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ARTICLE INFO ABSTRACT

Article history:

Machine learning, and more specifically artificial neural networks (ANN), are powerful and flexible
numerical tools that can lead to significant improvements in many materials modelling techniques.
This paper provides a review of the efforts made so far to describe the effects of irradiation in
Fe-based and W-based alloys, in a multiscale modelling framework. ANN were successfully used as inno-
vative parametrization tools in these models, thereby greatly enhancing their physical accuracy and
capability to accomplish increasingly challenging goals. In the provided examples, the main goal of
ANN is to predict how the chemical complexity of local atomic configurations, and/or specific strain
fields, influence the activation energy of selected thermally-activated events. This is most often a more
efficient approach with respect to previous computationally heavy methods. In a future perspective, sim-
ilar schemes can be potentially used to calculate other quantities than activation energies. They can thus
transfer atomic-scale properties to higher-scale simulations, providing a proper bridging across scales,
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and hence contributing to the achievement of accurate and reliable multiscale models.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

It all starts with an energetic particle, often a neutron, hitting an
atom. This statement could be found at the inception of any manu-
script, report, or presentation at a conference, undertaking a com-
plete characterization of the effects of irradiation in structural
materials. The devil thus hides from the smallest time- and
length-scales, at the atomic level, and even below, at the electronic
level. Irradiation with bombarding particles (provided they are
energetic enough) results in a continuous creation of point-
defects in the bulk of the studied material, i.e., vacancies (Vac)
and self-interstitials atoms (SIA). The increased concentration of
vacancies will then enhance the kinetics of diffusion-driven process
(such as precipitation of insoluble species), but might also alter the
thermodynamic equilibrium, as a consequence of the establish-
ment of fluxes of them towards sinks. Moreover, SIA are produced.
They are essentially absent in unirradiated materials. SIA exhibit a
profoundly different behaviour from vacancies, potentially giving
rise to processes not normally observed in materials. SIA migrate
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generally faster than vacancies and sometimes they follow one-
dimensional diffusion paths, exhibiting in addition longer range
elastic interactions of a highly anisotropic character. The changes
induced in the material by the production and diffusion of these
defects, as observable at the macroscopic scale, are thus not only
irradiation-enhanced, but often irradiation-induced.

Because it all starts at the atomic level, thorough and non-
empirical physical models capable of describing the effects of irra-
diation up to the macroscopic level must necessarily entail a lar-
gely multiscale strategy. Fig. 1 depicts an overview of a
modelling approach based on kinetic Monte Carlo (KMC) methods,
which is one of the possible choices to bridge the gap from the
electronic to coarse-grained level. Other possible approaches are
mean field models, rate theory, cluster dynamics, etc. Interested
readers are directed to Ref. [1,2] for a general overview. Addressing
the macroscopic level requires higher-scale models such as dislo-
cation dynamics and continuum mechanics calculations with ade-
quate plastic flow laws: these are not shown in Fig. 1. In the lowest
left corner, two fundamental sources of input data are: (a) Calcula-
tions based on first principle physics to address the electronic
structure, most often using the density functional theory (DFT);
(b) Any kind of experimental evidence, which can be of a wide
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Fig. 1. Multiscale modelling approach for describing the effects of irradiation in structural materials.

variety, ranging from formation energies, diffusion coefficients,
elastic constants, phase diagrams, etc. Unquestionably, experimen-
tal evidence remains the only true final judge on any model predic-
tion. The story ends at the coarse-grained level, which is in this
work implemented by the object kinetic Monte Carlo (OKMC)
method. There, the processes undergone by the defects injected
during irradiation are described as thermally-activated events that
correspond, for the objects involved, generally clusters of point-
defects, to specifically designed laws for mutual interactions,
mobility and stability. All regular elements of the microstructure
are also explicitly present in the model, for example grain bound-
aries, dislocations, solute or foreign interstitial impurities. A sub-
stantial number of reactions must be carefully parametrised in
OKMC models, which is achieved summoning a variety of methods
and models at lower scales, ranging from DFT, molecular dynamics,
and atomistic kinetic Monte Carlo.

Playing the role of a reference metrics for the physical descrip-
tion of the studied material, vital pieces of this puzzle are,
undoubtedly, cohesive models. Given a set of atoms described by
their coordinates in space and their chemical species, their task
is to provide a numerical value for the total energy of the system
in any configuration, determining the driving forces for its evolu-
tion, including interatomic forces. In a quantum mechanism frame-
work, Ab initio methods, e.g., DFT, are, for many good reasons,
regarded as the most reliable choice to explore the energy land-
scape of the system. There are, however, limitations. Firstly, some

degree of empiricism remains. Unfortunately, a blind use of DFT
may, in some cases, provide imperfect predictions (see e.g. [3,4]).
Secondly, even with state-of-the-art computing facilities, using
DFT still implies a huge cost in CPU resources which is often unaf-
fordable and, sometimes, unwarranted. For these reasons, alterna-
tive cohesive models are still extensively used, empirical
interatomic potentials (IAP) being a very popular example. On
the one hand, in addition to the largely reduced computing cost,
the main advantage of these potentials is the possibility to achieve
a tunable compromise between various target properties. It can
mix DFT-originated with experimental-originated data, as conve-
niently as required. For example, the FeCu potential proposed by
Pasianot et al. in Ref. [5] was fitted to faithfully reproduce the
experimentally observed Cu solubility limit in Fe, whereas DFT is
known to underestimate it (see discussions in Ref. [4]). The afford-
able computing time allows large and complex systems, containing
up to several million atoms, to be studied. On the other hand, the
simplicity proper to IAP also implies an intrinsic limitation in their
capacities of making accurate prediction of various set of proper-
ties at the same time.

Suitable low-computing-cost cohesive models allow the gap
between the basic atomic level and the realm of longer time-
scale Monte Carlo (MC) models to be bridged. Many more gaps
remain to bridge, however. Even using IAP, the precise calculation
of the energy barriers the system has to overcome through thermal
activation, which are at the core of MC methods, pose severe
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computing time limitations. Repetitive and heavy routine calcula-
tions are indeed required at key steps of a MC simulation, signifi-
cantly limiting the range of applicability of the method. Similar
limitations arise in connection with storage and integration of
data/knowledge moving from one scale to a higher one. An illustra-
tive example is the calculation of migration energies of single
point-defects in a chemically changing environment. These need
to be routinely calculated using a dedicated method in order to
let a Monte Carlo simulation that describes diffusion-driven pro-
cesses to progress, but they entail a prohibitive computational cost
if the calculation is performed in a precise way each time. Bridging
the gap between models thus here means finding a numerical solu-
tion for either speeding up the calculation of the migration ener-
gies, or, from another standpoint, extrapolate knowledge in the
MC model from a limited amount of examples.

Machine learning techniques, specifically artificial neural net-
works (ANN), are very promising tools for taking this challenge.
As reviewed in this paper, ANN-based tools have been progres-
sively coupled to atomistic Monte Carlo models to improve their
physical reliability, within affordable computing loads [6-14].
ANN are flexible and powerful regression techniques, capable to
assimilate complex and inexpressible laws of interactions from a
limited number of explicit examples. Once the ANN are properly
designed, they provide the values required for the model at a very
limited computing cost, thanks to their mathematical simplicity.
The paper is organised as follows. We start, in Section 2, by provid-
ing a basic description of ANN techniques, and the underlying
mathematical framework. Next, in Section 3, we explain how
neural-network potentials (NNP) can be fitted directly from DFT.
Later, in Section 4, we extensively review our enhanced atomistic
kinetic Monte Carlo models, where ANN are used to evaluate
migration energies on-the-fly. Finally, we provide our visions and
recommendations for future perspectives in Section 5.

