
Order Reduction on Dynamic Systems using
Machine Learning

Academic Coordinator Andrés Gómez Tato
University Galicia Supercomputing Center (CESGA)

Business Coordinator Ángel Rivero Jiménez
Company Repsol Technology Center

Specialist Pablo Solano López
University Technical University of Madrid (UPM)

Team David García-Selfa (University of Santiago de Compostela), Manuel
Díaz Méndez (ITMATI), Francisco Pena and Jaime López García (University
of Santiago de Compostela and ITMATI), Marco Martinolli (Politecnico of
Milano), Bernadett Stadler (Industrial Mathematics Institute, Johannes
Kepler University Linz), Naomi Auer (WIAS Berlin), Rocío Calero
Fernández-Cortes (UPM), María del Mar González Nogueras (Autonomous
University of Madrid) and Umberto Emil Morelli and Francisco Mora Posada
(ITMATI)

| 47

Order Reduction on Dynamic Systems using

Machine Learning

Ángel Rivero Jiménez1, Pablo Solano López2, Andrés Gómez Tato3,
David García-Selfa4, Manuel Díaz Méndez5,

Francisco Pena6, Marco Martinolli7, Bernadett Stadler8,
Naomi Auer9, and Umberto Emil Morelli9

Abstract

This paper summarizes the results of the P3 group of ESGI 139th event.
Due to recent results in the area of Deep Learning for solving Partial
Di�erential Equations, REPSOL proposed to study the possibility of
using these techniques in the case of chaotic PDEs as Lorenz or Kuramoto-
Sivashinsky equations. Starting from [1] and [2], the workgroup was
focused on study these methods and the di�culties to applied to some
cases. The main conclusions are that Reservoir networks, as stated by
[1], allow to approximate the results of these equations once a initial set
of results are produced using other classical methods, but they could
be di�cult to parameterize and have some issues with the scalability.
Also, from [2], the usage of autoencoders could reduce the order of
the equations. As consequence, it seems that combining both methods
(autoencoder plus Reservoir Neural Networks) could provide a plausible
method to make an order reduction on chaotic PDEs which deserves
more research.

1REPSOL Center of Technology
2Área de Ingeniería Aeroespacial, Universidad Rey Juan Carlos
3Galicia Supercomputing Centre (CESGA); agomez@cesga.es
4Group of Nonlinear Physics, Faculty of Physics, University of Santiago de Compostela

(USC)
5Technological Institute for Industrial Mathematics (ITMATI) and Politecnico di Milano
6Applied Mathematics Department (USC)
7Johannes Kepler University Linz
8WIAS Berlin
9Technological Institute for Industrial Mathematics (ITMATI)

49

139 Study Group with Industry (139 ESGI)

1. Introduction

Solving Partial Di�erential Equations (PDE) is a complex challenge that fre-
quently has to be done numerically because no other analytical option is
available. Depending on which problem to solve, one has to choose the appro-
priate method and its parameters to achieve a high-quality numerical approxi-
mation. This is often translated into expensive computations in terms of
memory allocation (�ne spatial grids) and computation time (small timesteps),
further- more, some applications such as weather prediction, require further
tuning in order to force the prediction to follow the real data.

To minimize this kind of risks and to speed up the solutions, there are some
techniques that transform the ine�cient numerical problem into a smaller one
which can be solved faster and produce solutions of similar quality, techniques
coined as Model Order Reduction (MOR). One example is the so-called Proper
Orthogonal Decomposition (POD)[3].

However, during the last years, Deep Learning [4] has emerged as a powerful
tool to solve a large variety of problems from classi�cation of pictures to
self-driven cars. The usual work�ow is to use a set of real data to create a
representation of them that can predict some characteristic of a new future set
with high accuracy. So, one possible methodology to control the aforementioned
physical problems is to use real data instead of di�erential equations, i.e., a
data-driven solution. The advantage to use Deep Learning, specially Neural
Networks (NN), is that they can cope with non-linear problems and, once they
are trained, getting a new prediction from a set of data is extremely fast.
But it is also possible to follow an alternative method, conceptually similar to
MOR techniques: generate an initially set of synthetic data using numerical
solutions of PDE and, using Deep Learning, devise a reduced model (from the
point of view of computation because is faster by itself or because it uses fewer
variables).

