (54,81,82).

In the Antarctic, where climate projections are notoriously more uncertain, strong relationships were still identified between projected changes in annual mean sea ice area, precipitation and temperature, and the baseline annual mean sea ice area in state-of-the-art climate models (83); moreover, the spread in projected changes in the latitudinal position of the austral jet was traced to the climatological position of the jet in models.

16 All the relationships mentioned above emerge spontaneously in multi-model ensembles. These 17 relationships take the general form Y (projected change) is related to X (present-day state). If these 18 relationships are not spurious but instead based on physically explainable mechanisms, they offer 19 the potential to orient the design of future observing systems. Indeed, under the assumption that 20 the real world obeys the same relationships as those found in the models (i.e., that observations 21 align with the models), evaluating models based on X in observations would allow better 22 constraining the real projected change Y. However, the successful application of these "emergent 23 constraints" (75,84) is conditioned on the existence of matching observational datasets for X. In 24 that sense, the identification of emergent constraints can be seen as an objective reason to prioritize 25 a particular type of observation. For example, CMIP3 model results indicate that future Arctic 26 warming is positively correlated to historical northward ocean heat transport (85). Observational 27 data of oceanic heat transport are scarce, however, which would justify enhancing the observations 28 of that variable. As another example, the long-term model sensitivity of Northern Hemisphere 29 continental surface albedo to temperature change is closely related to the equivalent quantity 30 computed seasonally (86). However, the corresponding observational estimate is uncertain, and improved retrievals of surface albedo would help better constraining its sensitivity to future
 temperature changes.

This approach can only lead to robust insights if the model relationships are themselves robust. In particular, there is a risk that spurious present-future relationships emerge if the ensemble is composed of highly inter-dependent models or if the models share common structural biases. Thus, precautions must be taken to ensure that the choice of observing a new variable is rooted in a solid understanding of physical processes underlying the identified emergent constraints.

8 Case 4. Evaluation of observational products

9 Because the in-situ polar observing system is inherently sparse, climate models are most frequently 10 evaluated against gridded datasets such as remote sensing products, reanalyses or re-gridded 11 products. However, each of these gridded verification datasets is subject to errors. Determining 12 their intrinsic quality is challenging because well-sampled in-situ data are not always available to 13 evaluate the datasets independently.

14 Recent findings from the field of seasonal forecasting could bring an elegant solution to the 15 problem of estimating the quality of gridded observational datasets. The idea is to use climate 16 models as a third-party source of information to infer the statistics of observational errors. The 17 rationale behind this argument is simple: standard skill scores used in forecast verification (e.g., 18 correlation, root mean square error, Brier score) are sensitive to errors in both the forecast and the 19 verification data (87,88). If one particular observational verification product is corrupted with 20 larger errors than other products, this observational product should systematically stand out 21 compared to others, when inspecting the forecast skill scores of model predictions.

22 Recent results support the notion that forecast skill depends on the observation used for 23 verification. In a recent study (89), it was found that the skill of the MPI-ESM climate model in 24 predicting Arctic sea ice area from May to October was impacted by the choice of the observational 25 product used for verification. A better agreement was found between the model and the Boostrap 26 algorithm for sea ice concentration retrieval than the NASA Team algorithm. The authors 27 hypothesized that the correction for melt pond issues applied in the Bootstrap product (but not in 28 the NASA Team product) could be the reason. These results were confirmed independently in 29 another study using a multi-model ensemble of seasonal forecasts (90) with four observational products. Finally, two studies conducted with the CanSIPS seasonal forecast system on the prediction of snow-water equivalent (SWE) content (91,92) highlighted that this prediction system reached higher skill scores (as measured by the anomaly coefficient correlation) for the average of four reference products than for any individual product. Furthermore, it was found that the worst scores were reached when ERA-Interim and MERRA-Land reanalysis products were used for SWE content forecast verification (92), confirming a posteriori known issues in those products identified in an earlier study using in-situ observations (93).

8 The polar prediction community is moving, slowly but surely, towards the systematic use of 9 ensembles of observational products for model evaluation and forecast verification. A number of 10 fascinating properties emerge from the above-mentioned studies: (i) model forecasts tend to score 11 better against more advanced observational products, (ii) the difference in skill can be understood 12 on the basis of the products quality and (iii) the average of several observational products yields 13 better score to models than any of the products alone. From that point of view, observational 14 ensembles seem to obey the same rules as the multi-model climate model ensembles. Moreover, 15 climate models seem suited to support objective observational dataset evaluation and selection.

The principal limitation to this approach is the possibility that climate models have been tuned or calibrated to match one of the observational references under investigation, in which case the conclusions could be flawed.

19 Case 5. Strategic placement of in-situ sampling sites

20 Several sea ice, ocean and atmosphere variables exhibit significant covariance in space, in time, 21 and with one another. As far as these dependencies are assumed to be linear and the covariances to 22 be stationary, it is not required to monitor all these variables at all times and everywhere: a minimal 23 number of well-chosen stations targeting key variables could, in principle, reveal the dominant 24 modes of high-latitude climate variability in the real world. This problem is undoubtedly exciting 25 from a purely academic point of view. Formally, it is equivalent to solving an optimization problem 26 under constraints, i.e., that of explaining the maximum of the real-world polar climate variability 27 using a minimum number of measurements. The problem is also highly relevant from a practical 28 and operational point of view. The deployment of an observing system is subject to constraints 1 (financial and logistical) that impose a prioritization of the location, time of the year, and type of
2 instrument to be deployed.