2. Artificial neural networks: a practical form of artificial
intelligence

Artificial neural networks (ANN) are a concept of weak artificial
intelligence, in a group of paradigms often denoted to as machine
learning, or computational intelligence. In many applications, they
can be seen as self-learning systems aimed at extracting hidden
knowledge from their environment, in order to take relevant
actions when entirely new situations are encountered. For the par-
ticular application to the design of numerical predicting tools, for
instance, they are surrogate models sparing the user the (otherwise
fastidious) need to explicitly formulate knowledge about the prob-
lem at hand.

A complete description of the theoretical and mathematical
frameworks of ANN goes beyond the scope of this paper. For a
complete and detailed reference textbook, interested readers are
directed to the reference book by Bishop [15], or to a more concise
overview in Ref. [16]. In Section 2.1, we start by providing a
description of the specific implementation of ANN that is used in
our work, namely, the multilayer perceptron. Next, in Section 2.2,
we describe the fundamental aspects of training. Last, in Section 2.3
we briefly report a typical example of application of ANN as
numerical regression, by predicting the amount of radiation-
induced hardening in reactor pressure vessel steels.

2.1. The multi-layer perceptron: a universal approximation machine

Several types of ANN exist. The so-called multilayer perceptron
depicted in Fig. 2, for instance, provides appropriate solutions for
the design of general numerical regressions. Inspired from biolog-
ical neural networks such as the human brain, the fundamental

idea is to create a network of simple processing units (either called
neurons or nodes in the literature), thus constructing a sophisti-
cated and complex response out of a set of simple individual rules.
For the sake of simplicity, at least from the mathematical point of
view, ANN are typically constituted of organised layers of nodes.
On the left-hand side in Fig. 2, the input layer is the collection of
the raw input signals for the whole network. On the right-hand
side, the last layer is called the output layer, providing the answer
of the network. In between, several intermediate layers may be
introduced (there is only one in the figure). They are called hidden
layers, for the reason that they are, in practice, invisible to the user.
There is in theory no restriction about how nodes of different lay-
ers can be connected to each other. For simplicity, many networks
do not allow backwards connections: a given node never receives
as input output signals coming from nodes of either the same layer,
or from the next layers (see e.g. Ref. [17]). Such a network is qual-
ified as feedforwards. Last, the network shown in the figure is said
to be fully connected, because all nodes in a given layer receive as
input all output signals coming from the immediately preceding
layer, and no layer bypass is allowed. The inputs for the first (and
only) hidden layer are the raw input signals of the network.
The output y; of a hidden node j reads:

Vi = ¢(vy) (1)

N
vV = Wjo + ZWji - Xi (2)
i=1

Here, v; is the internal activity of the node. Function ¢ can, in prin-
ciple, be any non-linear function. For convenience, to prevent large
magnitudes of the signal, function ¢ is almost always taken to be
bounded, e.g., a hyperbolic tangent. The internal activity is calcu-
lated as a weighted sum of the input signals to the node. The output
O of the only node in the output layer is calculated in a similar way.
In Eq. (2), the synaptic weights wjy, w;; monitor the strength of inter-
action between the nodes, and are therefore called synaptic weights,
or also synapses.

The interest of the feed-forwards multilayer perceptron, in its
simplest form as depicted in Fig. 2, is that it fulfils the universal
approximation theorem [18]: For any continuous function
F(X1,...,X,), there exist an ANN with a finite number of hidden
nodes that fulfils the following condition, for all set of inputs x;
and all €:

[F(X1,...,%X0) — O(X1,...,X)| <€ (3)

Here, O(x4,...,X,) is the output of the ANN. The multilayer percep-
tron can therefore, in theory, be regarded as a universal approxima-
tion machine capable of perfectly assimilating any problem with a
numerical character. It is safe and reasonable to assume that such
degree of idealness cannot be dreamed of in practice, unless per-
haps for some academical examples. Concretely, it is the authors’
opinion that the flexibility and generality of the ANN internal struc-
ture, avoiding the user to explicitly formulate knowledge about the
problem at hand, comes at an unavoidable cost. Indeed, ANN might
be very successful in understanding a given problem from a limited
amount of examples, but expecting it to perform a truly general
understanding is hazardous. In other words, it is safe to assume that
ANN are inherently devoted (not to say limited) to interpolation
problems, whereas extrapolation outside the domain of the input
space covered during training is uncertain. Therefore, during any
application of ANN, it is important to make sure that the domain
of applicability can be determined. This can in fact be delicate in
some cases, as discussed later.
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Fig. 2. Example of feed-forwards multilayer perceptron with 4 input variables (x;, x,,x; and x4), one hidden layer with H = 6 nodes and one output (O). The right part of the
figure shows the detail inside a node of the hidden layer. The signal is propagated from the left to the right of the network, in a layer-by-layer fashion.

2.2. Supervised training

In this work, ANN are designed to implement numerical regres-
sion tools. This is therefore a supervised training problem, and train-
ing can be regarded as an optimization problem that consists in the
minimization of the following objective function:

Nr

F(N, W) =" (0i(N, W) — dy)° (4)

i=1

Here Ny is the number of available examples of I/O for training, d; is
the desired output for the example i, and o; is the corresponding
prediction by the network. The latter is a function of the ANN archi-
tecture, i.e., the number Ny of nodes in the hidden layer, and, finally,
the vector w of synaptic weights. Assuming that Ny is fixed, the
minimization of function f is thus the problem of determining the
optimal numerical value of the synaptic weights w: it can be under-
taken by any classical method for non-liner optimization. In this
work, we used the method proposed by Levenberg [19] and Mar-
quardt [20] (LM).

As anticipated in the previous section, a major concern while
training ANN is to guarantee that the predictions for new sets of
inputs are equally accurate, compared to predictions on the avail-
able set of examples used for training. Indeed, without control,
there is a risk that the ANN does not develop a general logic, but
in reality rather memorizes the complete set of available examples,
as illustrated in Fig. 3. We see that reasonable interpolation is
achieved by the ANN if the latter is not too complex, i.e. if H is

Optimal RSet

Average error

TSet

>

v

X Number of training epochs
Number H of hidden nodes

Fig. 3. (left) Schematic illustration of ANN over-specialization for a simple problem
with one variable x and one output y. Blue points represent data in the training set.
The dashed line shows predictions by an ANN with a small number H of hidden
nodes, whereas the plain line shows predictions of another ANN where too many
hidden nodes were introduced. (right) Typical evolution of the average error
committed on the training set (TSet) and reference set (RSet) with increasing
number of training epochs (Ny being fixed), or with increasing Ny (at the end of
training). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

small. Predictions are however not equally accurate for all training
examples. If the number of hidden nodes is increased, the ANN
manages more accurate predictions for all known points, but
clearly loses generality. This pathology cannot be easily identified
only on the basis of a limited amount of examples of I/O, especially
if the dimensionality of the problem at hand is large. ANN training
must therefore be regularized. The most common regularization
approach is called early stopping, and is based on the idea that
memorization of the provided examples, or more generally can
we say network overspecialisation, develops only at a certain
moment of training, i.e. after a certain number of training itera-
tions, called epochs in ANN jargon. The most natural way to prevent
it is therefore to divide the available table of examples of I/O into
two different and non overlapping sets: (a) The training set is used
to minimize function f in Eq. (4). Only these examples are thus
used to calculate the gradients with the LM algorithm, and the
synapses are updated during each epoch taking only them into
account; (b) The reference set is used to measure, after every
epoch, the average error of prediction on new cases. Fig. 3 shows
the typical evolution of the average error of prediction on both sets
during the training epochs. The error committed on the training
set always decreases. The error on the reference set, however,
ceases to decrease from a certain epoch, and then starts to increase,
as a clear sign of the onset of overspecialisation. Training is there-
fore interrupted at that moment.