Recent publications [1, 2] which addressed the problem of solving chaotic
PDEs using Deep Learning techniques spiked the interest of REPSOL about
their capabilities to solve real problems. In fact, the Problem 3 of 139th ESGI
group tries to answer two initial questions related with the use of Deep Learning
for solving PDEs:

• Do we need to keep all the degrees of freedom (dof)? In other words,
for a given accuracy, what are the most relevant/optimum modes, that
reproduce the dynamics?

• Are numerical methods, and in a further glance, the PDEs, the best way
to model, solve and predict the dynamics?

This small paper presents the initial conclusions of the workgroup regarding
the usage of these methods for solving PDEs faster. During this week the

50 |

Order Reduction on Dynamic Systems using Machine Learning

authors focused the work in understanding the methods that raised the REPSOL
interest and their limitations, centering the advances in two well-known chaotic
PDEs with di�erent levels of complexity.

The paper is organized in six sections. The �rst one is a brief overview of the
NN used techniques. For a broader introduction to Deep Learning the reader
should look other references as [4]. In this section only relevant information
to understand the main results of the workgrop is summarized. Next section
explains the importance of PDEs for the industrial sector. It is followed by
the main achieved results related to the usage of Reservoir NN following [1].
Section �ve will analize brie�y the usage of autoencoder to �nish with the last
one which includes the conclusions and recommendations.

2. Neural Networks for a System of Partial Di�erential
Equations

Ever since the development of calculus, Partial Di�erential Equations (PDEs)
have proven to be an incredibly useful tool for physicists and engineers to
model the reality both as a variety of continuous and discrete systems. Their
utility is that the solutions obtained not only match the physical evolution of
studied system but also unravel hidden patterns that might not be measured
or detected in a �rst approach. Unfortunately, in general these PDEs cannot
be solved analytically and so they require for approximation techniques that
transform the problem into numerical operations a computer can process to
get an estimate of the PDE's solution. To obtain such a solution, the usual
methods are based on spatio-temporal discretization, i.e., sampling the conti-
nous problem into a de�ned grid. Most common methods found in the literature
are �nite elements (FEM), �nite di�erences (FDM) or �nite volumes (FVM).
On one hand, these techniques are very e�cient for low-dimensional problems
and simple and slightly complex geometries, having proved its performance in
many applications in the past decades. On the other, the meshing becomes
increasingly di�cult for its numerical treatment with the complexity of the
geometry. Not only that, the computation goes out of reasonable time scales
the moment the problem requires for very high accuracy or spatial resolution.
And in addition to all this, most of these algorithms only compute the solution
at the grid points and the evaluation of the rest of the domain is then obtained
by interpolation or by some other reconstruction technique [5].

As a result of the Cybenko theorem [6], feed forward NN can approximate
any continuous function on compact subsets of IRn. Consequently, NN methods
can solve both partial and ordinary di�erential equations. The feed forward
NN can then be used as a basic approximation element whose parameter are
adjusted during the training to minimize an appropriate error function [7].

The NN provide a di�erentiable solution with good generalization properties

| 51

139 Study Group with Industry (139 ESGI)

in close analytic form. This is one of the advantages NN methods have over the
aforementioned numerical methods. Moreover, for NN the computational e�ort
does not increase quickly with the number of sampling points. The generality
of the method implies that it can be applied to systems independently of their
geometrical complexity. Finally, the method can be parallelized and o�ers an
opportunity to solve PDE problems in real time.

2.1. Neural Network Architecture

The number of Neural Networks architectures is constantly increasing and
describing all of them is beyond the possibilities of this small summary. In this
section only a few of them are described with particular attention to reservoir
and autoencoder NN which have been used in the present investigation. Other
extensive reviews on the subject are available in the literature [8, 9].

The simplest form of NN is the feed forward NN shown in Figure 1. The
direction moves from the input nodes, through the optional hidden nodes and
to the output nodes. No cycles or loops are implemented in this architecture.
Mathematically, each node i of the hidden and output layer calculates

yi = g(˙xT,wi + bi) (1)

where x is a vector with the inputs comming from the previous layer, wi is a
vector of unknown parameters (named weights) and bi is a unknown constant
(named as bias), both of them to be �tted, and g is a bounded non-linear
function as tanh or sigmoid, named activation. When a layer has several
nodes,wi is transformed in a matrix Wi where each column is formed by the
weights of each node, bi is converted in a vector bi and the activation function
is applied element-wise. This method is applied iteratively layer by layer,
resulting on

y = gi(gi−1(gi−2(...g1(xT ·W1 + b1)...) ·Wi−1 + bi−1) ·Wi + bi) (2)

with i is equal to the number of hidden layers plus the output layer. To
�nd the correct values for Wi and bi, usually a supervised training is executed,
where a set of labeled inputs xj,yj is used to mimimize an objective function
which relates the predictions of the NN (NN(xj)) with the labels yj , frequently
applying a gradient descent technique. Because the number of cases is usually
very large, the input set is divided randomly in subsets, each one being the
input for one optimizacion step. For this reason, the process is known as
stochastic gradient descent.