3 This problem of optimization is not new and has been formalized some 30 years ago when it was 4 already attempted to determine the optimal placement of point gauges that would best reconstruct 5 the global mean temperature (94,95) or the global CO₂ budget (96). The problem is arguably even 6 more challenging in polar environments and in particular for sea ice, which is in addition a drifting 7 material. The selection of best in-situ sampling sites is only possible if spatiotemporal variability 8 is well characterized. From that point of view, the large-scale observations provided by passive and 9 active remote sensing sources are of limited use: the observational record is rather short, forced 10 trends interfere with the internal variability and the retrievals are uncertain (see Case 2). Climate 11 models, by contrast, can output any variable at all locations and seasons. While climate models 12 cannot substitute for observations, they do provide the level of spatiotemporal sampling required 13 for helping to answer the initial question.

14 To our knowledge, the question of optimal sampling in polar regions has only been tackled for two 15 cases: optimal sampling of the Arctic Ocean heat content variability and optimal sampling of the 16 Arctic sea ice volume variability. In a model study, Lique and Steele (97) found that enhancing the 17 oceanic mooring network in the Eurasian Basin would be beneficial for estimating the Arctic 18 oceanic heat content variability, as the spatial anomalies display large-scale coherence in this basin 19 (unlike the freshwater content anomalies which are rather confined in the Canadian Basin and the 20 Beaufort Gyre). Similarly, well-placed moored upward-looking sonars could help estimating sea 21 ice volume variability. In climate models and reanalyses, Arctic sea ice thickness anomalies exhibit 22 persistence from 3 to 20 months, depending on the location, season, and source investigated (98– 23 100). At the same time, these anomalies display spatial coherence with a typical decorrelation 24 length scale in the range 300-1000 km. These estimates, even if uncertain, can provide a lower 25 bound on the number of independent fixed point measurement sites that would be required to 26 capture most of the Arctic sea ice volume variability. With an ice-ocean model, a study (101) found 27 that the judicious placement of just three sampling sites would already explain 57% of the spatial 28 and temporal variability of annual mean sea ice thickness. Recent results obtained from four 29 different climate models suggest that sampling monthly mean thickness at four sites could explain more than 70% of the temporal variability of Arctic sea ice volume anomalies (102). No equivalent
 study has been conducted for Antarctic sea ice, despite the need.

3 While attractive in its principle, the application of this idea has several practical limitations. First, 4 point measurements of sea ice thickness in the real world exhibit variability over a broader 5 frequency spectrum than climate models output at their current nominal resolution. Second, there 6 is evidence that thickness variability is not stationary (100) but does depend on the mean state 7 (103). Namely, the persistence time scale of thickness and volume anomalies decreases as the ice 8 thins (54), which means that a higher number of stations will be required as the Arctic sea ice 9 transitions toward a seasonally ice-free regime. Third, it is likely that the optimal number of stations 10 would depend on the models' effective resolution (a limiting case would be that of a model with 11 four grid cells over the entire Arctic, which would provide unrealistically long decorrelation 12 scales). Finally, there is simply no guarantee that models display the right modes of variability. 13 Even in reanalyses, which are supposed to be the most constrained gridded estimates of sea ice 14 thickness, the optimal location of stations is reanalysis-dependent (102).

15 **Conclusions**

16 Since four decades, the number of polar observations has soared thanks to the coordination of 17 national and international programs (e.g., space missions, in-situ campaigns, initiatives like the 18 International Polar Year or the Year of Polar Prediction). Concurrently, the need for reliable polar 19 predictions has become more and more pressing, fueled by rapid changes that took many by 20 surprise. Does the supply of observations meet the demand for polar prediction and do we make 21 the best possible use of existing data? The question is still open, as polar prediction has not reached 22 its age of maturity yet. However, given the rapidly changing seasonality of the Arctic system (104), 23 the stationarity of predictor-predictand relationships might not hold in the future (105), which 24 would mean that the observations of yesterday would not necessarily be fit for evaluating or 25 initializing the predictions of tomorrow. What are the conceptual tools at hand to design such an 26 observing system, then?

In a review published in this journal three years ago, Kay and colleagues (69) advocated a "twoway street" paradigm for Arctic cloud research, whereby lessons learned from observations should feed climate model development and vice-versa. The "vice-versa" part of the statement is arguably

1 the least obvious, as one would a priori assume that climate model development is following, not 2 preceding, the development of observing systems. The case of polar prediction and more particularly sea ice prediction crystallizes the idea that the future development of cost-effective 3 4 observing systems will have to rely, at least in part, on the intelligent use of climate models. We 5 illustrated this idea with five cases taken from the recent literature on polar prediction, with most 6 examples from sea ice. Our five cases illustrate that there is no best observing system in an absolute 7 sense, but rather good observing systems that can help to answer specific scientific questions. We 8 note that these five cases are transposable to non-polar regions. A recent study (106) made a strong 9 case of using climate OSSEs such as those described in Case 1, to test the added value of new 10 possible observations on answering climate questions.

11 A recurring idea behind the use of climate models for observational purposes is to rely on "Nature 12 Runs" (39,40), i.e., numerical climate model simulations that emulate the real world and for which 13 the impact of a specific observational choice can be quantitatively tested. The validity of this 14 approach can be questioned (50). One issue is that climate models have biases, so they might not 15 perfectly emulate what one is trying to observe. Another issue is that the climate models might have been extensively tuned toward a particular type of observations, which would flaw the 16 17 reasoning and give rise to circular arguments. Nevertheless, in many of the cases highlighted here, 18 climate models bring first-order answers to questions that would otherwise not be answered: What 19 is the ideal level of post-processing for consistent climate model evaluation? What is the impact of 20 assumptions in satellite retrieval algorithms on the final product? Where should sampling sites be 21 deployed during coordinated intensive campaigns like the Special Observing Periods of the Year 22 of Polar Prediction? Are wintertime observations more important than summertime ones for a specific question? 23

It has been argued (107) that one way to improve weather and climate predictions will be to follow a seamless approach, whereby the same numerical models are used in both weather and climate contexts. Our review goes a step further by highlighting that many concepts and methodologies already routinely applied in the NWP models (such as OSEs/OSSEs and satellite simulation) should systematically be transposed to climate models to inform on the optimal design of observing systems for climate science, especially in remote polar regions where observations are most needed.