At this stage, the determination of the optimal network archi-
tecture is still an open question. According to our experience,
acquired during the applications summarized in this paper, we
invariably found optimal architectures using no more than one
hidden layer in the ANN. Determining the optimal architecture is
thus a mono-parametric study: networks with increasing Ny are
trained separately, and the one committing the lowest error on
the reference set is finally retained, as depicted in Fig. 3. Too small
a Ny understandably leads to higher errors of prediction, because
not enough degrees of freedom are available in the network. Oppo-
sitely, too high a Ny increases the risk of overspecialisation, and the
error on the reference set increases as well. Other approaches exist
for determining the optimal architecture. Interested readers can
find an overview in Ref. [21-23]. Specifically for our work in
ANN-based KMC models, we proposed a constructive method
called GIACA in Ref. [9].

2.3. Example of application: radiation-induced reactor pressure vessel
steel hardening

Reactor pressure vessel (RPV) steels are well known to harden
and embrittle under neutron irradiation [24]. Hardening is custom-
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arily measured as the increase of the yield stress, with tensile tests
performed on samples of the RPV steel. Hardening is generally
directly proportional to the increase in the ductile-brittle transition
temperature, or conceptually equivalent transition temperature
definition. Nuclear regulations impose safety margins on these
temperatures, according to rules that change depending on the
country, as safeguard against RPV failure in both service and acci-
dental conditions. In the absence of a complete physical model,
from the atomic to the macroscopic level, that can describe with
accuracy the relevant processes taking place under irradiation,
hardening and embrittlement are predicted by semi-empirical, or
totally empirical models that are mostly based on numerical fit-
tings using experimental data [25,26]. Although inadequate to
cover all possible conditions, a large amount of data from surveil-
lance capsules and from material test reactors does exist. One of
the most important goals for utilities and other nuclear stakehold-
ers is the development, based on "clever” interpolations and
extrapolations of the available data, of reliable trend curves, pro-
viding estimates of steel embrittlement as a function of the most
important influencing variables. ANN are therefore a potentially
interesting candidate to achieve adequate predictions, because of
their abilities to extract hidden knowledge from data, and also
thanks to the fact that knowledge about the physical process must
not be explicitly formulated.

In Ref. [27], ANN were trained to predict the increase Agy of the
yield stress. This application is very illustrative of the typical lim-
itations and practical problems faced for regression problems from
scarce and valuable (expensive) experimental data, because: (a)
the amount of available examples of I/O is limited to the extreme.
It imposes an upper boundary on the complexity of the ANN,
because the number of synapses must, ideally, be lower than the
number of training examples to avoid over-fitting; (b) the separa-
tion of the data in a training and reference set may be delicate,
because of conflicting constrains and inhomogeneous coverage of
the input space; (c) the choice of the most adequate input variables
to the ANN is not obvious. In Ref. [27], four inputs were taken into
account: the Cu content of the steel, the Ni content, the neutron
fluence, and, finally the irradiation temperature. The RADAMO
database [28] was used as set of 346 examples of I/0. Two different
algorithms to define the training and reference sets were proposed,
and compared. The achieved ANN quality of predictions on the ref-
erence set is shown in Fig. 4. Predictions on a separate set that cor-
responds to higher neutron fluences, thus evaluating the
extrapolative capabilities, are also shown. The conclusions in Ref.
[27] were that ANN can accurately predict embrittlement. Extrap-
olation skills, e.g. for higher fluences as in Fig. 4 or for never seen
steel compositions, are possible, providing that the definition of
the training and reference sets are thought in accordance with this
objective.

On RSet On high fluence set
400 — —_—
&£ 350 | a4 €=209meV }EB _
<300 + R*=0969 H E
© 250 T
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Fig. 4. ANN quality of prediction of the neutron irradiation induced increase Agy in
the yield stress of RPV steels. The number of input variables is 4, and the number of
hidden nodes is 4. Error bars show the standard deviation of predictions made by 25
different ANN, trained with the same training and reference sets. (left) Prediction on
the reference set. (right) Prediction on a separate set that corresponds to higher
neutron fluences, that was not used for training.

3. Neural-network potentials (NNP) fitted from DFT

As previously introduced in Section 1, cohesive models are a
central element in a multiscale modelling strategy. Density func-
tional theory (DFT) is, in this respect, often an ideal and thus pre-
ferred choice, as it provides a reliable model, based on little
approximation from the first principles of physics. Cluster expan-
sion models, e.g., the FeCrW by Bonny et al. [29], were originally
proposed to extrapolate DFT data for rigid-lattice configurations
[30]. In this case, the total energy is decomposed in contributions
from clusters of atoms, according to predefined patterns: these
are, e.g., pairs of atoms found in first nearest-neighbour position,
triangles, quadruplets, etc. While this approach has been especially
taken for addressing simulations in bulk materials driven by
vacancy defects [31], it has also been used to consider configura-
tions with self-interstitials [32]. It is worth noting that the deploy-
ment of a CE in the latter case is far more delicate, mainly because
of the increasing complexity in the geometry of the explored con-
figurations and the ensuing reduction of exploitable symmetries.
As a consequence, the required numbers of clusters in the expan-
sion for a proper general description rapidly explodes.

Given these limitations, neural-network potentials (NNP) are a
very promising alternative method. They naturally benefit from
the generality and portability proper of ANN, therefore not making
any pre-assumption on the kind of interactions between the chem-
ical species in the target alloy. Such qualities are, with little doubt,
predicated to surpass the abilities of EAM-like potentials or any CE,
provided that enough data are available for training. As in the case
of the CE, NNP are meant to learn from DFT directly, and no exper-
imental data can be directly incorporated. Differently from CE,
however, NNP are not limited to a rigid lattice formalism, nor by
the geometrical complexity of the configurations described.

In Ref. [14], we proposed a method for designing NNP for binary
Fe-based alloys, as briefly summarized in the following of this sec-
tion. Consistently with the prerequisites for high-dimensional
potentials, the total energy of a given atomic configuration is
decomposed as proposed by Behler and Parrinello [33]:

N
Epon = > _Emw (019) (5)
a=1

Here, p is the local atomic density. Superscript (a) refers to a partic-
ular atom within the N constituting the studied configuration, and
X(a) denotes the chemical species for atom (a), i.e. X(a)=Fe, Cu,
Cr, ... Functions EQ\ are atomic energy functions (AEF), providing
an estimation of the energy assigned to every atom of the corre-
sponding chemical species; subscript “ANN" refers to the fact that
each AEF is implemented by an individual ANN. Their input vari-
ables are a description of the local atomic density (p@ in Eq. (5)),
using symmetry functions defined as follows:

Q2 XI: | Caiml” (6)
m=-I
With
-
Coim = N ;anwlmwi, ;) (7)

Here, n and m are integers defining the complexity for an expansion
in series. The summation in Eq. (7) is performed over all neighbour-
ing atoms i found within the prescribed cut-off R, located in space
using their relative (13, 6;, ;) spherical coordinates. Functions R (r;)
are series of orthogonal radial functions, and Y, are the Laplace
spherical harmonics. In a system with one chemical species, the
vector of ANN input variables is defined as:
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Q@ 2 [ny] (8)

with 1 <n < Nuyax and 0 <[ < Lya. For alloys, information about
the chemical species is included with the approach taken by Behler
et al. [34]. Considering the example of a binary FeX alloy, three dis-
tinct Q vectors are combined, each including the contribution from
chemical sub-ensembles in the neighbouring atoms, i.e.:

Q£ [Qleyery] ©)

Here, Q\¢, Q¢ and Q\% are identical as defined in Eq. (8), but only
consider either Fe atoms, X atoms, or both, respectively. Given Ny.x
and Ly, the number N of symmetry functions (corresponding to
the ANN input variables) is thus given by:

Nq = 3Nmax(Lvax + 1) (10)

In the work described in Ref. [14], NNP were fitted for both the
bcc FeCu and the FeCr system. Primarily aiming to incorporate
DFT-based energies in rigid-lattice Monte Carlo models, training
configurations were extracted from DFT calculation of single
point-defects migration energies (both single vacancy and single
self-interstitial), using the nudged elastic band (NEB) method
[35,36], as illustrated in Fig. 5. To fix the ideas, each NNP was fitted
from 2000 to 5000 NEB calculation (requiring 10-30 million CPU
hours), providing a total number of 20,000-50,000 atomic configu-
rations. The vector of input variables was defined using Ny.x = 5
and Ly,x = 10, thus leading to Ng = 165. In each case, the number
H of nodes in the ANN hidden layer was 3; the total number of ANN
synapses was thus 502. The accuracy of prediction, after training, is
summarized in Fig. 6. Similar results were later on obtained for the
FeNi system, as also shown in the figure.

In addition to refine our predictions for thermal annealing
experiments (see later in Section 4.1.1), the potentials were used
to evaluate the phase diagram, using a Metropolis Monte Carlo
method. As shown in Fig. 7, we see that DFT predicts a Cr solubility
limit that is very consistent with an extensive review of experi-
mental data previously performed in Ref. [37,38]; alloying Cr
atoms should remain fully solute in the ferritic matrix at all tem-
peratures, up to a concentration near 9at%Cr from which o/ phases
form.

4. Enhanced atomistic kinetic Monte Carlo models

Kinetic Monte Carlo (KMC) methods [39-42] are widespread
simulation tools dedicated to describe diffusion-controlled phe-
nomena at the atomic level. They are suitable to study a wide vari-
ety of materials up to experimentally relevant length and time
scales, shedding light on the resulting microstructural and micro-
chemical evolution during operational conditions, e.g. under irradi-
ation [43-45]. Generally based on a rigid-lattice approach, they
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Fig. 5. Atomic configurations extracted from NEB calculations (vacancy migration
event) with DFT, used to design an ANN-based potential.

feature an explicit spatial characterization of the diffusion of lattice
defects and atoms, enabling a detailed investigation of the kinetics
of formation of fine microstructural features. KMC methods have
been widely employed to simulate metallic alloys under irradiation
[41,42,40], in particular the formation of embrittling solute-defect
clusters [46,32,47]. While these methods are in principle well sui-
ted for the investigation of the underlying atomic-scale mecha-
nisms, the task is extremely challenging due to the chemical
complexity of the reference alloys. Specifically, in atomistic KMC
(AKMC), the evolution of the alloy proceeds through migration
events of single defects (vacancies and/or interstitials) [48,39,49],
which are stochastically selected at each step based on their tran-
sition rates:

F:Fo-exp<kBi;'> (11)
Here, kg is Boltzmann’s constant, T the absolute temperature, I'y the
attempt frequency and E, the migration energy, generally evalu-
ated in static atomic-level calculations. The accuracy of the latter
parameter is thus crucial to ensure the physical reliability of the
model, as it embodies both thermodynamics and kinetics properties
of the system being studied.

Migration rates associated with single point defects are tradi-
tionally computed with several approaches (see, e.g., Ref. [50,51]
for extensive reviews). Some are based on first-principles methods
such as density functional theory (DFT) [52,53], while others rely
on system-specific interatomic potentials (IAP) [40,42]. In any case,
suitable mathematical expressions are necessary to predict the
transition energies associated with each atomic configuration, as
well as the frequencies associated with each possible transition
(often migration events). These are usually based on cohesive mod-
els constructed on pair-interaction [40,54] or more sophisticated
cluster-expansion methods [53], supported by limited datasets of
experimental and ab initio properties. Their range of applicability
is thus limited by their intrinsic rigid-lattice approach and by their
poor transferability to new kinds of configurations beyond their
original intended scope. IAP enable the description of any stable
or metastable configuration, allowing the portability to lattice-
free MC models [55-58]. However, their direct “on-the-fly” use
as cohesive models to calculate energy barriers corresponding to
all possible transitions at a given time, to be able to decide the fol-
lowing event in otherwise classical rigid-lattice KMC, though pos-
sible [55], is impractical, because the exact saddle-point
configurations in each transition event are unknown and must be
sought with time-consuming procedures.

In past work we have proposed and optimized a concrete solu-
tion to overcome this technical limitation. ANN were trained to
predict the migration energy of single point-defects, otherwise
obtained using the NEB method and a given cohesive model. The
proposed concept is schematically depicted in Fig. 8, and can be
summarized as follows. The AKMC module is found on the left-
hand part of the figure, where an example of migration event for
a single vacancy is indicated by the black arrow. A similar setup
is used for single SIA migration events. The local atomic configura-
tion (LAC) is defined by the species located in the closest neighbour
lattice nodes to both initial and final vacancy site, denoted as A to
M and encircled by a blue line in the figure. This LAC is described
by a vector of numerical signals, aimed at communicating with
other modules of the simulation code, and serves two purposes:
(a) it is used to construct an atomic supercell suitable for lattice-
free static calculations, thereby populating a database of migration
energies associated to different LACs (right-hand side of the fig-
ure); (b) once the database is large enough, an ANN is trained to
replace the migration energy calculation in the atomic supercell
(left-hand side of the figure). The migration energies for each
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the activation energies associated to the migration of single point-defects.

LAC, with defined initial and final states, are obtained by NEB cal-
culations, using a suitable cohesive model to evaluation of total
energy and atomic forces. These calculations show that, if the
migration events are adequately defined, there is a unique mini-
mum energy path between the initial and final states, thus leading
to the definition of a single energy barrier. This may be directly
returned to the AKMC module (on-the-fly mode), but most impor-
tantly it is also stored in a database. From a numerical standpoint,
the database contains LAC vectors, with each of which a single
numerical value of migration energy is associated. This database
is therefore used to provide examples of connections between
LAC and migration energy on which a suitable ANN is trained.
The ANN is obviously expected to accurately return the migration
energies corresponding to the same configurations as previously
added in the database, but most importantly it is aimed at making
faithful predictions for new (never previously calculated) configu-
rations, i.e., for any atomic configuration that may be encountered
during the AKMC simulation. This prediction is very fast produced
by any computer, thereby gaining orders of magnitude in terms of
computing time.

Clearly, the quality of the proposed simulation scheme entirely
relies on the predictive abilities of the ANN for on-the-fly estima-
tion of the energy barriers. It is worth noting that in Fig. 8 no feed-
back of any kind is provided to improve the ANN predictions. It was
initially proposed [6] to use an additional module to perform a
feedback on the ANN predictions, implemented with a fuzzy-
logic-based set of rules. Experience suggested, however, that it is
more practical to train ANN that are, by design, expected to be
accurate during the whole simulation, making sure that both train-
ing and reference sets contain a large enough number of represen-
tative configurations [9] for any state that the simulated system
can be found in.

