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Abstract 1 

The Arctic and Antarctic are among the regions most exposed to climate change, but ironically, 2 

they are also the ones for which the least observations are available. Climate models have been 3 

instrumental in completing the big picture. It is generally accepted that observations feed the 4 

development of climate models: parameterizations are designed based on empirically observed 5 

relationships, climate model predictions are initialized using observational products, and numerical 6 

simulations are evaluated given matching observational datasets. Recent research suggests that the 7 

opposite also holds: climate models can feed the development of polar observational networks by 8 

indicating the type, location, frequency, and timing of measurements that would be most useful for 9 

answering a specific scientific question. Here, we review the foundations of this emerging notion 10 

with five cases borrowed from the field of polar prediction with a focus on sea ice (sub-seasonal to 11 

centennial time scales). We suggest that climate models, besides their usual purposes, can be used 12 

to objectively prioritize future observational needs – if, of course, the limitations of the realism of 13 

these models have been recognized. This idea, which has been already extensively exploited in the 14 

context of Numerical Weather Prediction, reinforces the notion that observations and models are 15 

two sides of the same coin rather than distinct conceptual entities.  16 



Introduction 1 

Numerical models of the climate system, referred collectively to as “climate models” from here on, 2 

are cornerstones of climate science because they allow answering questions that observations, or 3 

theory alone, cannot address. Climate models fulfill at least three primary purposes. First, they can 4 

be exploited to refine our understanding of how the climate system works: How are energy, water, 5 

and carbon cycled in the Earth system (1,2)? What are the main spatial and temporal modes of 6 

climate variability, from the deep ocean to the upper stratosphere (3)? Second, by offering the 7 

possibility to run counterfactual worlds, they can be used to quantify the influence that specific 8 

drivers may have on observed climatic events: What is the fraction of global warming attributable 9 

to human activities (4)? By how much has the likelihood of an observed extreme event increased 10 

due to background climate change (5)? Finally, by simulating the future of the climate system, 11 

climate models can be used as a support for adaptation and mitigation policies: Will a world with 12 

2°C warming above pre-industrial levels be fundamentally different from one with 1.5°C warming 13 

(6)? Is geoengineering a viable solution for offsetting climate change (7)? 14 

Here, we posit that climate models fulfill a fourth essential purpose besides the three listed above: 15 

they can help to explore hypotheses regarding the use of existing or potentially new observational 16 

data. More specifically, climate models can be used to optimize the design of future observing 17 

systems in order to address specific climate-related questions. To support this hypothesis, we take 18 

the case of Polar Regions, with the following background scientific question in mind: How can the 19 

current observing system be enhanced in order to improve polar predictions from months to 20 

centuries? Polar prediction is a “textbook example” for illustrating the idea that models can drive 21 

the development of observational systems. Indeed, at high latitudes, the observational network is 22 

sparse, the demand for environmental predictions is high, and the resources that can be allocated 23 

to the deployment of new observing platforms are limited. A rational strategy for the development 24 

of cost-effective observation systems is thus desirable, if not required. As will be illustrated in this 25 

article, much knowledge can be inherited from methods and concepts developed in Numerical 26 

Weather Prediction (NWP). 27 

The current polar observing network provides a mixture of data that can broadly be categorized 28 

into two types: in-situ and remote sensing observations. In-situ observations have been collected 29 

for decades from automatic weather stations (8), drifting buoys (9,10), moorings (11), 30 



oceanographic vessels (12), radiosonde launches (13), aircraft-borne instruments (14,15), 1 

submarines (16), instruments onboard unmanned aerial (17) or underwater vehicles (18), among 2 

others. These point observations are particularly invaluable to study the interior of the ocean−sea 3 

ice system, which cannot be sensed remotely. In-situ observations are not free of errors, but their 4 

main limitation for climate applications is their lack of representativeness in time and space, owing 5 

to a lack of sufficient spatial coverage and inherent intermittency. On the other hand, remote 6 

sensing observations have been collected using passive infrared and microwave instruments 7 

onboard satellites (19–21) since the late 1970s, followed later by backscatter, laser (22,23) and 8 

radar altimetry (24) measurements since the 1990s. While the raw measurements (e.g., radiances) 9 

can be accurate as long as instruments are well-calibrated, the products derived from these 10 

measurements can be tainted with significant errors due to uncertainties in the transfer models. 11 

Despite known spatiotemporal gaps and limitations, polar observations have been sufficient to 12 

formally detect high-latitude climate changes, e.g., tropospheric and stratospheric warming, Arctic 13 

sea ice retreat (25), Northern Hemisphere continental snow cover decline (26), and net mass loss 14 

from Greenland (27) and Antarctic (28) ice sheets. However, a question arises: If the observational 15 

network is adapted to detect changes that have already happened, is it necessarily adapted for 16 

feeding the climate models that will predict future changes? 17 

Polar prediction has received much attention in recent years, sparked by new opportunities but also 18 

inevitable risks associated with rapid climate shifts occurring at high-latitudes (29). Here, we refer 19 

to “polar prediction” in a broad sense as any tentative to predict the evolution of the atmosphere, 20 

the ocean, and the cryosphere on sub-seasonal to centennial time scales (thus as a result of internal 21 

climate variability, external forcing, or both), with climate models. In response to the increased 22 

interest in polar prediction, the scientific output on the topic has flourished in recent years (Fig. 1), 23 

with about 50% of the scientific contributions published since 2014. While prediction skill has 24 

overall improved in many components (atmosphere, sea ice, ocean), a key limitation is the lack of 25 

satisfactory observational data, whether it is for improving process-based models, for initializing 26 

predictions or for verifying them (30). 27 

The goal of this article is not to provide actual recommendations regarding future polar observing 28 

systems, but instead to demonstrate that a wealth of conceptual tools, most of them directly 29 

inherited from NWP, can be used to improve current observing systems in order to eventually 30 



address climate-related questions in Polar Regions. We illustrate this idea with five concrete cases 1 

drawing from the recent literature on polar and sea ice prediction: 2 

Case 1 Observing System (Simulation) Experiments and Quantitative Network Design. Climate 3 

models can be used to test the influence that an existing type of observations, or a 4 

hypothetical new type of observations, has on prediction skill. 5 

Case 2 Emulation of satellites and their retrieval algorithms. Climate models can be used to 6 

explore how assumptions in satellite retrieval algorithms (choice of transfer model, values 7 

of geophysical parameters) affect the final observational product. 8 

Case 3 Constraining long-term projections. Climate models can be used to identify the 9 

observational gaps that, if filled, would allow reducing uncertainty in projected changes 10 

thanks to improved model evaluation and selection. 11 

Case 4 Evaluation of observational products. Climate models can be used to evaluate the 12 

reliability and quality of large-scale observational products (satellite data, reanalyses, re-13 

gridded datasets). 14 

 

Figure 1. Number of publications listed by Google Scholar (https://scholar.google.com) that include any 
of the following phrases: “Arctic … prediction”, “Antarctic … prediction”, “Southern Ocean … prediction” 

or “Polar … prediction” where “…” denotes up to any three words. The results comprise scientific 
papers, presentations, and conference abstracts. 

https://scholar.google.com/


Case 5 Strategic placement of in-situ sampling sites. Climate models can be used to optimize the 1 

location of future in-situ observational sites that would best monitor the main modes of 2 

polar climate variability. 3 

Integrating climate models in the observational process: five cases 4 

Case 1. Observing System (Simulation) Experiments and Quantitative Network Design 5 