1 Acknowledgements

2 The research leading to these results has received funding from the Belgian Fonds National de la

3 Recherche Scientifique (F.R.S.-FNRS), and the European Commission's Horizon 2020 projects

4 APPLICATE (GA 727862) and PRIMAVERA (GA 641727).

5 We acknowledge two anonymous reviewers, as well as Peter Bauer, Irina Sandu, Dirk Notz and
6 Leandro Ponsoni for useful insights and feedback on the manuscript.

7 The corresponding author states that there is no conflict of interest.

8 **References**

- Stevens B, Schwartz SE. Observing and Modeling Earth's Energy Flows. Surv Geophys.
 2012;33:779–816.
- Anav A, Friedlingstein P, Kidston M, Bopp L, Ciais P, Cox P, et al. Evaluating the Land
 and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models. J
 Clim. 2013;26(18):6801–43.
- Gent PR. Coupled Models and Climate Projections. 2nd ed. Vol. 103, Ocean Circulation and
 Climate: A 21st Century Perspective. Elsevier Ltd.; 2013. 609-623 p.
- Hegerl G, Zwiers F. Use of models in detection and attribution of climate change. Wires
 Clim Chang. 2011;2:570–91.

Stott PA, Christidis N, Otto FEL, Sun Y, Vanderlinden J, van Oldenborgh GJ, et al.
 Attribution of extreme weather and climate-related events. Wires Clim Chang. 2016;7:23–
 41.

Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, et al. Global
warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C
above pre-industrial levels and related global greenhouse gas emission pathways, in the
context of strengthening the global response to the threat of climate change. 2018.

Kravitz B, Caldeira K, Boucher O, Robock A, Rasch PJ, Alterskjær K, et al. Climate model
response from the Geoengineering Model Intercomparison Project (GeoMIP). J Geophys

1 Res Atmos. 2013;118:8320–32.

- Lazzara MA, Weidner GA, Keller LM, Thom JE, Cassano JJ. Antarctic Automatic Weather
 Station Program: 30 Years of Polar Observation. Bull Am Meteorol Soc. 2012 Mar
 23;93(10):1519–37.
- 5 9. IABP. International Arctic Buoy Programme [Internet]. Available from:
 http://iabp.apl.washington.edu
- IPAB. International Programme for Antarctic Buoys 2001 [Internet]. 2001. Available from:
 https://www.ipab.aq/
- 9 11. Woodgate RA. Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights
 10 into seasonal trends and driving mechanisms from year-round Bering Strait mooring data.
 11 Prog Oceanogr. 2018;160(June 2017):124–54.
- Worby AP, Geiger CA, Paget MJ, Van Woert ML, Ackley SF, DeLiberty TL. Thickness
 distribution of Antarctic sea ice. J Geophys Res Ocean. 2008;113(5):1–14.
- 14 13. Tomasi C, Petkov B, Benedetti E, Valenziano L, Vitale V. Analysis of a 4 year radiosonde
 15 data set at Dome C for characterizing temperature and moisture conditions of the Antarctic
 16 atmosphere. J Geophys Res. 2011;116(D15304):1–18.
- 17 14. Ehrlich A, Wendisch M, Lüpkes C, Buschmann M, Bozem H, Chechin D, et al. A
 comprehensive in situ and remote sensing data set from the Arctic CLoud Observations
 Using airborne measurements during polar Day (ACLOUD) campaign. Earth Syst Sci Data
 Discuss [Internet]. 2019;2019:1–42. Available from: https://www.earth-syst-sci-datadiscuss.net/essd-2019-96/
- Kurtz NT, Farrell SL, Studinger M, Galin N, Harbeck JP, Lindsay R, et al. Sea ice thickness,
 freeboard, and snow depth products from Operation IceBridge airborne data. Cryosphere.
 2013;7(4):1035–56.
- Kwok R, Rothrock DA. Decline in Arctic sea ice thickness from submarine and ICESat
 records: 1958-2008. Geophys Res Lett. 2009;36(15).
- 27 17. de Boer G, Argrow B, Cassano J, Cione J, Frew E, Lawrence D, et al. Advancing Unmanned