This ANN-based AKMC model was applied to a variety of
different problems, as described in the following sections. Table 1,
summarizes the features and accuracies of the different ANN
trained over the years for specific systems, while the goodness of
the predictions as compared to the reference NEB values is given
in Fig. 9.
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Table 1

123

Summary of ANN training and accuracies. The abbreviation PU stands for previously unpublished, Ni4¢ is the number of entries in the LAC vectors, W is the number of synapses in
the ANN, and ¢ is the mean absolute error of prediction after training. Note that the mean error of prediction is always negligible in magnitude, making the ANN predictions

unbiased. All alloys are in bcc structure, except when otherwise indicated.

Alloy Cohesive model Niac Num. NEB calculations w J (meV) Ref. Case in Fig. 9
Single vacancy migration in otherwise perfect lattice
FeCu IAP [5] 223 (11nn) 30000 2750 14.5 9] A
FeCr IAP [59] 223 (11nn) 30000 3000 20.1 [9] B
FeCu DFT [4] 77 (5nn) 2000 625 235 14] d
FeCr DFT [14] 77 (5nn) 2000 340 40.6 [14] D
FeCuNi IAP [60] 173 (9nn) 60000 1250 43.2 [8,61] E
FeNiCr (fcc) IAP [62] 113 (6nn) 60000 2500 43.7 [62] F
FeCuNiMn IAP [63] 77 (5nn) 100000 2000 60.4 PU G
Single SIA migration in otherwise perfect lattice
FeCr IAP [59] 173 (9nn) 50000 900 293 [64] H
FeCr NNP [14] 83 (6nn) 35000 880 39.1 [14] I
Single vacancy migration when found in cluster
Fe IAP [65] 173 (9nn) 50000 2800 223 [61] ]
w IAP [66] 83 (6nn) 20000 421 26.1 [67] K
FeCu IAP [5] 77 (5nn) 75000 2150 303 [12] L
FeCuNi IAP [60] 77 (5nn) 75000 1100 27.8 [61] M
FeCrW IAP [68] 313 (13nn) 50000 2760 49.3 [68] N
Single SIA migration when found in cluster
Fe IAP [65] 77 (5nn) 90000 4100 48.6 [61] 0
Lattice free AKMC
FeCr (near grain boundary) IAP [69] Rc = 2.75a0 (10nn) 31000 5000 123 [13] P
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4.1. Rigid-lattice model

In rigid-lattice models, atoms are assumed to occupy always the
nodes of a perfect lattice, e.g., bcc. This hypothesis is reasonable if
single vacancies are the only defect present in the system. Defects
that create a strain field, even single SIA, question the validity of
this assumption. However, rigid lattice models can include more
complex defects, such as vacancy clusters, single SIA or even small
SIA clusters, if somehow the effect of the presence of a strain field
on the mutual defect interaction is implicitly included in the char-
acteristic energies handled by the model. This is possible without
drastic modifications if the strain field only distorts slightly the lat-
tice, without changing radically the connectivity between lattice
nodes. If this is true, then the LAC vector in Fig. 8 may remain lim-
ited to a minimal amount of information: since the atomic coordi-
nates are deducible from the crystallographic structure, which by
assumption remains constant throughout the simulation, only
the chemical nature of each lattice site needs to be specified. The
LAC is thus unequivocally defined with a vector of integers: each
of them takes a predefined value that varies with the chemistry
(e.g., value 1 stands for Fe, 2 for Cu, 3 for Ni, etc.) for the atoms sit-
ting at sites A to M in the figure. Clearly, a convention for the lattice
sites ordering in the LAC vector must be defined (e.g., what relative
position from the migrating vacancy is tagged as the A site in Fig. 8,
etc.), and respected through the whole simulation. The symmetries
in the crystallographic structure allow the migration energy calcu-
lation to be limited to one of the several equivalent LAC vectors.
Considering migration events towards 1nn positions in bcc struc-
tures, for instance, each vector may be transformed into 6 equiva-
lent ones, applying rotations along the (111) direction of
migration, and projections along the perpendicular [1 1 0] plane.
See e.g. Ref. [61].

In the absence of a formal feedback on the ANN predictions,
their reliability for new atomic configurations must be maximized
with a proper choice of the examples in both the training and the
reference set. The inherent capability of extrapolation for the
numerical regression as implemented by the ANN (predict a real
number, the migration energy, from a vector of integers) may be
delicate to appraise. Mathematically speaking, a new configuration
is a new combination of integers in the LAC vector. Since each of
these integers are seen at all positions many times in the training
database (in other words, many cases are included with either an
Fe or an X atom sitting in a given lattice site), new configurations
are actually never in an extrapolative area in the input space. How-
ever, a new configuration can be considered as extrapolative from a
physical point of view, if it describes a case governed by kinds of
interactions that were never included in the training set. An exam-
ple is predicting the migration energy of a single vacancy in a con-
centrated alloy, while the ANN was trained using configurations
that correspond to dilute concentrations only.

4.1.1. Thermal annealing experiments

The methodology described above was applied to simulate ther-
mal annealing experiments in Fe-based model alloys. In a cubic
simulation box with periodic boundary conditions, the prescribed
content in solutes is initially introduced in random positions, as
illustrated on the left-hand side in Fig. 10, together with a single
vacancy. The simulation proceeds by computing its possible migra-
tion events towards each 1nn position (eight in bcc structures). The
individual migration energies are evaluated by the procedure illus-
trated in Fig. 8, which entirely pilots the evolution of the system.
Homogeneous precipitation of solutes eventually takes place, as
depicted in Fig. 10, if so dictates the thermodynamics embedded
in the underlying cohesive model, reflected by the ANN if the error
of prediction is low enough.

For a binary FeX alloy, the integers in the LAC vectors may be
any (e.g. 1 for Fe and 2 for X) without, in principle, affecting ANN
training [61]. For more complex alloys, experience showed that
keeping a binary description for the LAC leads to optimal ANN pre-
dictions, in spite of the increased number of input variables. For
example, a ternary FeXY alloy is described using 2 bits for each lat-
tice site: Fe atoms are coded by 00, X atoms by 10 and Y atoms by
01. Quaternary FeXYZ alloys are dealt with equally: 000 for Fe, 100
for X, 010 for Y and, finally, 001 for Z.

In Ref. [6-9], a rigorous study was performed to asses the effi-
ciency of ANN training, and the consequent quality of the ANN pre-
dictions, as function of various factors here summarized.

Choice of configurations for training: The ANN capabilities to
make relevant predictions for never seen configurations was
maximized with an adequate choice of the atomic configura-
tions added to both the training and reference set. Special care
was taken that an equal proportion of examples represent each
of the different stages of the solute precipitation, as depicted in
Fig. 10: from configurations in a random solid solution (left), to
those with small clusters formed (middle), completed with cases
where the vacancy migrates near big clusters (right). It was thus
reasonably assumed that the vacancy could be found in three
different kinds of LAC, thereby covering the full range of possible
configurations for the studied system; any new configuration
either corresponds exactly to one of the three kinds, or is in an
intermediate state. To our experience, a fully random and
unguided choice includes totally unrealistic configurations that
may mislead or even jeopardize the learning process of the ANN.
The number of neighbouring sites included in the LAC: It cor-
responds to the number of ANN input variables. Using an IAP,
the most accurate predictions are obtained when the LAC is
defined up to approximately 1.5 times the cut-off distance, in
such a way that not only the direct chemical interactions (within
the cut-off distance), but also the long-range chemical interac-
tions (beyond the cut-off distance), are taken into account. Since
the cut-off is at the 5th nearest-neighbours (5nn) distance for
most potentials used in our works, the typical number of entries
in the LAC vector is round 223 (11nn). Defining the LAC up to
shorter distances removes useful information for the ANN,
whereas including more shadows it by increasing the complex-
ity of the training problem (too many synapses to fit by the LM
algorithm). For ANN trained from DFT data (there is thus no for-
mal cut-off in the cohesive model), it is the limited number of
examples that restrains the possibility to successfully connect
far away neighbours to the network. We found an optimal num-
ber of ANN input variables including the 5nn in the LAC.
Optimal architecture for the ANN: As already mentioned, a
specific constructive algorithm (called GIACA) was proposed
in Ref. [9]. In short, this training procedure connects the succes-
sive layers of close neighbours progressively, and gradually add
nodes in the ANN hidden layer, until no more progress is
achieved. The merit of the method is to seek for the lightest
ANN possible, being economical for both the input and the
number of synaptic weights.