52 |

Order Reduction on Dynamic Systems using Machine Learning

Figure 1: Schematic of a feed forward neural network [7].

Recurrent NN can have connections that go backwards from output nodes
to input nodes as well as arbitrary connections between nodes as shown in
Figure 2. This kind of networks can preserve sets of data, thus can be said to
have a memory. This feature is important when the solution of the problem is
dependent from previous inputs.

Figure 2: Schematic of a recurrent neural network [7].

One of the neural network used in the present investigation is the reservoir
NN. In these networks, an input vector u(t) of dimension Din is coupled to a
high-dimensional dynamical system called "reservoir". As schematically shown
in Figure 3, the coupling between the reservoir and the input vector is made by
an input-to-reservoir coupler (I/R). From the reservoir, an output vector v(t)
of dimensions Dout is coupled through a reservoir-to-output coupler (R/O).
The R/O coupler depends on Dr adjustable parameters p. The output v(t) it
creates is assumed to depend linearly to upon the parameters p.

| 53

139 Study Group with Industry (139 ESGI)

Figure 3: Schematic of a reservoir neural network [1]. (a) Training data
gathering phase. (b) Predicting phase.

Being r(t) the Dr dimensional state vector of the reservoir, it is possible to
represent in discrete time (t = 0,∆t, 2∆t, · · ·) the introduced functions as [1]

r(t+ ∆t) = G{r(t),Win[u(t)]}
v(t) = Wout[r(t),p]

(3)

where Win (respectively Wout) is a mapping from the Din (Dout) dimensional
reservoir (output) state space. The system is trained to make v(t) closely
approximate the desired output function vd(t) appropriate to the input u(t).

In the training period −T ≤ t ≤ 0, the training data u(t) and the resulting
r(t) are used. The output parameters p are then chosen to minimize the least
square di�erence between vd(t) and v(t) along the training period [1]. Due to
the linearity of v = Wout[r,p] with respect to p, p and Wout are determined
through a linear regression [10].

In the present investigation, a reservoir NN is used to predict the evolution
of the u(t). Thus, the network has been trained so that v(t) is an approximation
of u(t). Consequently after the determination of p, the reservoir system has
been to predict the values of u(t) for t > 0.

The response of this NN strongly depends on some parameters that charac-
terize it and that must be accurately selected in the design of a Reservoir
NN [11]. The �rst of this parameter is intuitively the size of the reservoir.
Generally, the bigger is the reservoir, the better is the performance of the
network. Since the training of the reservoir is cheap compared to other NN,
it is common to have size of order 104 or bigger [12]. Another parameter is
the sparsity of the Win matrix. This parameter does not have great e�ect on
performance. However, sparsity enables fast reservoir updates when using a
sparse matrix representation. [11].

Probably the most important parameter of a reservoir NN is the spectral
radius of the reservoir connection matrix G. It scales the width of the distribu-
tion of its non zero elements. To ensure echo state properties in practical
applications, it is su�cient to ensure that the spectral radius is less than
1. However, in tasks requiring longer memory of the input, the spectral
radius should be greater as it a�ects the in�uence of previous inputs on the
current state. Finally, the input u(t) can be scaled to keep it bounded and
avoid outliers. The input scaling regulates the nonlinearity in the reservoir

54 |

Order Reduction on Dynamic Systems using Machine Learning

representation r(t) and the e�ect of the input history. Thus, the input scaling
is related to the spectral radius of G.

To conclude this section, a autoencoder NN is described. These are a special
case of feed forward NN and are trained to copy the input to the output. It
is composed of two parts: an encoder function h = F (x) and a decoder that
produces a reconstruction r = G(h) [4]. As consequence, x− r ∼= 0.