- 1Aerial Capabilities for Atmospheric Research. Bull Am Meteorol Soc [Internet].22018;100(3):ES105-ES108. Available from: https://doi.org/10.1175/BAMS-D-18-0254.1
- 3 18. Williams G, Maksym T, Wilkinson J, Kunz C, Murphy C, Kimball P, et al. Thick and
 4 deformed Antarctic sea ice mapped with autonomous underwater vehicles. Nat Geosci.
 5 2015;8:61–7.
- Lavergne T, Sørensen AM, Kern S, Tonboe R, Notz D, Aaboe S, et al. Version 2 of the
 EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records.
 Cryosphere. 2019;13:49–78.
- 9 20. Kaleschke L, Maaß N, Mäkynen M, Drusch M. Sea ice thickness retrieval from SMOS
 10 brightness temperatures during the Arctic freeze-up period. Geophys Res Lett.
 11 2012;39(L05501):1–5.
- 12 21. Hori M, Sugiura K, Kobayashi K, Aoki T, Tanikawa T, Kuchiki K, et al. Remote Sensing 13 of Environment A 38-year (1978 - 2015) Northern Hemisphere daily snow cover extent 14 product derived using consistent objective criteria from satellite-borne optical sensors. 15 Sens [Internet]. 2017;191:402-18. Remote Environ Available from: 16 http://dx.doi.org/10.1016/j.rse.2017.01.023
- Zwally HJ, Yi D, Kwok R, Zhao Y. ICESat measurements of sea ice freeboard and estimates
 of sea ice thickness in the Weddell Sea. J Geophys Res Ocean. 2008;113(2):1–17.
- Csatho BM, Schenk AF, Veen CJ Van Der, Babonis G, Duncan K. Laser altimetry reveals
 complex pattern of Greenland Ice Sheet dynamics. Proc Natl Acad Sci. 2014;111(52).
- 24. Quartly GD, Rinne E, Passaro M, Andersen OB, Dinardo S, Fleury S, et al. Review of Radar
 Altimetry Techniques over the Arctic Ocean: Recent Progress and Future Opportunities for
 Sea Level and Sea Ice Research. Cryosph Discuss [Internet]. 2018;2018:1–51. Available
 from: https://www.the-cryosphere-discuss.net/tc-2018-148/
- 25 25. Meier WN, Hovelsrud GK, Van Oort BEH, Key JR, Kovacs KM, Michel C, et al. Arctic sea
 26 ice in transformation: A review of recent observed changes and impacts on biology and
 27 human activity. Rev Geophys. 2014;52(3):185–217.
- 28 26. Brown RD, Robinson DA. Northern Hemisphere spring snow cover variability and change

1

2

over 1922–2010 including an assessment of uncertainty. Cryosph [Internet]. 2011;5(1):219–29. Available from: https://www.the-cryosphere.net/5/219/2011/

- Kjeldsen KK, Korsgaard NJ, Bjørk AA, Khan SA, Box JE, Funder S, et al. Spatial and
 temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900. Nature
 [Internet]. 2015;528:396–400. Available from: http://dx.doi.org/10.1038/nature16183
- Shepherd A, Ivins E, Rignot E, Smith B, van den Broeke M, Velicogna I, et al. Mass balance
 of the Antarctic Ice Sheet from 1992 to 2017. Nature [Internet]. 2018;558(7709):219–22.
 Available from: https://doi.org/10.1038/s41586-018-0179-y
- 929.Bauer P, Bradley A, Bromwich D, Casati B, Chen P, Chevallier M, et al. WWRP Polar10Prediction Project: Implementation Plan for the Year of Polar Prediction (YOPP) [Internet].11Availablefrom:
- 12https://www.polarprediction.net/fileadmin/user_upload/www.polarprediction.net/Home/Y13OPP/YOPP_Documents/FINAL_WWRP_PPP_YOPP_Plan_28_July_2016_web-1.pdf
- Jung T, Gordon N, Bauer P, Bromwich DH, Chevallier M, Day JJ, et al. Advancing polar
 prediction capabilities on daily to seasonal time scales. Bull Am Meteorol Soc.
 2016;(September):1631–48.
- 1731.Bauer P. Observing System Experiments (OSE) to estimate the impact of observations in18NWP[Internet].2009.Availablefrom:19https://doi.org/www.ecmwf.int/sites/default/files/elibrary/2009/7978-observing-
- 20 systemexperiments-ose-estimate-impact-observations-nwp.pdf
- 21 32. Arnold CP, Dey CH. Observing-Systems Simulation Experiments : Past, Present, and
 22 Future. Bull Am Meteorol Soc. 1986;67(6):687–95.
- Atlas R. Atmospheric Observations and Experiments to Assess Their Usefulness in Data
 Assimilation. J Meteorol Soc Japan. 1997;75(1B):111–30.
- Zapotocny TH, Jung JA, Le Marshall JF, Treadon RE. A Two-Season Impact Study of Four
 Satellite Data Types and Rawinsonde Data in the NCEP Global Data Assimilation System.
 Weather Forecast. 2008;23:80–100.
- 28 35. Randriamampianina R, Schyberg H, Mile M. Observing System Experiments with an Arctic

