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Questions and goals

What is the unforced decadal and centennial variability of sea ice on interannual to multi-centennial
timescales?

Can natural variability at different timescales tell us about the influence of Arctic sea ice on climate (if
any at all)?

» LowArctic SIC in recentmay have been associated with anomalous seasonalities in polarand midlatitude regions,
perhaps favoring wetsummers (Screen, 2013) or colder winters over Eurasia (Peings and Magnusdottir,2014; Kim
etal.,, 2014;Mori etal., 2014, etc.)

* Yetclear picture of the climate response to sea ice lossin observations or climate models has failed to emerge
(Screenet al., 2013),as it is easily overpowered by natural variability in the midlatitudes (Screen etal., 2014;
Swart, 2017)and may depend on the background state of the atmosphere (Screen,2017; Screen et al., 2018).

Goals:

(1) To assess interannual to decadal variability in Arctic sea ice cover in a large set of “freely
evolving” and "constrained” climate model simulations

(2) To assess what might be the influence of sea ice on climate at interannual or multi-decadal
timescales.



Methodology and structure

Method:

PRIMAVERA: We analyze sea ice and climate interaction in freely evolving “control” simulations
(perpetual 1950 radiative forcings) run at (a) standard resolution [300 years]and (b) high resolution
[150 years].

PAMIP: We analyze climate response to sea ice change from 2 ensembles of simulations forced by
present-day SST and 2000 radiative forcing with (a) present-day Arctic SIC and (b) future Arctic SIC.

Structure:

1. Decadal climate variabilities in freely evolving climate simulations are described
(PRIMAVERA runs).

2. Climate variations associated with Arctic sea ice natural variability are decomposed into high
and low-frequency components.

3. Climate signature associated with low/high SIE (from PRIMAVERA runs) are compared with
the forced response of climate to a large decrease in sea ice extent (from PAMIP runs).
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Fully-coupled EC-Earth: Seasonal and interannual SIE variability

(PRIMAVERA 1950-ocontrol runs)
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Multi-year SIE climatology is similar between standard (LR) and high-resolution
(HR) simulation.....
.... But SIE has more low-frequency variability in LR than HR run.
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Atlantic meridional overturning circulation (AMOC) has much greater amplitude in
the LR than HR run...

LR: The multi-decadal changes in the AMOC are coupled with those in SIE
HR: There is no statistical relation between AMOC and SIE
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Timing of SIE and AMOC
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LR: changes in SIE appear to lead changes in AMOC by about 5 years.

What are the surface climate anomalies associated with SIE variability on interannual vs.
multidecadal timescale?
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SIE in LR (Low/High Frequency component)
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Comparing SIC patterns
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SIC variability patterns are similar across timescales and spatial resolution.
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Comparing 2-m temperature patterns
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Interanmed SIE in sep LAY

Comparing 500 hPa Geopotential height
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PAMIP (september)

Let’'s compare climate patterns associated with natural Arctic SIC anomalies (from the PRIMAVERA runs)
with those from forced SIC changes (from PAMIP runs)

We run 50 members of fixed present-day SST and SIC (pdSST-pdSIC) and compare
them to 50 members of fixed present-day SST and future Arctic SIC (pdSST-futArcSIC)
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PRIMAVERA vs PAMIP (September):

SIC [%]
HF-FLT PRIMAVERA (LR)
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PRIMAVERA vs PAMIP (September):
surface pressure [hPa]
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For September, there is poor agreement between PAMIP and
PRIMAVERA circulation patterns



PRIMAVERA vs PAMIP (March)
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PRIMAVERA vs PAMIP (March):
surface pressure [hPa]
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For March, there is better qualitative agreement between PAMIP and
PRIMAVERA circulation patterns (mostly over the Atlantic and
Eurasian sectors)



Summary

SIE shows strong inter-annual variability in fully coupled EC-Earth model run at standard resolution,
but not at high-resolution.

A strong coupling of Arctic sea ice with the AMOC explains large variability amplitude at multi-
decadal timescales in the lower resolution simulation.

The overall patterns of climate anomalies associated with years of low/high SIE is quite different
between LR and HR simulations. Removing this low-frequency componentfrom the LR simulation
provides a picture more consistent with HR.

PAMIP simulations with fixed present-day SST and reduced SIE show spatial patterns in surface
climate (e.g. temperature and surface pressure) response at least qualitatively comparable to the
climate associations found in the PRIMAVERA runs.

Agreement in climate patterns associated with SIE in PAMIP and PRIMAVERA experiments could
potentially be improved by using fixed SIC masks that better match natural SIC variability patterns.



Thank you!

Question?

"This project has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Skfodowska-
Curie grant agreement H2020-MSCA-COFUND-2016-754433".






110" b’ |

Interanmea’ SE in sep ILR)

SIC pattern

Isteranme’ SE In sep ILR)

Interannual SIE for HR (cyan) [10° km?]

2.0

154

1.0 4

0.5 1

0.0 1

[10° km?]

-0.5

-1.0 4

-1.5

x

b

MO s WM M
o

Year

91

104

117

130

1.0

14

1.0

- 0.6

- 0.2

-1.0

-1.4

-1.8



110° v’}

September climatological pattern associated with SIE across timescales
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PRIMAVERA vs PAMIP (September):
2-m temperature [K]
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PAMIP

PRIMAVERA vs PAMIP (March):
2-m temperature [K]
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LR Rainfall pattern in LR and HR HR
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Issue: a number of studies have looked at whether years or periods of low
sea ice extent are good proxies for the potential influence of sea ice on the
Northern Hemisphere climate. Inter-annual variability in SIC and its
association with climate is heavily influenced by the AMOC,; climate pattern
associated with those changes are different from those found in forced Sea
ice experiments. What happens if you look at SIC variability and its
associated climate pattern at different temporal timescales?

Hypothesis: Isolating the component of SIE natural variability NOT
associated with AMOC in a set of fully coupled climate simulations (part of
the PRIMAVERA project) provides spatial patterns of changes more akin to
that found in PAMIP experiments in which sea ice changes are forced.