As feed forward NN, can be trained using minibatch gradient descent
following gradients computed by back-propagation but also recirculation can
be used [4]. There are di�erent types of autoencoders (sparse, desoising,
variational etc.), however they are generally composed of an input layer, set
of hidden (encoding) layers reducing the state dimension until the code layer
h. Then a set of decoding layers is used to reproduce the input. A schematic
of a autoencoder NN is illustrated in Figure 4. For this type of networks, the
parameters a�ecting its performance are the number of layers and the neurons
per layer.

Figure 4: Schematic of a autoencoder NN [13].

3. Challenges for the Industry and the importance of
the problem

As we introduced in the previous sections, the rise of the NN techniques.
the exponential increase of the know-how and the amount of tools for its
development calls for its application into industrial workframes to disrupt
classic problems and its solutions. Apart from optimization processes, the
recognition of patterns and other machine learning applications more common
in the literature, we will focus our attention in the modelling and resolution of
physically complex systems.

How so? we will study the implementation of such techniques into the
resolution of physical models, written in terms of partial di�erential equations,
with an eye on future learning processes that are only data-driven. This
is a twofolded idea: using the e�cient NN toolbox as a tool to improve
the numerical resolution of PDEs and expanding our modelling capability of

| 55

139 Study Group with Industry (139 ESGI)

complex systems. We will start and discuss mainly the �rst aim as it seems a
more reachable target for the present work.

Indeed, there is a complicated milestone for the numerical resolution of
PDEs: the scalability of the problem. The more spatially and temporary
accurate we want our solution to be the bigger and better machines we will
need. Not only that, thanks to the better understanding of the subyacent
physics, the numerical calculations are now targeting many complex models
such as multicomponent �ows or visco-elastic materials that increase the expense
of the computations even further. One might think that these kind of precissions
and studies are only of academic interest, yet the industry is catching up
fastly. With the validation of commercial codes, the �rst order accuracy has
become a comodity for simulation and architecture departments of engineering
companies and we are walking towards a situation where no more experimental/
test will be required. Indeed, the cutting-edge simulation departments are
further and further away from the big number approach.

This pushes into the number of scales the numerical model is required to
resolve and the accuracy of that calculation, and unfortunately, even with the
lastest algorithms of resolution, the use of parallel supercomputers is still not
enough to reach an industrially satisfactory simulation. This issue is often
called the high dimensionality problem or even fronteer. The number of
dimensions do not necessarily refer to the physical ones but to the number
of grid points used for the simulation. In control processes and systems
engineering applications might have thousands of such dimensions, or states
to be taken into account for the �nal optimization.

And in those situations the classic �nite methodology (di�erences, elements,
volumes, etc.) simply won't work in a feasible a time scale. There have been
many attempts in the past regarding this issue, NN is only the last wave
of methods that try to deal with this problem. The most recent one are
the well-known Monte Carlo techniques, that are nothing but an attempt to
apply statistics in a crude manner to reduce the problem. More so�sticated
alternatives, with a little more physics inside them are the Modal decomposition,
where the solution of the problem is projected into its most fundamental modes
or dimensions to then procede with its solution. Although of much more
elegancy and even with applications to predict and study the evolution of the
problem the mathematic apparatus around them is an important bottleneck,
restraining this tools to a more accademic environment.

There is also an important aspect of the scalability problem that made the
previous attemps not to reach a fully succesfully agreement: the complexity of
the physics that we aim to solve with the numerical model. It was Lorenz one
of the �rst that surprised himself �nding out that the system of equations he
was using to model the planetary weather was extremely sensible to the initial
conditions. Chaos and complexity walk together with the modern models
of �uids, making a new challenge appear: we don't only need to solve the

56 |

Order Reduction on Dynamic Systems using Machine Learning

problem, we need to have a temporally accurate solution that includes the
correct physics. And classic travel companions such as instabilities and the big
elephant in the room, turbulence, makes this point a non-negligible one.

Summing up, the challenge the industry face at this moment is to solve their
physical models, that might or not present chaotic and/or unstable behavior,
in a very accurate manner in more and more complex geometries and to do
this fast and numerically e�cient. We believe that NN might help in both
reducing the dimensionality of the problem and in the reproduction of the
correct physical behavior of the model. Moreover, in a bolder a�rmation, in
the future even the physical phenomena will be captured or learned by the NN
without requiring for a system of PDEs to model it.