Observing System Experiments (OSEs) refer to sensitivity experiments conducted with weather 6 

and, more recently, climate models. OSEs aim to estimate the influence that selected observations 7 

can have on forecast quality, thereby indicating the added value, or the lack thereof, of a particular 8 

observation type for prediction purposes (31). In practice, OSEs are conducted by adding, 9 

degrading, sub-sampling, or removing a specific set of observations that are usually assimilated in 10 

a forecasting system, in order to isolate the impact that such a change could have on prediction 11 

error. OSEs have been used since decades in the NWP context (32,33) and have been instrumental 12 

in demonstrating, for example, the added value of assimilating radiance data on geopotential height 13 

forecasts (34). More recently, OSEs have been applied in the context of Arctic weather forecasting 14 

(35,36) and a study based on OSEs recently suggested (37) that better use could be made of existing 15 

data to improve Arctic weather predictions. Another recent study, although using a simplified setup 16 

(38), showed dramatic increases in prediction skill of potentially impactful synoptic events like 17 

Arctic cyclones if data acquired from 6-hr radiosonde launches was assimilated instead of data 18 

acquired from 12- or 24-hr launches only. In this case, the OSE makes a strong case for sustaining 19 

6-hourly radiosonde launches. 20 

Observing System Simulation Experiments (OSSEs (39)) are a natural extension of OSEs. OSSEs 21 

follow the same principles as OSEs, except that the sensitivity study is conducted in the model 22 

world: model output is assimilated instead of real observations, and forecast skill is evaluated 23 

against simulation output and not real observations. Thus, OSSEs allow testing the influence that 24 

a hypothetical new observation type would have on prediction skill. The idea of OSSEs for high-25 

latitude weather forecasting is progressing (40) but has not yielded concrete recommendations yet 26 

for the design of Arctic observations. 27 



Quantitative Network Design (QND) is a technique that has deep methodological connections with 1 

OSSEs. Like OSSEs, QND is based on data assimilation theory but had initially emerged from the 2 

area of seismology (instead of NWP). The goal was then to develop an optimal network of 3 

seismographs that could best estimate the process of earthquake faulting, based on aftershocks 4 

measurements (41). In QND, one seeks to optimize a measurement strategy through the 5 

minimization of a cost function based on a specific forecast target (42). QND allows estimating the 6 

contributions of various sources of uncertainty (observational, model, parameter, initial-condition) 7 

to forecast error through a rigorous mathematical framework and, as such, can be applied to study 8 

the benefit of assimilating new hypothetical observations in terms of forecast skill. 9 

The use of OSEs, OSSEs and QND for high latitudes has been relatively limited beyond weather 10 

time scales, and in particular for polar climate prediction. One reason is that these approaches 11 

require a full data assimilation system, which is not present in most climate models. Alternative 12 

approaches have been followed. For example, in a seasonal Arctic sea ice prediction study, Day 13 

and colleagues (43) showed that the neglection of sea ice thickness information in July degrades 14 

predictive skill of late-summer sea ice concentration and thickness but also impacts near-surface 15 

temperature up to following early fall. These results confirmed earlier predictability studies (44,45) 16 

that had shown the critical role of sea ice thickness distribution preconditioning on seasonal sea ice 17 

concentration skill. However, sea ice thickness and its distribution are not easily observed from 18 

space and are subject to significant errors (see Case 2). Proper OSSEs can be salutary in that respect 19 

by providing hints on alternative geophysical variables to assimilate. For example, Zhang and 20 

colleagues (46) showed that the joint assimilation of total and multi-year sea ice concentration (two 21 

relatively well-observed geophysical variables) could reduce the forecast error or Arctic sea ice 22 

volume error by 50% compared to no assimilation at all. The use of QND also bears promise to 23 

better isolate the measurements that could lead to enhanced forecast skill. In a re-forecast of the 24 

September 2007 Arctic sea ice minimum, Kaminski and colleagues (47) found that additional sea 25 

ice thickness and wind stress measurements would have been beneficial to increase forecast skill 26 

in the Chukchi Sea region at short (10 days) and long (90 days) time scales, respectively. A later 27 

study using the same approach (48) confirmed the importance of joint snow and sea ice freeboard 28 

observations for summer sea ice volume predictions along the Northern Sea Route. 29 



Research on OSEs, OSSEs and QND is currently significantly Arctic biased. The observing system 1 

of the Antarctic is sparser than the Arctic one, especially over sea ice and in the Southern Ocean. 2 

Thus, the potential impact of new observations there, even a few ones, can be enormous for polar 3 

prediction. This reality should encourage more systematic use of climate models to quantify this 4 

potential of new Antarctic observations, in order to inform the future development of major 5 

observing initiatives like the Southern Ocean Observing System (SOOS, (49)). 6 

Despite its attractive aspects, the approach has several limitations. The error statistics that are 7 

prescribed in synthetic observations used in OSSEs and QND might not match the error statistics 8 

of real observations (50). An adverse consequence is that one could erroneously overstate the 9 

importance of a new type of observation while it would, in reality, have little impact on prediction 10 

skill. It could also be that climate models have predictability mechanisms that are not present in 11 

the real world. In that case, the choice to observe a new variable based on model experiments could 12 

lead to no or unsignificant improvement in prediction skill. 13 

Case 2. Emulation of satellites and their retrieval algorithms 14 

The advent of satellite information, first from passive (since the late 1970s) and then active (since 15 

the 1990s) sensors, has been a leap forward in the study of polar regions and in particular by 16 

providing near real-time monitoring of sea ice concentration and thickness. In theory, the combined 17 

measurements of sea ice concentration and thickness would allow reconstructing the global mass 18 

balance of sea ice, a diagnostic of interest from a climate point of view. In practice, both retrievals 19 

of concentration and thickness are uncertain. The deduced volume estimates are thus even more 20 

uncertain (51,52). This uncertainty, combined with the presence of substantial interannual 21 

variability, complicates the evaluation of climate models (53,54). A natural question arises: can 22 

observational uncertainty be better quantified and how can it be reduced? 23 

Satellites do not directly measure physical variables like sea ice concentration or thickness but 24 

instead rely on indirect measurements (e.g., emitted radiance by a surface, distance traveled by an 25 

electromagnetic signal). These measurements are then converted into model-like variables such as 26 

concentration or thickness using an appropriate transfer model, or “retrieval algorithm.” Because 27 

these algorithms are imperfect, uncertainty is introduced in the final product. For example, the 28 

Synthetic aperture Interferometric Radar Altimeter (SIRAL) onboard the CryoSat-2 satellite sends 29 



electromagnetic pulses that allow locating the snow-ice interface within stated precision. Sea ice 1 

freeboard, the height of the emerged part of the sea ice floe, is then deduced from the surface 2 

elevation measurement and neighboring measurements of sea surface height. Finally, freeboard is 3 

converted to thickness using hydrostatic equilibrium assumption. However, solving for thickness 4 

requires among others to know about the depth of the snow layer on top of the sea ice floe. In the 5 

Arctic, it is most often assumed that snow depth takes climatological values based on late 20th 6 

century measurements (55) on multi-year ice and half the values on first-year ice. Sea ice, snow 7 

and seawater densities are assumed constant. The reader is redirected to reference (56) for further 8 

details on the methodology. 9 

Retrieval algorithms thus rely on several choices (a functional form for the transfer model, values 10 

of geophysical parameters, geometrical assumptions). These choices explain why some spread can 11 

be seen in the various available products of sea ice concentration (57–59) or sea ice thickness 12 