1		Mesoscale Numerical Weather Prediction Model. 2019;11(981):1–23.
2	36.	Yamazaki A, Inoue J, Dethloff K, Maturilli M, König-Langlo G. Impact of radiosonde
3		observations on forecasting summertime Arctic cyclone formation. J Geophys Res.
4		2015;120:3249–73.
5	37.	Lawrence H, Farnan J, Bormann N, Bauer P. An Assessment of the use of observations in
6		the Arctic at ECMWF [Internet]. 2019. Available from:
7		https://www.ecmwf.int/sites/default/files/elibrary/2019/18925-assessment-use-
8		observations-arctic-ecmwf.pdf
9	38.	Inoue J, Yamazaki A, Ono J, Dethloff K, Maturilli M. Additional Arctic observations
10		improve weather and sea-ice forecasts for the Northern Sea Route. Sci Rep [Internet].
11		2015;5(16868):1-8. Available from: http://dx.doi.org/10.1038/srep16868
12	39.	Masutani M, Woollen JS, Lord SJ, Emmitt GD, Kleespies TJ, Wood SA, et al. Observing
13		system simulation experiments at the National Centers for Environmental Prediction. J
14		Geophys Res. 2010;115(D07101):1–15.
15	40.	Masutani M, Garand L, Lahoz W, Andersson E, Rochon Y, Riishojgaard L, et al. Observing
15 16	40.	Masutani M, Garand L, Lahoz W, Andersson E, Rochon Y, Riishojgaard L, et al. Observing System Simulation Experiments: Justifying new Arctic Observation Capabilities [Internet].
15 16 17	40.	Masutani M, Garand L, Lahoz W, Andersson E, Rochon Y, Riishojgaard L, et al. Observing System Simulation Experiments: Justifying new Arctic Observation Capabilities [Internet]. Available from: https://repository.library.noaa.gov/view/noaa/6965
15 16 17 18	40. 41.	 Masutani M, Garand L, Lahoz W, Andersson E, Rochon Y, Riishojgaard L, et al. Observing System Simulation Experiments: Justifying new Arctic Observation Capabilities [Internet]. Available from: https://repository.library.noaa.gov/view/noaa/6965 Hardt M, Scherbaum F. The design of optimum networks for aftershock recordings. [cited
15 16 17 18 19	40. 41.	Masutani M, Garand L, Lahoz W, Andersson E, Rochon Y, Riishojgaard L, et al. ObservingSystem Simulation Experiments: Justifying new Arctic Observation Capabilities [Internet].Available from: https://repository.library.noaa.gov/view/noaa/6965Hardt M, Scherbaum F. The design of optimum networks for aftershock recordings. [cited2019Oct8];117(3):716–26.Availablefrom:
15 16 17 18 19 20	40. 41.	Masutani M, Garand L, Lahoz W, Andersson E, Rochon Y, Riishojgaard L, et al. ObservingSystem Simulation Experiments: Justifying new Arctic Observation Capabilities [Internet].Available from: https://repository.library.noaa.gov/view/noaa/6965Hardt M, Scherbaum F. The design of optimum networks for aftershock recordings. [cited2019Oct8];117(3):716–26.Availablehttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-246X.1994.tb02464.x
15 16 17 18 19 20 21	40.41.42.	Masutani M, Garand L, Lahoz W, Andersson E, Rochon Y, Riishojgaard L, et al. ObservingSystem Simulation Experiments: Justifying new Arctic Observation Capabilities [Internet].Available from: https://repository.library.noaa.gov/view/noaa/6965Hardt M, Scherbaum F. The design of optimum networks for aftershock recordings. [cited2019Oct8];117(3):716–26.Availablehttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-246X.1994.tb02464.xKaminski T, Rayner PJ. Assimilation and Network Design. In: Ecological Studies [Internet].
15 16 17 18 19 20 21 22	40.41.42.	Masutani M, Garand L, Lahoz W, Andersson E, Rochon Y, Riishojgaard L, et al. ObservingSystem Simulation Experiments: Justifying new Arctic Observation Capabilities [Internet].Available from: https://repository.library.noaa.gov/view/noaa/6965Hardt M, Scherbaum F. The design of optimum networks for aftershock recordings. [cited2019Oct8];117(3):716–26.Availablehttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-246X.1994.tb02464.xKaminski T, Rayner PJ. Assimilation and Network Design. In: Ecological Studies [Internet].Springer New York; 2008. p. 33–52. Available from: https://doi.org/10.1007/978-0-387-
15 16 17 18 19 20 21 22 23	40.41.42.	Masutani M, Garand L, Lahoz W, Andersson E, Rochon Y, Riishojgaard L, et al. Observing System Simulation Experiments: Justifying new Arctic Observation Capabilities [Internet]. Available from: https://repository.library.noaa.gov/view/noaa/6965 Hardt M, Scherbaum F. The design of optimum networks for aftershock recordings. [cited 2019 Oct 8];117(3):716–26. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-246X.1994.tb02464.x Kaminski T, Rayner PJ. Assimilation and Network Design. In: Ecological Studies [Internet]. Springer New York; 2008. p. 33–52. Available from: https://doi.org/10.1007/978-0-387- 76570-9_3
15 16 17 18 19 20 21 22 23 24	 40. 41. 42. 43. 	 Masutani M, Garand L, Lahoz W, Andersson E, Rochon Y, Riishojgaard L, et al. Observing System Simulation Experiments: Justifying new Arctic Observation Capabilities [Internet]. Available from: https://repository.library.noaa.gov/view/noaa/6965 Hardt M, Scherbaum F. The design of optimum networks for aftershock recordings. [cited 2019 Oct 8];117(3):716–26. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-246X.1994.tb02464.x Kaminski T, Rayner PJ. Assimilation and Network Design. In: Ecological Studies [Internet]. Springer New York; 2008. p. 33–52. Available from: https://doi.org/10.1007/978-0-387-76570-9_3 Day JJ, Hawkins E, Tietsche S. Will Arctic sea ice thickness initialization improve seasonal
15 16 17 18 19 20 21 22 23 24 25	40.41.42.43.	 Masutani M, Garand L, Lahoz W, Andersson E, Rochon Y, Riishojgaard L, et al. Observing System Simulation Experiments: Justifying new Arctic Observation Capabilities [Internet]. Available from: https://repository.library.noaa.gov/view/noaa/6965 Hardt M, Scherbaum F. The design of optimum networks for aftershock recordings. [cited 2019 Oct 8];117(3):716–26. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-246X.1994.tb02464.x Kaminski T, Rayner PJ. Assimilation and Network Design. In: Ecological Studies [Internet]. Springer New York; 2008. p. 33–52. Available from: https://doi.org/10.1007/978-0-387- 76570-9_3 Day JJ, Hawkins E, Tietsche S. Will Arctic sea ice thickness initialization improve seasonal forecast skill? Geophys Res Lett. 2014;41(21):7566–75.
15 16 17 18 19 20 21 22 23 24 25 26	 40. 41. 42. 43. 44. 	 Masutani M, Garand L, Lahoz W, Andersson E, Rochon Y, Riishojgaard L, et al. Observing System Simulation Experiments: Justifying new Arctic Observation Capabilities [Internet]. Available from: https://repository.library.noaa.gov/view/noaa/6965 Hardt M, Scherbaum F. The design of optimum networks for aftershock recordings. [cited 2019 Oct 8];117(3):716–26. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-246X.1994.tb02464.x Kaminski T, Rayner PJ. Assimilation and Network Design. In: Ecological Studies [Internet]. Springer New York; 2008. p. 33–52. Available from: https://doi.org/10.1007/978-0-387- 76570-9_3 Day JJ, Hawkins E, Tietsche S. Will Arctic sea ice thickness initialization improve seasonal forecast skill? Geophys Res Lett. 2014;41(21):7566–75. Blanchard-Wrigglesworth E, Armour KC, Bitz CM, Deweaver E. Persistence and inherent
15 16 17 18 19 20 21 22 23 24 25 26 27	 40. 41. 42. 43. 44. 	Masutani M, Garand L, Lahoz W, Andersson E, Rochon Y, Riishojgaard L, et al. Observing System Simulation Experiments: Justifying new Arctic Observation Capabilities [Internet]. Available from: https://repository.library.noaa.gov/view/noaa/6965 Hardt M, Scherbaum F. The design of optimum networks for aftershock recordings. [cited 2019 Oct 8];117(3):716–26. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-246X.1994.tb02464.x Kaminski T, Rayner PJ. Assimilation and Network Design. In: Ecological Studies [Internet]. Springer New York; 2008. p. 33–52. Available from: https://doi.org/10.1007/978-0-387- 76570-9_3 Day JJ, Hawkins E, Tietsche S. Will Arctic sea ice thickness initialization improve seasonal forecast skill? Geophys Res Lett. 2014;41(21):7566–75. Blanchard-Wrigglesworth E, Armour KC, Bitz CM, Deweaver E. Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J Clim.