4. Reservoir only prediction method

In order to study the applicability of the reservoir only prediction method,
we have carried out numerical experiments calculating the usability time or
"valid time" for two dynamic systems: (1) one of �nite dimension, the Lorenz
equations, and (2) one of in�nite dimension, the Kuramoto-Sivashinski (KS)
equation. "Valid time" tv is a quanti�cation of the duration of accurate
prediction as de�ned in [14] with tv as the elapsed time before the normalized
error E(tv) < 0.4.

On the other hand, we have tried to make a calibration of the free parameters
of the reservoir looking for that applicability. Used free parameters were:

• β: Tikhonov regularization coe�cient

• d: average degree of the random network

• Dr: reservoir size

• ρ: spectral size of the reservoir

• σ: input scaling

4.1. Lorenz equations

The �rst experiment was made with the Lorenz system, a three-dimensional
system that presents chaotic behavior and that is given by the equations,

dx

dt
= −ax+ ay

dy

dt
= bx− y − xz

dz

dt
= −cz + xy

, (4)

| 57

139 Study Group with Industry (139 ESGI)

with a=10, b=28 and c=8/3.

For calibration, we have used 20 realizations with di�erent random time
intervals for each di�erent parameter sets. And, in order to compare with
results obtained in [14], we used the same integration step. The important
parameters so far are ρ, σ and Dr [11]. We have taken the values of the
parameters whose tv has been statistically better,

β = 1.2 , ρ = 0.5 , σ = 0.2 , d = 9

and we have studied the dependence of tv withDr for these values for a training
time T = 20 Lyapunov times. Training total normalized error is about 0.03.
Results are shown in Figure 5.

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
D

r

1

2

3

4

5

6

7

8

9

10

11

λ
m

ax
t v (

va
lid

 ti
m

e)

Figure 5: Reservoir size (Dr) dependence of the valid time. The line in the
middle is the median value, the top and the bottom of the boxes are the �rst
and the third quartiles, and whiskers delimit 1.5 times the interquartile limits.
Crosses mark observations beyond the whiskers.

An example of prediction and the corresponding normalized error are shown
in Figure 6, Figure 7 and Figure 8. Predictions starts at λmaxt = 0 and
Dr = 800.

We can see that the valid time is not very long and covers on average about
2 Lyapunov times. However, dynamics is predicted quite well as we can see in
the phase diagram (although rarely loses the dynamics).

58 |

Order Reduction on Dynamic Systems using Machine Learning

0 5 10 15 20
λ

max
t

-30

-20

-10

0

10

20

30
x(

t)
, x

R
(t

)
True state and prediction

x(t)
x

R
(t)

Figure 6: Prediction of the Lorenz system for variable x(t).

-40
20

-20

60

0

20

0 40

40

20
-20 0

Figure 7: Prediction of the Lorenz system. Phase diagram. Blue line
corresponding to exact results and red line corresponding to prediction.

| 59

139 Study Group with Industry (139 ESGI)

0 5 10 15 20
λ

max
t

0

0.5

1

1.5

2

2.5

3

3.5

4
E

(t
)

Normalized error

Figure 8: Normalized error for the Lorenz system.

4.2. Kuramoto-Sivashinsky equation

The second experiment was made with the one dimensional Kuramoto-Sivashinsky
(KS) equation for y(x, t),

yt = −yyx − yxx − yxxxx (5)

We used the same system size (L = 34) with the same spatial discretization
(∆x ≈ 0.547) and time sampling (∆t = 0.25) used in [14].

In this experiment we use 10 realizations in the same time interval. Best
values found for reservoir parameters were:

β = 0.1 , ρ = 0.1 , σ = 0.2 , d = 3

Training time T = 14 Lyapunov times and training total normalized error
is about 0.05.

Figure 9 shows (a) σ dependence of the valid time and (b) Dr dependence
of the valid time. We found that σ = 0.2 is the best value. Valid time is
better for greater values of Dr, but the larger the reservoir size, the greater
the computational cost.

Figure 10 shows a good realization of the experiment for the KS equation,
with tv = 2.31 Lyapunov times.

60 |

Order Reduction on Dynamic Systems using Machine Learning

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
σ

0.8

1

1.2

1.4

1.6

1.8

2

λ
m

ax
t

(a) σ dependence

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
D

r

0

0.5

1

1.5

2

λ
m

ax
t

(b) Dr dependence

Figure 9: (a) σ dependence of the valid time with Dr = 1500 and (b) Dr

dependence of the valid time with σ = 0.2. Other parameters values: β = 0.1,
ρ = 0.1, d = 3.