(60,61). Producers of satellite-based climate data are aware of this spread and typically face two 13 

questions: 14 

(a) How sensitive are the estimates of the retrieved variables to assumptions in the transfer model? 15 

(b) What is the ideal level of post-processing for optimal use of the observational product by 16 

modelers?  17 

A possible solution to address these observational questions is to ask them from the standpoint of 18 

climate models, in what is commonly referred to as “satellite simulation” (62) (a  common practice 19 

in NWP data assimilation). The idea of satellite simulation is to project the climate model state 20 

(while it is running or after the simulation using available output) on the observational space using 21 

an appropriate operator, thereby facilitating the model-observation comparison. Loosely speaking, 22 

the idea behind satellite simulation is to diagnose what a satellite would “see” if it was flying over 23 

the model’s Earth. In a recent study (52), Bunzel and colleagues used an ocean-sea ice model to 24 

explore how retrieved sea ice thickness would differ from the known model thickness if various 25 

assumptions were varied in the Cryo-Sat2 algorithm described above and applied to their model. 26 

Uncertainties in the snow depth were found to dominate to retrieved sea ice thickness uncertainty, 27 

followed by freeboard measurement error. Uncertainty in density parameters was found to play a 28 

smaller role. Such a study is valuable in that it confirmed snow depth as the current bottleneck of 29 



sea ice thickness retrieval from radar altimetry (51), thereby bringing an answer to question (a) and 1 

prioritizing future observational needs. 2 

The satellite simulation approach for polar climate research has initially been pioneered by the 3 

cloud community (63–66), allowing a consistent evaluation of cloud biases in climate models and 4 

addressing the question (b). More recently, some work in that direction has been devoted to sea 5 

ice. Roberts and colleagues (67) proposed that freeboard should be calculated in the model based 6 

on the model’s own values of snow density, and subgrid-scale ice thickness distribution, before 7 

being matched to freeboard in observations (thus moving away from the classical thickness-8 

thickness evaluation).  Another example involves sea ice dynamics: the evaluation of velocity fields 9 

in sea ice models is now done by deploying virtual buoys/tracers in the model and comparing their 10 

trajectories to observed ones (68) (see also the Sea Ice Drift Forecast Experiment, 11 

https://rdrr.io/github/helgegoessling/SIDFEx/, for similar evaluation procedures). 12 

One of the main obstacles to climate model evaluation is the lack of definition- and scale-awareness 13 

in model-data comparisons (65). Climate model evaluation should be carried out at some mid-point 14 

between the raw model output and the raw measurements collected by observational devices, in 15 

such a way that the resulting metrics of evaluation are the least uncertain. Where this mid-point 16 

lies is case-dependent but a few answers can be obtained by the use of satellite simulators 17 

implemented in climate models (69), which can then orient the development of transfer models 18 

processed by developers of observational products. One of the lessons learned from recent 19 

workshops on model-data comparison in polar regions is that the developers of observational 20 

products should not necessarily process their products down to model space (70) as this has been 21 

most often the case until now. In that respect, recent results obtained from model-based studies 22 

could be exploited to inform space agencies and satellite product developers about the optimal level 23 

of processing required for modelers. 24 

Case 3. Constraining high-latitude climate projections 25 

While state-of-the-art climate models generally agree on the essential traits of future Arctic climate 26 

changes (reduced Arctic sea ice (71), polar amplification with larger increases in temperature in 27 

winter than in other seasons (72), intensification of the Arctic hydrological cycle (73,74)), the 28 

magnitude of these changes varies considerably from model to model and remains consequently 29 

uncertain. How to evaluate climate models with past observations in order to narrow uncertainty 30 

https://rdrr.io/github/helgegoessling/SIDFEx/


in future changes is a critical question that applies not just to the Arctic (75). Nonetheless, the 1 

Arctic bears remarkable properties. Indeed, in many cases, future simulated changes are tightly 2 

related to present-day characteristics in models. For example, changes in modeled wintertime 3 

surface air temperature along the Arctic ice edge are significantly anti-correlated to the baseline 4 

mean temperature (76); September Arctic sea ice extent change over 2021-2040 is well correlated 5 

to historical (1979-2007) trends (77,78), and the timing of a summer ice free Arctic is correlated to 6 

the baseline model state (79); models with larger fall (September-October-November) sea ice 7 

concentration over the present-day experience larger reductions in near-surface air temperature 8 

variability in the future (80); models with larger annual mean Arctic sea ice volume over the 9 

present-day display more pronounced volume losses for a given scenario (54,81,82). 10 

In the Antarctic, where climate projections are notoriously more uncertain, strong relationships 11 

were still identified between projected changes in annual mean sea ice area, precipitation and 12 

temperature, and the baseline annual mean sea ice area in state-of-the-art climate models (83); 13 

moreover, the spread in projected changes in the latitudinal position of the austral jet was traced to 14 

the climatological position of the jet in models. 15 

All the relationships mentioned above emerge spontaneously in multi-model ensembles. These 16 

relationships take the general form Y (projected change) is related to X (present-day state). If these 17 

relationships are not spurious but instead based on physically explainable mechanisms, they offer 18 

the potential to orient the design of future observing systems. Indeed, under the assumption that 19 

the real world obeys the same relationships as those found in the models (i.e., that observations 20 

align with the models), evaluating models based on X in observations would allow better 21 

constraining the real projected change Y. However, the successful application of these “emergent 22 

constraints” (75,84) is conditioned on the existence of matching observational datasets for X. In 23 

that sense, the identification of emergent constraints can be seen as an objective reason to prioritize 24 

a particular type of observation. For example, CMIP3 model results indicate that future Arctic 25 

warming is positively correlated to historical northward ocean heat transport (85). Observational 26 

data of oceanic heat transport are scarce, however, which would justify enhancing the observations 27 

of that variable. As another example, the long-term model sensitivity of Northern Hemisphere 28 

continental surface albedo to temperature change is closely related to the equivalent quantity 29 

computed seasonally (86). However, the corresponding observational estimate is uncertain, and 30 



improved retrievals of surface albedo would help better constraining its sensitivity to future 1 

temperature changes. 2 

This approach can only lead to robust insights if the model relationships are themselves robust. In 3 

particular, there is a risk that spurious present-future relationships emerge if the ensemble is 4 

composed of highly inter-dependent models or if the models share common structural biases. Thus, 5 

precautions must be taken to ensure that the choice of observing a new variable is rooted in a solid 6 

understanding of physical processes underlying the identified emergent constraints. 7 

Case 4. Evaluation of observational products 8 

Because the in-situ polar observing system is inherently sparse, climate models are most frequently 9 

evaluated against gridded datasets such as remote sensing products, reanalyses or re-gridded 10 

products. However, each of these gridded verification datasets is subject to errors. Determining 11 

their intrinsic quality is challenging because well-sampled in-situ data are not always available to 12 

evaluate the datasets independently. 13 

Recent findings from the field of seasonal forecasting could bring an elegant solution to the 14 

problem of estimating the quality of gridded observational datasets. The idea is to use climate 15 

models as a third-party source of information to infer the statistics of observational errors. The 16 

rationale behind this argument is simple: standard skill scores used in forecast verification (e.g., 17 

correlation, root mean square error, Brier score) are sensitive to errors in both the forecast and the 18 

verification data (87,88). If one particular observational verification product is corrupted with 19 

larger errors than other products, this observational product should systematically stand out 20 

compared to others, when inspecting the forecast skill scores of model predictions. 21 