The ANN trained for thermal annealing problems are listed in
Table 1 and their performance shown in Fig. 9. They are denoted
as single vacancy migration in otherwise perfect lattice, because
the migrating single vacancy is the only defect present in the sys-
tem, expect for solutes atoms. Using an IAP as cohesive model, the
trained ANN for the FeCu and FeCr systems are tagged as A and B,
respectively. We see that they are the most accurate of all. In these
cases, it is reasonable to assume that the residual error of predic-
tion almost qualifies the ANN as an undistinguishable substitute
to NEB in the AKMC simulation. Later, similar ANN were trained,
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Fig. 10. Snapshots from an AKMC simulation of a thermal annealing experiment in a Fe-1.34%Cu at 500 °C.

using DFT instead of an IAP. They are indicated as C and D, respec-
tively. Remarkably, we see that the quality of the prediction is also
excellent, in spite of the (relatively) limited amount of examples
available for training. Here, the LAC only includes up to the 5nn.
The number W of synapses in the ANN is thus significantly smaller.
More complex alloys were also considered, tagged as E, F and G in
Table 1. We see that the quality of the prediction remains high,
except perhaps the quaternary FeCuNiMn alloy, were the residual
error of prediction is significantly larger than in the other cases.
Remarkably, these ANN were trained using an amount of examples
that was only 2-3 times larger than for the binary alloys, which
highlights the strength of ANN regressions and their robustness
with respect to the increase of the mathematical complexity.

In Ref. [9], the model predictions based on IAP were compared
with experimental data for an Fe-20%Cr alloy annealed at 500 °C,
as shown in Fig. 11. The comparison with the prediction obtained
using a simple Kang-Weinberg (KW) [70] decomposition for the
migration energy (based on a rigid-lattice calculation of the energy
difference associated to the vacancy migration), demonstrates the
benefits of relying on NEB-calculated barriers: AKMC predictions
based on the KW overestimate the Cr clusters density. Finally, in
Ref. [14], the results obtained with the ANN trained from DFT
resulted in even better agreement with experimental evidence, as
both the predicted clusters density and the average size coincide.

In Ref. [11,4], the model predictions based on IAP or DFT were
compared with experimental data for Fe-1.34%Cu, Fe-1.1%Cu and
Fe-0.6%Cu alloys, annealed at 500-700 °C. The simulations for
these systems are more demanding than in the FeCr case, because
of the high binding energy between the vacancy and the solute Cu
atoms that slows down the simulation. An hybrid model was
therefore proposed, including features of object KMC models for
what concerns Cu clusters once they are formed. The AKMC model
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Fig. 11. Predicted densities and average sizes of solute clusters by the AKMC model,
for the simulation of thermal annealing experiments. Three different methodologies
to evaluate the vacancy migration energies were used. The series “IAP-KW” refers to
the use of a Kang-Weinberg formula, based on an IAP, “IAP-NEB-ANN" refers to the
ANN trained from NEB calculations using an IAP, whereas “DFT-NEB-ANN" is the
same method using DFT instead of the IAP. (left) in Fe-20%Cr at 500 °C.
Experimental data is taken from Ref. [71-73]; (right) in Fe-1.34%Cu at 500 °C,
600 °C and 700 °C. Experimental data is taken from Ref. [74-77].

as described in Fig. 8 was thus applied for the description of clus-
ters seeding (the vacancy is not found in a Cu cluster), while the
mobility and stability of the formed Cu clusters was managed with
a coarser-grained description. For this purpose, a large series of
separate AKMC simulations was conducted, in order to parame-
trize the diffusion coefficients and lifetimes of VacCu complexes
of any sizes, up to the upper limit of the model when Cu clusters
are no longer coherent with the bcc matrix (approx. 5000 atoms),
see Ref. [11,61,4] for more details. In these works, the mechanism
for the coherent stages of Cu precipitation in Fe was clearly high-
lighted, further stressing the importance of Cu clusters mobility
[52]: classical Ostwald ripening is not sufficient to explain the
rapid kinetics of Cu precipitation. This was rendered possible
thanks to the model hybridization, and the accurate parametriza-
tion enhanced by the ANN. Even if the predictions obtained from
an IAP resulted very satisfactory (see right panels in Fig. 11), the
DFT-based parametrization maximized the agreement with exper-
imental evidence. As argued in [4], the solubility limit as predicted
by DFT did not match the experimental one, with a consequent
overestimation of the clusters density. Nevertheless, the model sig-
nificantly improved from the point of view of time rescaling, nec-
essary to convert the time in the MC simulation into a physical
time comparable to the experiment, that resulted more consistent.

In complement to the above-mentioned binary systems, the
simulation of thermal annealing experiments were reported for
FeCuNi alloys in Ref. [8]. Next, diffusion coefficients for single
vacancies in a function of the alloy composition were reported in
Ref. [62] in FeNiCr alloys.

4.1.2. Computation of diffusion coefficients for point-defects clusters

An important use of AKMC models for the parametrization of
higher-scale models such as OKMC is the calculation of the diffu-
sion coefficients and lifetime of vacancy-solutes clusters. These
cannot be obtained by molecular dynamics because of the too long
timescale involved. In Ref. [ 12], the methodology initially proposed
for single point-defects (shown in Fig. 8) was generalised to
vacancy clusters: ANN were designed to predict the migration
energy towards a 1nn position of a single vacancy, taking into
account the presence of other vacancies nearby. Here too it is
assumed that the LAC can be described by a vector of integers. In
other words, single vacancies found in the LAC are described as
an additional chemical species. ANN were trained using a very sim-
ilar method, as described earlier in Section 4.1.1. The ANN quality
of prediction is very satisfactory, in spite of the increased complex-
ity: the presence of other vacancies in the LAC does not require a
much larger number of NEB-calculated examples for training.

In Ref. [78,12], vacancy-Cu clusters were studied in an other-
wise pure Fe matrix. Example of results are shown in Fig. 12. The
mechanism of migration and dissolution of the clusters was care-
fully analysed. We concluded that the addition of vacancies does
not enhance the mobility and dissolution of the Cu clusters, con-
trarily to what one could have anticipated, so long as the vacancies
are surrounded by Cu atoms. Instead, as shown in the figure,
vacancies tend to interact with each other inside of the Cu clusters,
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Fig. 12. Example of Arrhenius plot computed with the ANN-based AKMC for the
diffusion coefficient of Vac-Cu clusters.

thus reducing the effective migration. Once again, only the use of a
reliable IAP and the NEB-ANN method could give results not acces-
sible to molecular dynamics. An interesting exercise was per-
formed in Ref. [78]: for small clusters, the geometry of the
problem is reduced to such an extent that it is actually feasible
to catalogue all possible vacancy migration events. Therefore, a
direct comparison could be made between, on the one hand, the
calculated diffusion coefficient while using the IAP-NEB only, and
on the other hand, the coefficients obtained while using the trained
ANN to replace the NEB. We could see that the effect of the ANN
error of prediction was negligible.