5. Autoencoder

Another possibilitity to reduce the computational e�ort using NN is to de�ne
an autoencoder to reduce the variables where to solve the problem. This is
the proposal from [2]. They published the usage an autoencoder which is
initialized using a Restricted Boltzmann Machine and in a second step is �ne
trained as usually with a stochastic gradient descent. Using the encoding part
of this autoencoder, they solve a time series reduced problem. Its output
can be converted to the original dimensions using the decoding part. Similar
approach has been proposed in [15].

| 61

139 Study Group with Industry (139 ESGI)

(a) True state

(b) Predicted

(c) Di�erence (error)

Figure 10: Parameters values: β = 0.1, ρ = 0.1, σ = 0.2, d = 3, Dr = 8000.
In this experiment: tv = 2.31 Lyapunov times.

Unfortunately, due to the lack of enough information on the publication,
the exact result could not be reproduced. Di�erent autoencoders where tested
with several KS results, being extremally di�cult to have a valid result, needing
a large time to train and they tend to over�t if the caothic regime has to be
reproduced accuratelly. Due to this training time, this solution could be valid
as a possible technique only if the autoencoder can be trained with a general
case and can be used later (maybe with a fast and small retraining) for a
problem with di�erent initial conditions on the same domain.

6. Conclusion

Solving PDEs is still a computational challenge. The initial results of this
workgroup have shown that Neural Networks could help, reproducing in simple
cases the numerical solutions obtained with classical methods for Lorenz and
KS equations. However, usage of these computational techniques have also an
important work before they can be used in real problems.

Echo State Networks, although currently are not in the mainstream of the

62 |

Order Reduction on Dynamic Systems using Machine Learning

Deep Learning techniques, can alleviate signi�cantly the computational e�ort
for solving the equations for future steps when enough training data have been
generated. When this recurrent network has a reasonable number of hidden
neurons, its training is very fast, because it needs mainly only two steps: proper
initialization and an inverse of one matrix. However, the response of the new
trained model depends strongly on some parameters that must be adjusted
for each problem[11]:size of the reservoir, sparsity, distribution of nonzero
elements, spectral radius, input scaling and leaking rate. These parameters
must be calibrated for each problem although the author of [11] assesses that
parameters for small cases can be used on bigger ones using transfer learning
techniques. Unfortunately, there was no time enough to evaluate this assertion.
In any case, the obtained results for Lorenz and KS equations seems that
this method can be robust and fast enough to deserve more investigation.
Additionally to the necessity of calibrating those hyper-parameters, the main
barrier is the scalability of the Reservoir with the size of the problem. Bigger
problems will require larger reservoirs. One possible solution is to use several
on parallel, using a partition of the domain, as proposed by [1].

On the other size, creating a reduced model using autoencoders is another
possible way to reduce the computational cost to solve this set of equations.
Following [2], it is possible to reduce the initial spatial domain to a few set of
modes or variables which encapsulate the dynamic of the problem, as is done
commonly with more classical MOR techniques as POD. The advantage of
using Neural Networks based autoencoders is that they can cope with nonlinear
functions. In fact, autoencoders have been proposed as a substitute of PCA
(related with POD) for this kind of problems. Again, using autoencoders is a
computational challenge that need to �nd the correct values for the hyper-para-
meters which de�ne the deep network: number of layers, number of neurons
for each layer, activations, learning rates, etc. Only if the same con�guration
and initial weights can be used for any initial conditions of the same problem
(or at least, can be transferred with a small �ne tuning), the method can really
be useful. However, this could not be checked during this week.

If we can assume that there is a general autoencoder for one speci�c problem
independent of its initial conditions and only depending on the geometry
and meshing of the domain, there exists the possibility of combining both
methods to speed up the solution of PDEs. Initial data is generated solving
the equations with traditional methods and after some delay, these data are
reduced using the encoding part of the autoencoder, training in this reduced
space a Reservoir network which will produce the solution which can be decoded
using the second part of the autoencoder. This possibility will be part of the
future work.