Recent results support the notion that forecast skill depends on the observation used for 22 

verification. In a recent study (89), it was found that the skill of the MPI-ESM climate model in 23 

predicting Arctic sea ice area from May to October was impacted by the choice of the observational 24 

product used for verification. A better agreement was found between the model and the Boostrap 25 

algorithm for sea ice concentration retrieval than the NASA Team algorithm. The authors 26 

hypothesized that the correction for melt pond issues applied in the Bootstrap product (but not in 27 

the NASA Team product) could be the reason. These results were confirmed independently in 28 

another study using a multi-model ensemble of seasonal forecasts (90) with four observational 29 



products. Finally, two studies conducted with the CanSIPS seasonal forecast system on the 1 

prediction of snow-water equivalent (SWE) content (91,92) highlighted that this prediction system 2 

reached higher skill scores (as measured by the anomaly coefficient correlation) for the average of 3 

four reference products than for any individual product. Furthermore, it was found that the worst 4 

scores were reached when ERA-Interim and MERRA-Land reanalysis products were used for SWE 5 

content forecast verification (92), confirming a posteriori known issues in those products identified 6 

in an earlier study using in-situ observations (93). 7 

The polar prediction community is moving, slowly but surely, towards the systematic use of 8 

ensembles of observational products for model evaluation and forecast verification. A number of 9 

fascinating properties emerge from the above-mentioned studies: (i) model forecasts tend to score 10 

better against more advanced observational products, (ii) the difference in skill can be understood 11 

on the basis of the products quality and (iii) the average of several observational products yields 12 

better score to models than any of the products alone. From that point of view, observational 13 

ensembles seem to obey the same rules as the multi-model climate model ensembles. Moreover, 14 

climate models seem suited to support objective observational dataset evaluation and selection. 15 

The principal limitation to this approach is the possibility that climate models have been tuned or 16 

calibrated to match one of the observational references under investigation, in which case the 17 

conclusions could be flawed. 18 

Case 5. Strategic placement of in-situ sampling sites 19 

Several sea ice, ocean and atmosphere variables exhibit significant covariance in space, in time, 20 

and with one another. As far as these dependencies are assumed to be linear and the covariances to 21 

be stationary, it is not required to monitor all these variables at all times and everywhere: a minimal 22 

number of well-chosen stations targeting key variables could, in principle, reveal the dominant 23 

modes of high-latitude climate variability in the real world. This problem is undoubtedly exciting 24 

from a purely academic point of view. Formally, it is equivalent to solving an optimization problem 25 

under constraints, i.e., that of explaining the maximum of the real-world polar climate variability 26 

using a minimum number of measurements. The problem is also highly relevant from a practical 27 

and operational point of view. The deployment of an observing system is subject to constraints 28 



(financial and logistical) that impose a prioritization of the location, time of the year, and type of 1 

instrument to be deployed.  2 

This problem of optimization is not new and has been formalized some 30 years ago when it was 3 

already attempted to determine the optimal placement of point gauges that would best reconstruct 4 

the global mean temperature (94,95) or the global CO2 budget (96). The problem is arguably even 5 

more challenging in polar environments and in particular for sea ice, which is in addition a drifting 6 

material. The selection of best in-situ sampling sites is only possible if spatiotemporal variability 7 

is well characterized. From that point of view, the large-scale observations provided by passive and 8 

active remote sensing sources are of limited use: the observational record is rather short, forced 9 

trends interfere with the internal variability and the retrievals are uncertain (see Case 2). Climate 10 

models, by contrast, can output any variable at all locations and seasons. While climate models 11 

cannot substitute for observations, they do provide the level of spatiotemporal sampling required 12 

for helping to answer the initial question. 13 

To our knowledge, the question of optimal sampling in polar regions has only been tackled for two 14 

cases: optimal sampling of the Arctic Ocean heat content variability and optimal sampling of the 15 

Arctic sea ice volume variability. In a model study, Lique and Steele (97) found that enhancing the 16 

oceanic mooring network in the Eurasian Basin would be beneficial for estimating the Arctic 17 

oceanic heat content variability, as the spatial anomalies display large-scale coherence in this basin 18 

(unlike the freshwater content anomalies which are rather confined in  the Canadian Basin and the 19 

Beaufort Gyre). Similarly, well-placed moored upward-looking sonars could help estimating sea 20 

ice volume variability.  In climate models and reanalyses, Arctic sea ice thickness anomalies exhibit 21 

persistence from 3 to 20 months, depending on the location, season, and source investigated (98–22 

100). At the same time, these anomalies display spatial coherence with a typical decorrelation 23 

length scale in the range 300−1000 km. These estimates, even if uncertain, can provide a lower 24 

bound on the number of independent fixed point measurement sites that would be required to 25 

capture most of the Arctic sea ice volume variability. With an ice-ocean model, a study (101) found 26 

that the judicious placement of just three sampling sites would already explain 57% of the spatial 27 

and temporal variability of annual mean sea ice thickness. Recent results obtained from four 28 

different climate models suggest that sampling monthly mean thickness at four sites could explain 29 



more than 70% of the temporal variability of Arctic sea ice volume anomalies (102). No equivalent 1 

study has been conducted for Antarctic sea ice, despite the need. 2 

While attractive in its principle, the application of this idea has several practical limitations. First, 3 

point measurements of sea ice thickness in the real world exhibit variability over a broader 4 

frequency spectrum than climate models output at their current nominal resolution. Second, there 5 

is evidence that thickness variability is not stationary (100) but does depend on the mean state 6 

(103). Namely, the persistence time scale of thickness and volume anomalies decreases as the ice 7 

thins (54), which means that a higher number of stations will be required as the Arctic sea ice 8 

transitions toward a seasonally ice-free regime. Third, it is likely that the optimal number of stations 9 

would depend on the models’ effective resolution (a limiting case would be that of a model with 10 

four grid cells over the entire Arctic, which would provide unrealistically long decorrelation 11 

scales). Finally, there is simply no guarantee that models display the right modes of variability. 12 

Even in reanalyses, which are supposed to be the most constrained gridded estimates of sea ice 13 

thickness, the optimal location of stations is reanalysis-dependent (102). 14 

Conclusions 15 

Since four decades, the number of polar observations has soared thanks to the coordination of 16 

national and international programs (e.g., space missions, in-situ campaigns, initiatives like the 17 

International Polar Year or the Year of Polar Prediction). Concurrently, the need for reliable polar 18 

predictions has become more and more pressing, fueled by rapid changes that took many by 19 

surprise. Does the supply of observations meet the demand for polar prediction and do we make 20 

the best possible use of existing data? The question is still open, as polar prediction has not reached 21 

its age of maturity yet. However, given the rapidly changing seasonality of the Arctic system (104), 22 

the stationarity of predictor-predictand relationships might not hold in the future (105), which 23 

would mean that the observations of yesterday would not necessarily be fit for evaluating or 24 

initializing the predictions of tomorrow. What are the conceptual tools at hand to design such an 25 

observing system, then? 26 

In a review published in this journal three years ago, Kay and colleagues (69) advocated a “two-27 

way street” paradigm for Arctic cloud research, whereby lessons learned from observations should 28 

feed climate model development and vice-versa. The “vice-versa” part of the statement is arguably 29 



the least obvious, as one would a priori assume that climate model development is following, not 1 

preceding, the development of observing systems. The case of polar prediction and more 2 

particularly sea ice prediction crystallizes the idea that the future development of cost-effective 3 

observing systems will have to rely, at least in part, on the intelligent use of climate models. We 4 

illustrated this idea with five cases taken from the recent literature on polar prediction, with most 5 

examples from sea ice. Our five cases illustrate that there is no best observing system in an absolute 6 

sense, but rather good observing systems that can help to answer specific scientific questions. We 7 

note that these five cases are transposable to non-polar regions. A recent study (106) made a strong 8 

case of using climate OSSEs such as those described in Case 1, to test the added value of new 9 

possible observations on answering climate questions. 10 

A recurring idea behind the use of climate models for observational purposes is to rely on “Nature 11 