A similar methodology was followed for describing small SIA
clusters. The ANN was trained to predict the energy difference
associate to SIA migration events in pure Fe, taking into account
the presence of other SIA nearby. It is tagged as O in Table 1 and
in Fig. 9.

4.1.3. Simulation of resistivity recovery experiments

In a metallic sample, resistivity is directly related to the amount
and type of defects it contains. The diffusion of the latter is acti-
vated at different temperatures. Hence, with a gradual temperature
increase and a monitoring of sudden changes in resistivity, it is
possible to experimentally determine the activation energy of each
defect type. Such experiments can be closely reproduced with
AKMC, and thus constitute a precious benchmark for AKMC model
development. In Ref. [64], such experiments were simulated in Fe-
Cr alloys. In addition to the ANN already mentioned in Section 4.1.1,
dedicated to the prediction of the single vacancy migration energy,
another one was trained for dealing with single SIA. Using first an
IAP by Olsson et al. [59], the obtained ANN is tagged as case H in
Table 1 and in Fig. 9. A similar network, tagged as case I, was later
on fitted in Ref. [14], relying on DFT as cohesive model. It is worth
noting the NNP shown in Fig. 6 was in fact employed in an inter-
mediate step.

The work reported in Ref. [64] highlighted how the prediction
by the AKMC model are improved thanks to a proper criterion in
vacancy-SIA recombination. Instead of using a fixed distance crite-
rion, relative stable or unstable configurations were systematically
evaluated with static relaxation. Also, the employment of the
above-mentioned ANN, thus predicting migration energies as func-
tion of the exact LAC, lead to a realistic prediction for the progres-
sive suppression of stage Ir with increasing Cr content.

4.2. Lattice-free model

The ANN-based AKMC algorithm as described in the previous
section is not directly applicable to systems where the rigid lattice

assumption is no longer valid, e.g., near free surfaces, grain bound-
aries, in the presence of dislocations, or in the presence of nano-
structural features such as dislocation loops. By removing the rigid
lattice assumption, the definition of the transitions and especially
of the LAC becomes much more complex. Thus a different formula-
tion is needed.

Fully lattice-free AKMC models do exist. They constantly
explore the local curvature of the potential energy surface, and find
transitions to nearby basins looking for saddle-points, as specified
by the transition-state theory [49]. For example, in Ref. [55],
Henkelmans and Jonsson used the Dimer method [79], which in
theory searches for all possible transitions without the need to
make assumptions. An elegant alternative to this method was pro-
posed in Ref. [80], searching for the same saddle points but using a
single image of the studied system, thus alleviating the computing
cost. Other authors developed different schemes, though accom-
plishing the same finality, e.g., the ART method [81] in Ref. [82].
In these, the definition of the migration events, and the calculation
of their corresponding migration barriers, is made on the fly.
Clearly, the advantage is the flexibility with respect to the simu-
lated system. However, any saddle-point searching algorithm must
be adequately parametrized to guarantee that most transitions are
found, which can be delicate for some systems. Most importantly,
the required computing time is prohibitive for performing long
simulations, inherently limiting the practical application of the
method to no more than a few thousands of events. This is
undoubtedly insufficient to study long-term and slow processes
such as precipitation or depletion of solutes at interfaces.

In Ref. [13], we developed similar ideas than our ANN-based
model described in the previous sections, for proposing a com-
promise between the afore-discussed extremes, as briefly summa-
rized as follows:

e The search for any possible transition events with a fully general
method such as the Monomer is equivalent to test migration vec-
tors in the 3N space, starting from the present state of the sys-
tem. This allows the definition of a large number of migration
events, which can become unmanageable. Additionally, many
events found are likely to be minor (e.g., slight displacement of
a single atom to a very nearby stable position), thus not letting
the system advance significantly in time. Instead, we defined a
generic procedure for defining transitions, assuming the most
likely events. In Ref. [13], the studied system was a grain bound-
ary in FeCr alloys. Making legitimate assumptions regarding its
specificities, migration events were defined looking for sites with
enough open volume (thus playing the role of a pseudo-vacancy),
using a geometrical criterion based on Voronoi vertexes, as
shown in Fig. 13a. In the figure, seven atoms are found within a
prescribed maximal distance from an eligible site, thus leading
to the definition of seven transition events (the migration of
any of them towards the site). A vector of migration is thus

Fig. 13. Application of the ANN-based AKMC model to a lattice-free problem. (a)
Definition of possible transition events with a generic procedure. (b) Definition of a
migration vector (denoted as d®) and a LAC (atom within a given cut-off radius R)
for a given event.
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naturally defined for each transition, as illustrated in Fig. 13b.
The direction of evolution for the system is thus reduced to a vec-
tor in three dimensions (indicated as d© in Fig. 13b), expressing
the relative translation for the migrating atom.

The activation energy associated with each events was defined
using a semi-rigid-lattice procedure: the migrating atom is first
rigidly translated to the destination site, and later on full static
relaxation using conjugate gradients [83] is applied. The
obtained configuration is defined as the final state assigned to
the event, and NEB is applied to evaluate the migration energy.
Similarly to the idea illustrated in Fig. 8, many examples of tran-
sition events are gathered in a database, until enough data are
available for designing an ANN, aimed at fully replacing the
NEB calculations. Similarly to the rigid-lattice AKMC, its pur-
pose is strictly to provide a numerical estimate of the migration
energy. The required inputs are, again, a description of the ini-
tial state (calculated from the relaxed atomic coordinates in
the 3N space). The direction of migration is, also, implicitly pro-
vided, because the z-axis of the attached referential system of
spherical coordinates is, by convention, aligned with the migra-
tion vector d©. It is worth noting that the final state of the sys-
tem, i.e., after a given migration event is applied, is not known.
Differently from the rigid lattice case, it cannot be fully deduced
without the application of static relaxation.

Following a basic Monte Carlo algorithm, a list of events is
established at every step of the simulation using the generic
procedure, and the ANN is used to estimate the associated
migration energies. One event is thus stochastically selected
amongst the others. From this point, the underlying method
for finding transition events (Monomer, ART, etc) must be fully
applied. In the case of our simplified approach in Ref. [13], only
static relaxation is necessary, after the migration atom is rigidly
placed at its desti- nation. The application of NEB is then
optional, and may be reserved for occasional feedback on the
ANN predictions.

The major advantage of our proposed lattice-free AKMC model
is that the CPU cost is reduced to the minimum necessary. Instead
of applying a general transition search method many times at each
step of the simulation (for which it is in principle necessary to
define a list of events), this operation is performed only once, i.e.,
for the selected event only. Once again, this algorithm entirely
relies on the capacity of an ANN to make faithful predictions of
the events migration energies, given as input a description of the
initial state, and of the migration vector d®. We demonstrated in
Ref. [13] the feasibility, successfully training an ANN for the case
of a single vacancy migrating near a grain boundary in FeCr alloys.
It is tagged as P in Table 1 and in Fig. 9. Interested readers are
directed to Ref. [13] for a full description of the method we fol-
lowed to train it, and in particular how the LAC was described in
ANN input variables. Concisely, similar ideas as developed in Sec-
tion 3 were followed. Taking advantage of the symmetry of the sys-
tem, the ANN input variables were taken to be the moduli of the
Cum coefficients in Eq. (7). They are, by construction, invariant with
respect to rigid rotations around the migration vector d© in Fig. 13.