Additionally to the analyzed cases, during the survey of scienti�c literature,
other methods for solving caothic PDEs have been identi�ed which deserve a
future analysis about their usability in the described scenarios. Among them,

| 63

139 Study Group with Industry (139 ESGI)

[16] proposes to use reinforcement learning techniques. [17] de�nes a deep
learning model based on convolutional and Long Short-Term Memory (LSTM)
networks to predict the evolution of physical functions, applying it to �uid
�ows. The convolutional network reduces the dimensionality of the problem
and LSTM are used to make the inference about the temporal evolution of
this reduced set of variables.[18] combines a data-driven deep model with a
model-driven model to predict the future evolution of a system. [19] follows a
di�erent approach to create a neural network from data. He trains a network
using a cost function during the training which includes the physical model
(i.e., the di�erential equation), so the NN is forced to approximate the data
and to verify the di�erential equation simultaneously.

In summary, currently the authors cannot answer de�nitively any of the
proposed questions. However, from the results of the executed experiments,
the combination of both techniques seems to be a method to be explored deeply
because can represent an alternative to current MOR techniques.

References

[1] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, �Model-free
prediction of large spatiotemporally chaotic systems from data: A
reservoir computing approach,� Phys. Rev. Lett., vol. 120, p. 024102, Jan
2018.

[2] M. Wang, H.-X. Li, X. Chen, and Y. Chen, �Deep Learning-Based Model
Reduction for Distributed Parameter Systems,� IEEE TRANSACTIONS
ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, vol. 46, no. 12,
2016.

[3] G. Berkooz, P. Holmes, and J. L. Lumley, �The proper orthogonal
decomposition in the analysis of turbulent �ows,� Annual review of �uid
mechanics, vol. 25, no. 1, pp. 539�575, 1993.

[4] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[5] J. Berg and K. Nyström, �A uni�ed deep arti�cial neural network
approach to partial di�erential equations in complex geometries,� ArXiv
e-prints, Nov. 2017.

[6] G. Cybenko, �Approximation by superpositions of a sigmoidal function,�
Mathematics of Control, Signals and Systems, vol. 2, pp. 303�314, Dec
1989.

[7] N. Yadav, A. Yadav, and M. Kumar, An introduction to neural network
methods for di�erential equations. Springer, 2015.

64 |

Order Reduction on Dynamic Systems using Machine Learning

[8] M. Egmont-Petersen, D. de Ridder, and H. Handels, �Image processing
with neural networks�a review,� Pattern recognition, vol. 35, no. 10,
pp. 2279�2301, 2002.

[9] W. Cao, X. Wang, Z. Ming, and J. Gao, �A review on neural networks
with random weights,� Neurocomputing, vol. 275, pp. 278 � 287, 2018.

[10] X. Yan and X. G. Su, Linear Regression Analysis. WORLD SCIENTIFIC,
2009.

[11] M. Luko²evi£ius, �A Practical Guide to Applying Echo State Networks,�
in G. Montavon, G. B. Orr, and K.-R. Müller (eds.) Neural Networks:
Tricks of the Trade, 2nd ed. Springer LNCS 7700, 659-686, 2012.

[12] F. Triefenbach, A. Jalalvand, B. Schrauwen, and J. pierre Martens,
�Phoneme recognition with large hierarchical reservoirs,� in Advances
in Neural Information Processing Systems 23 (J. D. La�erty, C. K. I.
Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, eds.),
pp. 2307�2315, Curran Associates, Inc., 2010.

[13] �Deep autoencoders for collaborative �ltering.�

[14] J. Pathak, A. Wikner, R. Fussell, S. Chandra, B. Hunt, M. Girvan, and
E. Ott, �Hyryd forecating of chaotic processes: Using machine learning in
conjunction with knowledge-based model,� ArXiv e-prints, Mar 2018.

[15] C. Qi and H.-X. Li, �Nonlinear dimension reduction based neural modeling
for distributed parameter processes,� Chemical Engineering Science,
vol. 64, pp. 4164�4170, 2009.

[16] S. Wei, X. Jin, and H. Li, �General solutions for nonlinear di�erential
equations: a deep reinforcement learning approach,�

[17] S. Wiewel, M. Becher, and N. Thuerey, �Latent-space Physics: Towards
Learning the Temporal Evolution of Fluid Flow,� feb 2018.

[18] Y. Long, X. She, and S. Mukhopadhyay, �HybridNet: Integrating
Model-based and Data-driven Learning to Predict Evolution of Dynamical
Systems,� jun 2018.

[19] M. Raissi, P. Perdikaris, and G. E. Karniadakis, �Physics Informed Deep
Learning (Part I): Data-driven Solutions of Nonlinear Partial Di�erential
Equations,� nov 2017.

| 65