Runs” (39,40), i.e., numerical climate model simulations that emulate the real world and for which 12 

the impact of a specific observational choice can be quantitatively tested. The validity of this 13 

approach can be questioned (50). One issue is that climate models have biases, so they might not 14 

perfectly emulate what one is trying to observe. Another issue is that the climate models might 15 

have been extensively tuned toward a particular type of observations, which would flaw the 16 

reasoning and give rise to circular arguments. Nevertheless, in many of the cases highlighted here, 17 

climate models bring first-order answers to questions that would otherwise not be answered: What 18 

is the ideal level of post-processing for consistent climate model evaluation? What is the impact of 19 

assumptions in satellite retrieval algorithms on the final product? Where should sampling sites be 20 

deployed during coordinated intensive campaigns like the Special Observing Periods of the Year 21 

of Polar Prediction? Are wintertime observations more important than summertime ones for a 22 

specific question? 23 

It has been argued (107) that one way to improve weather and climate predictions will be to follow 24 

a seamless approach, whereby the same numerical models are used in both weather and climate 25 

contexts. Our review goes a step further by highlighting that many concepts and methodologies 26 

already routinely applied in the NWP models  (such as OSEs/OSSEs and satellite simulation) 27 

should systematically be transposed to climate models to inform on the optimal design of observing 28 

systems for climate science, especially in remote polar regions where observations are most 29 

needed. 30 



Acknowledgements 1 

The research leading to these results has received funding from the Belgian Fonds National de la 2 

Recherche Scientifique (F.R.S.-FNRS), and the European Commission’s Horizon 2020 projects 3 

APPLICATE (GA 727862) and PRIMAVERA (GA 641727). 4 

We acknowledge two anonymous reviewers, as well as Peter Bauer, Irina Sandu, Dirk Notz and 5 

Leandro Ponsoni for useful insights and feedback on the manuscript. 6 

The corresponding author states that there is no conflict of interest. 7 

References 8 

1.  Stevens B, Schwartz SE. Observing and Modeling Earth’s Energy Flows. Surv Geophys. 9 

2012;33:779–816.  10 

2.  Anav A, Friedlingstein P, Kidston M, Bopp L, Ciais P, Cox P, et al. Evaluating the Land 11 

and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models. J 12 

Clim. 2013;26(18):6801–43.  13 

3.  Gent PR. Coupled Models and Climate Projections. 2nd ed. Vol. 103, Ocean Circulation and 14 

Climate: A 21st Century Perspective. Elsevier Ltd.; 2013. 609-623 p.  15 

4.  Hegerl G, Zwiers F. Use of models in detection and attribution of climate change. Wires 16 

Clim Chang. 2011;2:570–91.  17 

5.  Stott PA, Christidis N, Otto FEL, Sun Y, Vanderlinden J, van Oldenborgh GJ, et al. 18 

Attribution of extreme weather and climate-related events. Wires Clim Chang. 2016;7:23–19 

41.  20 

6.  Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, et al. Global 21 

warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C 22 

above pre-industrial levels and related global greenhouse gas emission pathways, in the 23 

context of strengthening the global response to the threat of climate change. 2018.  24 

7.  Kravitz B, Caldeira K, Boucher O, Robock A, Rasch PJ, Alterskjær K, et al. Climate model 25 

response from the Geoengineering Model Intercomparison Project (GeoMIP). J Geophys 26 



Res Atmos. 2013;118:8320–32.  1 

8.  Lazzara MA, Weidner GA, Keller LM, Thom JE, Cassano JJ. Antarctic Automatic Weather 2 

Station Program: 30 Years of Polar Observation. Bull Am Meteorol Soc. 2012 Mar 3 

23;93(10):1519–37.  4 

9.  IABP. International Arctic Buoy Programme [Internet]. Available from: 5 

http://iabp.apl.washington.edu 6 

10.  IPAB. International Programme for Antarctic Buoys 2001 [Internet]. 2001. Available from: 7 

https://www.ipab.aq/ 8 

11.  Woodgate RA. Increases in the Pacific inflow to the Arctic from 1990 to 2015 , and insights 9 

into seasonal trends and driving mechanisms from year-round Bering Strait mooring data. 10 

Prog Oceanogr. 2018;160(June 2017):124–54.  11 

12.  Worby AP, Geiger CA, Paget MJ, Van Woert ML, Ackley SF, DeLiberty TL. Thickness 12 

distribution of Antarctic sea ice. J Geophys Res Ocean. 2008;113(5):1–14.  13 

13.  Tomasi C, Petkov B, Benedetti E, Valenziano L, Vitale V. Analysis of a 4 year radiosonde 14 

data set at Dome C for characterizing temperature and moisture conditions of the Antarctic 15 

atmosphere. J Geophys Res. 2011;116(D15304):1–18.  16 

14.  Ehrlich A, Wendisch M, Lüpkes C, Buschmann M, Bozem H, Chechin D, et al. A 17 

comprehensive in situ and remote sensing data set from the Arctic CLoud Observations 18 

Using airborne measurements during polar Day (ACLOUD) campaign. Earth Syst Sci Data 19 

Discuss [Internet]. 2019;2019:1–42. Available from: https://www.earth-syst-sci-data-20 

discuss.net/essd-2019-96/ 21 

15.  Kurtz NT, Farrell SL, Studinger M, Galin N, Harbeck JP, Lindsay R, et al. Sea ice thickness, 22 

freeboard, and snow depth products from Operation IceBridge airborne data. Cryosphere. 23 

2013;7(4):1035–56.  24 

16.  Kwok R, Rothrock DA. Decline in Arctic sea ice thickness from submarine and ICESat 25 

records: 1958-2008. Geophys Res Lett. 2009;36(15).  26 

17.  de Boer G, Argrow B, Cassano J, Cione J, Frew E, Lawrence D, et al. Advancing Unmanned 27 



Aerial Capabilities for Atmospheric Research. Bull Am Meteorol Soc [Internet]. 1 

2018;100(3):ES105-ES108. Available from: https://doi.org/10.1175/BAMS-D-18-0254.1 2 

18.  Williams G, Maksym T, Wilkinson J, Kunz C, Murphy C, Kimball P, et al. Thick and 3 

deformed Antarctic sea ice mapped with autonomous underwater vehicles. Nat Geosci. 4 

2015;8:61–7.  5 

19.  Lavergne T, Sørensen AM, Kern S, Tonboe R, Notz D, Aaboe S, et al. Version 2 of the 6 

EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. 7 

Cryosphere. 2019;13:49–78.  8 

20.  Kaleschke L, Maaß N, Mäkynen M, Drusch M. Sea ice thickness retrieval from SMOS 9 

brightness temperatures during the Arctic freeze-up period. Geophys Res Lett. 10 

2012;39(L05501):1–5.  11 

21.  Hori M, Sugiura K, Kobayashi K, Aoki T, Tanikawa T, Kuchiki K, et al. Remote Sensing 12 

of Environment A 38-year ( 1978 – 2015 ) Northern Hemisphere daily snow cover extent 13 

product derived using consistent objective criteria from satellite-borne optical sensors. 14 