- Chevallier M, Salas-Mélia D. The role of sea ice thickness distribution in the arctic sea ice
 potential predictability: A diagnostic approach with a coupled GCM. J Clim.
 2012;25(8):3025–38.
- 4 46. Zhang YF, Bitz CM, Anderson JL, Collins N, Hendricks J, Hoar T, et al. Insights on Sea Ice
 5 data assimilation from perfect model observing system simulation experiments. J Clim.
 6 2018;31(15):5911–26.
- Kaminski T, Kauker F, Eicken H, Karcher M. Exploring the utility of quantitative network
 design in evaluating Arctic sea ice thickness sampling strategies. [cited 2019 Oct
 8];9(4):1721–33. Available from: https://www.the-cryosphere.net/9/1721/2015/

Kaminski T, Kauker F, Toudal Pedersen L, Voßbeck M, Haak H, Niederdrenk L, et al. Arctic
Mission Benefit Analysis: impact of sea ice thickness, freeboard, and snow depth products
on sea ice forecast performance. [cited 2019 Oct 8];12(8):2569–94. Available from:
https://www.the-cryosphere.net/12/2569/2018/

14 49. Newman L, Schofield O, Wahlin A, Constable A, Swart S, Williams M, et al. Understanding
15 the Southern Ocean through sustained Observations. Bull Aust Meteorol Oceanogr Soc.
16 2016;28(January):170.

Privé NC, Errico RM, Tai K. The influence of observation errors on analysis error and
forecast skill investigated with an observing system simulation experiment. J Geophys Res.
2013;118:5332–46.

20 51. Zygmuntowska M, Rampal P, Ivanova N, Smedsrud LH. Uncertainties in Arctic sea ice
21 thickness and volume: New estimates and implications for trends. Cryosphere.
22 2014;8(2):705–20.

- 52. Bunzel F, Notz D, Pedersen LT. Retrievals of Arctic Sea-Ice Volume and Its Trend
 Significantly Affected by Interannual Snow Variability. Geophys Res Lett.
 2018;45(11):11751–9.
- Soc A Math
 Phys Eng Sci. 2015;373(2052).
- 28 54. Massonnet F, Vancoppenolle M, Goosse H, Docquier D, Fichefet T, Blanchard-

Wrigglesworth E. Arctic sea-ice change tied to its mean state through thermodynamic
 processes. Nat Clim Chang. 2018;8(7):599–603.

- 55. Warren SG, Rigor IG, Untersteiner N, Radionov VF, Bryazgin NN, Aleksandrov YI, et al.
 Snow Depth on Arctic Sea Ice. J Clim [Internet]. 1999;12(6):1814–29. Available from: https://doi.org/10.1175/1520-0442(1999)012%3C1814:SDOASI%3E2.0.CO
- 6 56. Laxon SW, Giles KA, Ridout AL, Wingham DJ, Willatt R, Cullen R, et al. CryoSat-2
 7 estimates of Arctic sea ice thickness and volume. Geophys Res Lett. 2013;40(4):732–7.
- Kern S, Lavergne T, Notz D, Pedersen LT, Tonboe RT, Sørensen AM. Satellite Passive
 Microwave Sea-Ice Concentration Data Set Intercomparison : Closed Ice and Ship-Based
 Observations. Cryosph Discuss [Internet]. 2019;1–55. Available from: https://doi.org/10.5194/tc-2019-120
- 12 58. Ivanova N, Pedersen LT, Tonboe RT, Kern S, Heygster G, Lavergne T, et al. Inter13 comparison and evaluation of sea ice algorithms: Towards further identification of
 14 challenges and optimal approach using passive microwave observations. Cryosphere.
 15 2015;9(5):1797–817.