Remote Sens Environ [Internet]. 2017;191:402–18. Available from: 15 

http://dx.doi.org/10.1016/j.rse.2017.01.023 16 

22.  Zwally HJ, Yi D, Kwok R, Zhao Y. ICESat measurements of sea ice freeboard and estimates 17 

of sea ice thickness in the Weddell Sea. J Geophys Res Ocean. 2008;113(2):1–17.  18 

23.  Csatho BM, Schenk AF, Veen CJ Van Der, Babonis G, Duncan K. Laser altimetry reveals 19 

complex pattern of Greenland Ice Sheet dynamics. Proc Natl Acad Sci. 2014;111(52).  20 

24.  Quartly GD, Rinne E, Passaro M, Andersen OB, Dinardo S, Fleury S, et al. Review of Radar 21 

Altimetry Techniques over the Arctic Ocean: Recent Progress and Future Opportunities for 22 

Sea Level and Sea Ice Research. Cryosph Discuss [Internet]. 2018;2018:1–51. Available 23 

from: https://www.the-cryosphere-discuss.net/tc-2018-148/ 24 

25.  Meier WN, Hovelsrud GK, Van Oort BEH, Key JR, Kovacs KM, Michel C, et al. Arctic sea 25 

ice in transformation: A review of recent observed changes and impacts on biology and 26 

human activity. Rev Geophys. 2014;52(3):185–217.  27 

26.  Brown RD, Robinson DA. Northern Hemisphere spring snow cover variability and change 28 



over 1922–2010 including an assessment of uncertainty. Cryosph [Internet]. 2011;5(1):219–1 

29. Available from: https://www.the-cryosphere.net/5/219/2011/ 2 

27.  Kjeldsen KK, Korsgaard NJ, Bjørk AA, Khan SA, Box JE, Funder S, et al. Spatial and 3 

temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900. Nature 4 

[Internet]. 2015;528:396–400. Available from: http://dx.doi.org/10.1038/nature16183 5 

28.  Shepherd A, Ivins E, Rignot E, Smith B, van den Broeke M, Velicogna I, et al. Mass balance 6 

of the Antarctic Ice Sheet from 1992 to 2017. Nature [Internet]. 2018;558(7709):219–22. 7 

Available from: https://doi.org/10.1038/s41586-018-0179-y 8 

29.  Bauer P, Bradley A, Bromwich D, Casati B, Chen P, Chevallier M, et al. WWRP Polar 9 

Prediction Project: Implementation Plan for the Year of Polar Prediction (YOPP) [Internet]. 10 

Available from: 11 

https://www.polarprediction.net/fileadmin/user_upload/www.polarprediction.net/Home/Y12 

OPP/YOPP_Documents/FINAL_WWRP_PPP_YOPP_Plan_28_July_2016_web-1.pdf 13 

30.  Jung T, Gordon N, Bauer P, Bromwich DH, Chevallier M, Day JJ, et al. Advancing polar 14 

prediction capabilities on daily to seasonal time scales. Bull Am Meteorol Soc. 15 

2016;(September):1631–48.  16 

31.  Bauer P. Observing System Experiments (OSE) to estimate the impact of observations in 17 

NWP [Internet]. 2009. Available from: 18 

https://doi.org/www.ecmwf.int/sites/default/files/elibrary/2009/7978-observing-19 

systemexperiments-ose-estimate-impact-observations-nwp.pdf 20 

32.  Arnold CP, Dey CH. Observing-Systems Simulation Experiments : Past, Present, and 21 

Future. Bull Am Meteorol Soc. 1986;67(6):687–95.  22 

33.  Atlas R. Atmospheric Observations and Experiments to Assess Their Usefulness in Data 23 

Assimilation. J Meteorol Soc Japan. 1997;75(1B):111–30.  24 

34.  Zapotocny TH, Jung JA, Le Marshall JF, Treadon RE. A Two-Season Impact Study of Four 25 

Satellite Data Types and Rawinsonde Data in the NCEP Global Data Assimilation System. 26 

Weather Forecast. 2008;23:80–100.  27 

35.  Randriamampianina R, Schyberg H, Mile M. Observing System Experiments with an Arctic 28 



Mesoscale Numerical Weather Prediction Model. 2019;11(981):1–23.  1 

36.  Yamazaki A, Inoue J, Dethloff K, Maturilli M, König-Langlo G. Impact of radiosonde 2 

observations on forecasting summertime Arctic cyclone formation. J Geophys Res. 3 

2015;120:3249–73.  4 

37.  Lawrence H, Farnan J, Bormann N, Bauer P. An Assessment of the use of observations in 5 

the Arctic at ECMWF [Internet]. 2019. Available from: 6 

https://www.ecmwf.int/sites/default/files/elibrary/2019/18925-assessment-use-7 

observations-arctic-ecmwf.pdf 8 

38.  Inoue J, Yamazaki A, Ono J, Dethloff K, Maturilli M. Additional Arctic observations 9 

improve weather and sea-ice forecasts for the Northern Sea Route. Sci Rep [Internet]. 10 

2015;5(16868):1–8. Available from: http://dx.doi.org/10.1038/srep16868 11 

39.  Masutani M, Woollen JS, Lord SJ, Emmitt GD, Kleespies TJ, Wood SA, et al. Observing 12 

system simulation experiments at the National Centers for Environmental Prediction. J 13 

Geophys Res. 2010;115(D07101):1–15.  14 

40.  Masutani M, Garand L, Lahoz W, Andersson E, Rochon Y, Riishojgaard L, et al. Observing 15 

System Simulation Experiments: Justifying new Arctic Observation Capabilities [Internet]. 16 

Available from: https://repository.library.noaa.gov/view/noaa/6965 17 

41.  Hardt M, Scherbaum F. The design of optimum networks for aftershock recordings. [cited 18 

2019 Oct 8];117(3):716–26. Available from: 19 

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-246X.1994.tb02464.x 20 

42.  Kaminski T, Rayner PJ. Assimilation and Network Design. In: Ecological Studies [Internet]. 21 

Springer New York; 2008. p. 33–52. Available from: https://doi.org/10.1007/978-0-387-22 

76570-9_3 23 

43.  Day JJ, Hawkins E, Tietsche S. Will Arctic sea ice thickness initialization improve seasonal 24 

forecast skill? Geophys Res Lett. 2014;41(21):7566–75.  25 

44.  Blanchard-Wrigglesworth E, Armour KC, Bitz CM, Deweaver E. Persistence and inherent 26 

predictability of Arctic sea ice in a GCM ensemble and observations. J Clim. 27 

2011;24(1):231–50.  28 



45.  Chevallier M, Salas-Mélia D. The role of sea ice thickness distribution in the arctic sea ice 1 

potential predictability: A diagnostic approach with a coupled GCM. J Clim. 2 

2012;25(8):3025–38.  3 

46.  Zhang YF, Bitz CM, Anderson JL, Collins N, Hendricks J, Hoar T, et al. Insights on Sea Ice 4 

data assimilation from perfect model observing system simulation experiments. J Clim. 5 

2018;31(15):5911–26.  6 

47.  Kaminski T, Kauker F, Eicken H, Karcher M. Exploring the utility of quantitative network 7 

design in evaluating Arctic sea ice thickness sampling strategies. [cited 2019 Oct 8 

8];9(4):1721–33. Available from: https://www.the-cryosphere.net/9/1721/2015/ 9 

48.  Kaminski T, Kauker F, Toudal Pedersen L, Voßbeck M, Haak H, Niederdrenk L, et al. Arctic 10 

Mission Benefit Analysis: impact of sea ice thickness, freeboard, and snow depth products 11 

on sea ice forecast performance. [cited 2019 Oct 8];12(8):2569–94. Available from: 12 

https://www.the-cryosphere.net/12/2569/2018/ 13 

49.  Newman L, Schofield O, Wahlin A, Constable A, Swart S, Williams M, et al. Understanding 14 

the Southern Ocean through sustained Observations. Bull Aust Meteorol Oceanogr Soc. 15 

2016;28(January):170.  16 

50.  Privé NC, Errico RM, Tai K. The influence of observation errors on analysis error and 17 

forecast skill investigated with an observing system simulation experiment. J Geophys Res. 18 

2013;118:5332–46.  19 

51.  Zygmuntowska M, Rampal P, Ivanova N, Smedsrud LH. Uncertainties in Arctic sea ice 20 

thickness and volume: New estimates and implications for trends. Cryosphere. 21 

2014;8(2):705–20.  22 

52.  Bunzel F, Notz D, Pedersen LT. Retrievals of Arctic Sea-Ice Volume and Its Trend 23 

Significantly Affected by Interannual Snow Variability. Geophys Res Lett. 24 

2018;45(11):11751–9.  25 

53.  Notz D. How well must climate models agree with observations? Philos Trans R Soc A Math 26 

Phys Eng Sci. 2015;373(2052).  27 

54.  Massonnet F, Vancoppenolle M, Goosse H, Docquier D, Fichefet T, Blanchard-28 



Wrigglesworth E. Arctic sea-ice change tied to its mean state through thermodynamic 1 

processes. Nat Clim Chang. 2018;8(7):599–603.  2 

55.  Warren SG, Rigor IG, Untersteiner N, Radionov VF, Bryazgin NN, Aleksandrov YI, et al. 3 

Snow Depth on Arctic Sea Ice. J Clim [Internet]. 1999;12(6):1814–29. Available from: 4 

https://doi.org/10.1175/1520-0442(1999)012%3C1814:SDOASI%3E2.0.CO 5 

56.  Laxon SW, Giles KA, Ridout AL, Wingham DJ, Willatt R, Cullen R, et al. CryoSat-2 6 

estimates of Arctic sea ice thickness and volume. Geophys Res Lett. 2013;40(4):732–7.  7 

57.  Kern S, Lavergne T, Notz D, Pedersen LT, Tonboe RT, Sørensen AM. Satellite Passive 8 

Microwave Sea-Ice Concentration Data Set Intercomparison : Closed Ice and Ship-Based 9 

Observations. Cryosph Discuss [Internet]. 2019;1–55. Available from: 10 

https://doi.org/10.5194/tc-2019-120 11 

58.  Ivanova N, Pedersen LT, Tonboe RT, Kern S, Heygster G, Lavergne T, et al. Inter-12 

comparison and evaluation of sea ice algorithms: Towards further identification of 13 

challenges and optimal approach using passive microwave observations. Cryosphere. 14 

2015;9(5):1797–817.  15 

59.  Andersen S, Tonboe R, Kaleschke L, Heygster G, Pedersen LT. Intercomparison of passive 16 

microwave sea ice concentration retrievals over the high-concentration Arctic sea ice. J 17 

Geophys Res. 2007;112(C08004).  18 

60.  Sallila H, Farrell SL, Mccurry J, Rinne E. Assessment of contemporary satellite sea ice 19 

thickness products for Arctic sea ice. Cryosph Discuss [Internet]. 2019;1187–213. Available 20 

from: https://doi.org/10.5194/tc-13-1187-2019 21 

61.  Wang X, Key J, Kwok R, Zhang J. Comparison of Arctic Sea Ice Thickness from Satellites 22 

, Aircraft , and PIOMAS Data. Remote Sens. 2016;8(713):1–17.  23 

62.  Bodas-Salcedo A, Webb MJ, Bony S, Chepfer H, Dufresne J, Zhang Y, et al. COSP Satellite 24 

simulation software for model assessment. Bull Am Meteorol Soc. 2015;92(8):1023–43.  25 

63.  Klein SA, Jakob C. Validation and Sensitivities of Frontal Clouds Simulated by the ECMWF 26 

Model. Mon Weather Rev [Internet]. 1999 Oct 1;127(10):2514–31. Available from: 27 

https://doi.org/10.1175/1520-0493(1999)127%3C2514:VASOFC%3E2.0.CO 28 



64.  Kay JE, Hillman BR, Klein SA, Y. Z, Medeiros B, Pincus R, et al. Exposing Global Cloud 1 

Biases in the Community Atmosphere Model (CAM) Using Satellite Observations and Their 2 

Corresponding Instrument Simulators. J Clim. 2012;25:5190–207.  3 

65.  Kay JE, Bourdages L, Miller NB, Morrison A, Yettella V, Chepfer H, et al. Evaluating and 4 

improving cloud phase in the community atmosphere model version 5 using spaceborne 5 

lidar observations. J Geophys Res. 2016;121(8):4162–76.  6 

66.  Chepfer H, Bony S, Winker D, Chiriaco M, Dufresne J-L, Sèze G. Use of CALIPSO lidar 7 

observations to evaluate the cloudiness simulated by a climate model. Geophys Res Lett 8 

[Internet]. 2008;35(15). Available from: https://doi.org/10.1029/2008GL034207 9 

67.  Roberts AF. A Variational Method for Sea Ice Ridging in Earth System Models. J Adv 10 

Model Earth Syst. 2019;11:771–805.  11 

68.  Rampal P, Bouillon S, Ólason E, Morlighem M. NeXtSIM: A new Lagrangian sea ice 12 

model. Cryosphere. 2016;10(3):1055–73.  13 

69.  Kay JE, Ecuyer TL, Chepfer H, Loeb N, Morrison A, Cesana G. Recent Advances in Arctic 14 

Cloud and Climate Research. Curr Clim Chang Reports. 2016;2:159–69.  15 

70.  Lavergne T. A step back is a move forward. 16 

https://doi.org/10.6084/m9.figshare.5501536.v1. 2017.  17 

71.  Stroeve JC, Kattsov V, Barrett A, Serreze M, Pavlova T, Holland M, et al. Trends in Arctic 18 

sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett. 2012;39(16):1–7.  19 

72.  Smith DM, Screen JA, Deser C, Cohen J, Fyfe JC, García-Serrano J, et al. The Polar 20 

Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: 21 

investigating the causes and consequences of polar amplification. Geosci Model Dev 22 

[Internet]. 2019;12(3):1139–64. Available from: https://www.geosci-model-23 

dev.net/12/1139/2019/ 24 

73.  Vihma T, Screen J, Tjernström M, Newton B, Zhang X, Popova V, et al. The atmospheric 25 

role in the Arctic water cycle: A review on processes, past and future changes, and their 26 

impacts. J Geophys Res  Biogeosciences. 2015;586–620.  27 



74.  Rawlins MA, Steele M, Holland MM, Adam JC, Cherry JE, Francis JA, et al. Analysis of 1 

the Arctic System for Freshwater Cycle Intensification: Observations and Expectations. J 2 