16 59. Andersen S, Tonboe R, Kaleschke L, Heygster G, Pedersen LT. Intercomparison of passive
 microwave sea ice concentration retrievals over the high-concentration Arctic sea ice. J
 18 Geophys Res. 2007;112(C08004).

- Sallila H, Farrell SL, Mccurry J, Rinne E. Assessment of contemporary satellite sea ice
 thickness products for Arctic sea ice. Cryosph Discuss [Internet]. 2019;1187–213. Available
 from: https://doi.org/10.5194/tc-13-1187-2019
- Wang X, Key J, Kwok R, Zhang J. Comparison of Arctic Sea Ice Thickness from Satellites
 , Aircraft , and PIOMAS Data. Remote Sens. 2016;8(713):1–17.
- Bodas-Salcedo A, Webb MJ, Bony S, Chepfer H, Dufresne J, Zhang Y, et al. COSP Satellite
 simulation software for model assessment. Bull Am Meteorol Soc. 2015;92(8):1023–43.
- Klein SA, Jakob C. Validation and Sensitivities of Frontal Clouds Simulated by the ECMWF
 Model. Mon Weather Rev [Internet]. 1999 Oct 1;127(10):2514–31. Available from:
 https://doi.org/10.1175/1520-0493(1999)127%3C2514:VASOFC%3E2.0.CO

1 2 3	64.	Kay JE, Hillman BR, Klein SA, Y. Z, Medeiros B, Pincus R, et al. Exposing Global Cloud Biases in the Community Atmosphere Model (CAM) Using Satellite Observations and Their Corresponding Instrument Simulators. J Clim. 2012;25:5190–207.
4 5 6	65.	Kay JE, Bourdages L, Miller NB, Morrison A, Yettella V, Chepfer H, et al. Evaluating and improving cloud phase in the community atmosphere model version 5 using spaceborne lidar observations. J Geophys Res. 2016;121(8):4162–76.
7 8 9	66.	Chepfer H, Bony S, Winker D, Chiriaco M, Dufresne J-L, Sèze G. Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model. Geophys Res Lett [Internet]. 2008;35(15). Available from: https://doi.org/10.1029/2008GL034207
10 11	67.	Roberts AF. A Variational Method for Sea Ice Ridging in Earth System Models. J Adv Model Earth Syst. 2019;11:771–805.
12 13	68.	Rampal P, Bouillon S, Ólason E, Morlighem M. NeXtSIM: A new Lagrangian sea ice model. Cryosphere. 2016;10(3):1055–73.
14 15	69.	Kay JE, Ecuyer TL, Chepfer H, Loeb N, Morrison A, Cesana G. Recent Advances in Arctic Cloud and Climate Research. Curr Clim Chang Reports. 2016;2:159–69.
16 17	70.	LavergneT.Astepbackisamoveforward.https://doi.org/10.6084/m9.figshare.5501536.v1.2017.
18 19	71.	Stroeve JC, Kattsov V, Barrett A, Serreze M, Pavlova T, Holland M, et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett. 2012;39(16):1–7.
20 21 22 23 24	72.	Smith DM, Screen JA, Deser C, Cohen J, Fyfe JC, García-Serrano J, et al. The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification. Geosci Model Dev [Internet]. 2019;12(3):1139–64. Available from: https://www.geosci-model-dev.net/12/1139/2019/
25 26	73.	Vihma T, Screen J, Tjernström M, Newton B, Zhang X, Popova V, et al. The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their

27 impacts. J Geophys Res Biogeosciences. 2015;586–620.

IA, Steele M, Holland MM, Adam JC, Cherry JE, Francis JA, et al. Analysis of	74.	1
System for Freshwater Cycle Intensification: Observations and Expectations. J		2
[Internet]. 2010 Jun 18;23(21):5715–37. Available from:		3
org/10.1175/2010JCLI3421.1		4
Cox PM, Flato GM, Gleckler PJ, Abramowitz G, Caldwell P, et al. Taking climate	75.	5
luation to the next level. Nat Clim Chang [Internet]. 2019; Available from:		6
oi.org/10.1038/s41558-018-0355-y		7
e TJ, Stephenson DB. On the robustness of emergent constraints used in	76.	8
l climate change projections of arctic warming. J Clim. 2013;26(2):669–78.		9
l A, Qu X. September sea-ice cover in the Arctic Ocean projected to vanish by	77.	10
Nat Geosci [Internet]. 2009;2(5):341–3. Available from:		11
oi.org/10.1038/ngeo467		12
Chandler RE, Cox PM, Huthnance JM, Rougier J, Stephenson DB. Quantifying	78.	13
nate change. Nat Clim Chang [Internet]. 2012;2(6):403-9. Available from:		14
oi.org/10.1038/nclimate1414		15
F, Fichefet T, Goosse H, Bitz CM, Philippon-Berthier G, Holland MM, et al.	79.	16
ng projections of summer Arctic sea ice. Cryosphere. 2012;6(6):1383–94.		17
A, Fischer EM, Knutti R. Emergent Constraints in Climate Projections : A Case	80.	18
hanges in High-Latitude Temperature Variability. J Clim. 2017;30:3655–70.		19
Roe GH. A Mechanism for the High rate of Sea Ice Thinning in the Arctic Ocean.	81.	20
04;i:1–6.		21
nden EC, Bintanja R, Hazeleger W, Katsman CA. The role of the mean state of	82.	22
ice on near-surface temperature trends. J Clim. 2014;27(8):2819-41.		23
e TJ, Stephenson DB, Turner J, Phillips T. The importance of sea ice area biases	83.	24
entury multimodel projections of Antarctic temperature and precipitation.		25
9.		26
Hall A. Emergent Constraints for Cloud Feedbacks. Curr Clim Chang Reports.	84.	27

1 2015;1:276–87.