Clim [Internet]. 2010 Jun 18;23(21):5715–37. Available from: 3 

https://doi.org/10.1175/2010JCLI3421.1 4 

75.  Eyring V, Cox PM, Flato GM, Gleckler PJ, Abramowitz G, Caldwell P, et al. Taking climate 5 

model evaluation to the next level. Nat Clim Chang [Internet]. 2019; Available from: 6 

http://dx.doi.org/10.1038/s41558-018-0355-y 7 

76.  Bracegirdle TJ, Stephenson DB. On the robustness of emergent constraints used in 8 

multimodel climate change projections of arctic warming. J Clim. 2013;26(2):669–78.  9 

77.  Boé J, Hall A, Qu X. September sea-ice cover in the Arctic Ocean projected to vanish by 10 

2100. Nat Geosci [Internet]. 2009;2(5):341–3. Available from: 11 

http://dx.doi.org/10.1038/ngeo467 12 

78.  Collins M, Chandler RE, Cox PM, Huthnance JM, Rougier J, Stephenson DB. Quantifying 13 

future climate change. Nat Clim Chang [Internet]. 2012;2(6):403–9. Available from: 14 

http://dx.doi.org/10.1038/nclimate1414 15 

79.  Massonnet F, Fichefet T, Goosse H, Bitz CM, Philippon-Berthier G, Holland MM, et al. 16 

Constraining projections of summer Arctic sea ice. Cryosphere. 2012;6(6):1383–94.  17 

80.  Borodina A, Fischer EM, Knutti R. Emergent Constraints in Climate Projections : A Case 18 

Study of Changes in High-Latitude Temperature Variability. J Clim. 2017;30:3655–70.  19 

81.  Bitz CM, Roe GH. A Mechanism for the High rate of Sea Ice Thinning in the Arctic Ocean. 20 

J Clim. 2004;i:1–6.  21 

82.  van der Linden EC, Bintanja R, Hazeleger W, Katsman CA. The role of the mean state of 22 

Arctic sea ice on near-surface temperature trends. J Clim. 2014;27(8):2819–41.  23 

83.  Bracegirdle TJ, Stephenson DB, Turner J, Phillips T. The importance of sea ice area biases 24 

in 21st century multimodel projections of Antarctic temperature and precipitation. 25 

2015;832–9.  26 

84.  Klein SA, Hall A. Emergent Constraints for Cloud Feedbacks. Curr Clim Chang Reports. 27 



2015;1:276–87.  1 

85.  Mahlstein I, Knutti R. Ocean heat transport as a cause for model uncertainty in projected 2 

Arctic warming. J Clim. 2011;24(5):1451–60.  3 

86.  Hall A, Qu X. Using the current seasonal cycle to constrain snow albedo feedback in future 4 

climate change. Geophys Res Lett. 2006;33(3):1–4.  5 

87.  Bowler NE. Accounting for the effect of observation errors on verification of MOGREPS. 6 

Meteorol Appl. 2008;15:199–205.  7 

88.  Ferro C. Measuring forecast performance in the presence of observation error. Q J R 8 

Meteorol Soc. 2017;2:2665–76.  9 

89.  Bunzel F, Notz D, Baehr J, Müller WA, Fröhlich K. Seasonal climate forecasts significantly 10 

affected by observational uncertainty of Arctic sea ice concentration. Geophys Res Lett. 11 

2016;43(2):852–9.  12 

90.  Massonnet F, Bellprat O, Guemas V, Doblas-Reyes FJ. Using climate models to estimate 13 

the quality of global observational data sets. Science (80- ). 2016;354(6311).  14 

91.  Kushner PJ, Mudryk LR, Merryfield W, Ambadan JT, Berg A, Bichet A, et al. Canadian 15 

snow and sea ice : assessment of snow , sea ice , and related climate processes in Canada’s 16 

Earth system model and climate-prediction system. Cryosphere. 2018;12:1137–56.  17 

92.  Sospedra-Alfonso R, Merryfield WJ, Kharin V V. Representation of Snow in the Canadian 18 

Seasonal to Interannual Prediction System . Part II : Potential Predictability and Hindcast 19 

Skill. J Hydrometeorol. 2016;17:2511–35.  20 

93.  Reichle R. The MERRA-Land Data Product [Internet]. Vol. 3. 2012. Available from: 21 

http://gmao.gsfc.nasa.gov/pubs/office_notes 22 

94.  Hardin JW, North GR, Shen SS. Minimum Error Estimates of Global Mean Temperature 23 

Through Optimal Arrangement of Gauges. Environmetrics. 1992;3:15–27.  24 

95.  North GR, Shen SS, Hardin JW. Estimation of the Global Mean Temperature with Point 25 

Gauges. Environmetrics. 1992;1–14.  26 

96.  Rayner PJ, Enting IG, Trudinger CM. Optimizing the CO2 observing network for 27 



constraining sources and sinks. Tellus B Chem Phys Meteorol [Internet]. 1996 Jan 1 

1;48(4):433–44. Available from: https://doi.org/10.3402/tellusb.v48i4.15924 2 

97.  Lique C, Steele M. Seasonal to decadal variability of Arctic Ocean heat content: A model-3 

based analysis and implications for autonomous observing systems. J Geophys Res Ocean 4 

[Internet]. 2013 Apr 1;118(4):1673–95. Available from: https://doi.org/10.1002/jgrc.20127 5 

98.  Blanchard-Wrigglesworth E, Bitz CM. Characteristics of Arctic sea-ice thickness variability 6 

in GCMs. J Clim. 2014;27(21):8244–58.  7 

99.  Chevallier M, Massonnet F, Goessling H, Guemas V, Jung T. The Role of Sea Ice in Sub-8 

seasonal Predictability. In: Sub-seasonal to seasonal prediction The gap between weather 9 

and climate forecasting. 2019. p. 201–21.  10 

100.  Ponsoni L, Massonnet F, Fichefet T, Chevallier M, Docquier D. On the timescales and 11 

length scales of the Arctic sea ice thickness anomalies : a study based on 14 reanalyses. 12 

Cryosphere. 2019;13:521–43.  13 

101.  Lindsay RW, Zhang J. Arctic Ocean Ice Thickness: Modes of variability and the Best 14 

Locations from Which to Monitor Them. J Phys Oceanogr. 2006;36:496–506.  15 

102.  Ponsoni L, Massonnet F, Docquier D, Van Achter G, Fichefet T. Statistical predictability of 16 

the Arctic sea ice volume anomaly: identifying predictors and optimal sampling locations. 17 

to be Submitt to Cryosph. 2019;  18 

103.  Labe Z, Magnusdottir G, Stern H. Variability of Arctic Sea Ice Thickness Using PIOMAS 19 

and the CESM Large Ensemble. J Clim. 2018;31:3233–47.  20 

104.  Bintanja R, Van Der Linden EC. The changing seasonal climate in the Arctic. Sci Rep. 21 

2013;3:1–8.  22 

105.  Holland MM, Stroeve J. Changing seasonal sea ice predictor relationships in a changing 23 

Arctic climate. Geophys Res Lett. 2011;38(18):1–6.  24 

106.  Weatherhead EC, Wielicki BA, Ramaswamy V, Abbott M, Ackerman TP, Atlas R, et al. 25 

Designing the Climate Observing Systemof the Future Elizabeth. Earth’s Futur. 2017;6:80–26 

102.  27 



107.  Brunet G, Shapiro M, Hoskins B, Moncrieff M, Dole R, Kiladis GN, et al. Collaboration of 1 

the Weather and Climate Communities to Advance Subseasonal-to-Seasonal Prediction. 2 

Bull Am Meteorol Soc [Internet]. 2010 May 4;91(10):1397–406. Available from: 3 

https://doi.org/10.1175/2010BAMS3013.1 4 

 5 