- 2 85. Mahlstein I, Knutti R. Ocean heat transport as a cause for model uncertainty in projected
 3 Arctic warming. J Clim. 2011;24(5):1451–60.
- 4 86. Hall A, Qu X. Using the current seasonal cycle to constrain snow albedo feedback in future
 5 climate change. Geophys Res Lett. 2006;33(3):1–4.
- 6 87. Bowler NE. Accounting for the effect of observation errors on verification of MOGREPS.
 7 Meteorol Appl. 2008;15:199–205.
- 8 88. Ferro C. Measuring forecast performance in the presence of observation error. Q J R
 9 Meteorol Soc. 2017;2:2665–76.

Bunzel F, Notz D, Baehr J, Müller WA, Fröhlich K. Seasonal climate forecasts significantly
 affected by observational uncertainty of Arctic sea ice concentration. Geophys Res Lett.
 2016;43(2):852–9.

- Massonnet F, Bellprat O, Guemas V, Doblas-Reyes FJ. Using climate models to estimate
 the quality of global observational data sets. Science (80-). 2016;354(6311).
- Kushner PJ, Mudryk LR, Merryfield W, Ambadan JT, Berg A, Bichet A, et al. Canadian
 snow and sea ice : assessment of snow , sea ice , and related climate processes in Canada's
 Earth system model and climate-prediction system. Cryosphere. 2018;12:1137–56.
- Sospedra-Alfonso R, Merryfield WJ, Kharin V V. Representation of Snow in the Canadian
 Seasonal to Interannual Prediction System . Part II : Potential Predictability and Hindcast
 Skill. J Hydrometeorol. 2016;17:2511–35.
- 93. Reichle R. The MERRA-Land Data Product [Internet]. Vol. 3. 2012. Available from:
 http://gmao.gsfc.nasa.gov/pubs/office_notes
- 94. Hardin JW, North GR, Shen SS. Minimum Error Estimates of Global Mean Temperature
 Through Optimal Arrangement of Gauges. Environmetrics. 1992;3:15–27.
- 95. North GR, Shen SS, Hardin JW. Estimation of the Global Mean Temperature with Point
 Gauges. Environmetrics. 1992;1–14.
- 27 96. Rayner PJ, Enting IG, Trudinger CM. Optimizing the CO2 observing network for

1 2		constraining sources and sinks. Tellus B Chem Phys Meteorol [Internet]. 1996 Jan 1;48(4):433–44. Available from: https://doi.org/10.3402/tellusb.v48i4.15924
3 4 5	97.	Lique C, Steele M. Seasonal to decadal variability of Arctic Ocean heat content: A model- based analysis and implications for autonomous observing systems. J Geophys Res Ocean [Internet]. 2013 Apr 1;118(4):1673–95. Available from: https://doi.org/10.1002/jgrc.20127
6 7	98.	Blanchard-Wrigglesworth E, Bitz CM. Characteristics of Arctic sea-ice thickness variability in GCMs. J Clim. 2014;27(21):8244–58.
8 9 10	99.	Chevallier M, Massonnet F, Goessling H, Guemas V, Jung T. The Role of Sea Ice in Sub- seasonal Predictability. In: Sub-seasonal to seasonal prediction The gap between weather and climate forecasting. 2019. p. 201–21.
11 12 13	100.	Ponsoni L, Massonnet F, Fichefet T, Chevallier M, Docquier D. On the timescales and length scales of the Arctic sea ice thickness anomalies : a study based on 14 reanalyses. Cryosphere. 2019;13:521–43.
14 15	101.	Lindsay RW, Zhang J. Arctic Ocean Ice Thickness: Modes of variability and the Best Locations from Which to Monitor Them. J Phys Oceanogr. 2006;36:496–506.
16 17 18	102.	Ponsoni L, Massonnet F, Docquier D, Van Achter G, Fichefet T. Statistical predictability of the Arctic sea ice volume anomaly: identifying predictors and optimal sampling locations. to be Submitt to Cryosph. 2019;
19 20	103.	Labe Z, Magnusdottir G, Stern H. Variability of Arctic Sea Ice Thickness Using PIOMAS and the CESM Large Ensemble. J Clim. 2018;31:3233–47.
21 22	104.	Bintanja R, Van Der Linden EC. The changing seasonal climate in the Arctic. Sci Rep. 2013;3:1–8.
23 24	105.	Holland MM, Stroeve J. Changing seasonal sea ice predictor relationships in a changing Arctic climate. Geophys Res Lett. 2011;38(18):1–6.
25 26 27	106.	Weatherhead EC, Wielicki BA, Ramaswamy V, Abbott M, Ackerman TP, Atlas R, et al. Designing the Climate Observing Systemof the Future Elizabeth. Earth's Futur. 2017;6:80–102.

- Brunet G, Shapiro M, Hoskins B, Moncrieff M, Dole R, Kiladis GN, et al. Collaboration of
 the Weather and Climate Communities to Advance Subseasonal-to-Seasonal Prediction.
 Bull Am Meteorol Soc [Internet]. 2010 May 4;91(10):1397–406. Available from:
 https://doi.org/10.1175/2010BAMS3013.1
- 5