We see in Table 1 and in Fig. 9 that the quality of prediction of
the obtained ANN is very high, and that the required number of
NEB-calculated examples was not exceedingly high. Nevertheless,
open issues for an efficient portability of the model to more com-
plicated system do remain. First, the question of the ANN predic-
tion reliability for never seen cases is delicate to appreciate in
practice. Differently from the rigid-lattice case, new configurations
may leave the domain in the input space that was covered during
training, putting thus the ANN in extrapolating modes. This is in
fact not an issue, however, because a constant feedback is auto-

matically performed on the ANN predictions, as discussed above.
The ANN may thus be retrained as necessary, while the AKMC sim-
ulation proceeds. Secondly, the method may work in a less efficient
way when the transition events imply large distortions from the
initial state, as highlighted in Ref. [13].

5. Future perspectives: proper modelling of radiation-induced
hardening in ferritic steels

Artificial neural networks and machine learning schemes in
general may find manifold applications in a multiscale modelling
framework. The examples provided in the present review are
essentially all based on the idea of predicting how chemically com-
plex local atomic configurations, and/or specific strain fields, influ-
ence the activation energy of selected thermally activated events,
short-cutting computationally heavy calculation methods. Appro-
priately trained ANN are then used to inform more or less standard
atomistic KMC models. Similar schemes can be used to calculate
other quantities than activation energies and to transfer atomistic
details to non-atomistic models, thereby helping in the effort of
bridging between scales. Here a few examples are discussed.

Object kinetic Monte Carlo (OKMC) models have been widely
used to describe the microstructural evolution in materials under
irradiation, in terms of radiation defects, i.e. vacancies, SIA and
their clusters. For example, a model of this type was successfully
developed in Ref. [84] to simulate irradiation processes in Fe-C sys-
tems, as reference system for models addressing steels, i.e. with a
more complex composition, and in Ref. [67] for W-C systems. In
both cases, however, the only objects explicitly treated were
point-defects and their clusters. The parameters describing their
migration and dissociation were specific for Fe or W, and the effect
of C was effectively introduced in terms of traps for mobile clus-
ters, without explicitly introducing C atoms. Likewise, models of
this type have been extended to model chemically more complex
systems, e.g. Fe-Mn-Ni as representative of RPV steels [45] or Fe-
Cr as representative of ferritic-martensitic steels [85]. The effect
of the presence of solutes was implicitly introduced in terms of
changes of parameters due to the presence of solutes, without
explicitly introducing them in the simulation box. This was
achieved in a simplified way, assuming that the solute atoms are
always uniformly and randomly distributed in the simulation vol-
ume, so that their effect is inherently independent of local fluctu-
ations of composition.

A future development of these models would consist in making
the parameters of migration and dissociation of point-defect clus-
ters sensitive to the local composition. As a matter of fact, phenom-
ena of radiation enhanced or induced heterogeneous precipitation
are expected to create significant fluctuations in the local compo-
sition. Thus, vacancies will form complexes with solute atoms,
mobile SIA clusters and dislocation loops will be repelled or
attracted by regions rich in a given solute, while immobilized
defects of the same type will become decorated by solutes, espe-
cially when these are dragged by point-defects. In order to describe
these processes, it becomes necessary to know, for example, how
the formation, trapping, and migration energy of point-defect clus-
ters changes as a function of the local composition. Such a type of
information cannot be calculated on-the-fly. First of all, such calcu-
lation would offset the advantage of non-atomistic modelling tools,
i.e. the fact of simulating relatively long timescale. Secondly,
concentration-dependent quantities are inherently averages or
else randomly selected values for different configurations with
the same local solute concentrations. ANN trained to calculate
these quantities as functions of the local atomic configurations
would allow the introduction of the chemical and atomistic detail
in models that in fact do not include atoms but handle only, in the
best case, local concentrations.
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Therefore, a more realistic description of solute dragging by sin-
gle point-defects could be provided, beyond the assumption of infi-
nite dilution limit, incorporating the effect of local chemical
configurations. For instance, the dragging of a solute by a point-
defect may be reduced by the presence of other solutes, or the car-
rying defect may more favourably bind to a different solute
encountered along the way. Given an adequate cohesive model
as input, our ANN-based technique described in Section 4.1 could
be integrated in the OKMC model to provide on-the-fly appropriate
parameters at negligible computational cost.

Another example concerns the behaviour of SIA loops decorated
by solutes. By DFT some data on the relevant binding energy can be
obtained in presence of a limited number of solutes at a time and it
is impossible to explore all possible ways in which solutes will
aggregate around a loop. A valuable improvement in the model
would be to train ANN to accurately predict the binding energy
between SIA loops and decorating solutes, ideally on DFT data.
Given as input a loop size in number of SIA and a content in solutes
(either as an explicit set of spatial coordinates, or as a composition
in regions of space), ANN could assimilate how the effective bind-
ing energy changes.

Similarly, and without mutual exclusion, ANN could be used to
predict how the migration energy of mobile defects is influenced
by the presence, in non-atomistic models such as those of OKMC
type, of strain fields, such as those created by dislocation loops
and lines, grain boundaries, etc. It is of course possible to describe
this effect by associating with each extended defect the strain field
that it generates, as calculated in an elasticity theory framework,
treating for example single point-defect as elastic dipoles and
parametrising their migration energy on DFT as function of the
dipole/strain field interaction. However, this is an approximation
that slows down significantly the calculation and is limited to rel-
atively simple strain fields, the description of which becomes com-
plicated when for example the materials are anisotropic, or when
strain field superposition occurs. In contrast, ANN could be trained
in this sense directly on atomistic models, to provide, say, the
migration energy of a single point-defect as function of the local
strain field. Moving to different scales and processes, when apply-
ing dislocation dynamics models to describe plastic deformation in
irradiated materials, it becomes necessary to define local rules of
interactions between specific types of dislocations and obstacles.
These obstacles can be solute clusters or precipitates of different
type and composition, loops orientated in different ways, deco-
rated or not by solutes, etc. By molecular dynamics it is possible
to explore only a limited number of configurations, temperature
being also a key variable to define the result of the dislocation/
obstacle reaction. Once again, ANN trained to predict the key
parameters that govern the interaction between dislocations and
defect, depending on the specific features of both, would enable
dislocation dynamics models to become more local and take into
account variables, such as chemical composition of obstacles, that
are currently very difficult or impossible to include in these
models.

All the examples given concern quite strictly machine learning
applied to varying atomistic configurations. In a more general
and futuristic way, partially out of the scope of the present review,
machine learning may one day shortcut and replace numerical
simulation models that require long computing times to provide
an answer. These models, e.g. suite of codes that, through different
scales, provide the increase of yield strength as a consequence of
irradiation for a given temperature, flux, fluence, materials compo-
sition, etc, may be used to provide examples of results for given ini-
tial and operating conditions, on which suitable machine learning
schemes could be trained, possibly also completed by experimen-
tal examples. These machine learning schemes would then eventu-
ally be able to provide equivalent results, at negligible

computational cost. Such a scheme of use would represent a step
forward, in terms of physical reliability, with respect to the exam-
ple provided in Section 2.3 in which ANN were used as a regression
tool trained directly (and physically blindly) on experimental mea-
surements of yield strength increase, as a function of operation and
initial material conditions.

6. Conclusive remarks

In this paper, we have reviewed in detail our work aimed at
achieving a more physically accurate parametrization of atomic-
scale modelling, more specifically kinetic Monte Carlo models
devoted to the description of irradiation-induced microstructure
changes in metals and alloys. However, the value of the concepts
and examples here presented goes beyond the field of materials
modelling, as there exist many more research fields where ANN,
and machine-learning techniques in general, can provide substan-
tial contributions and help building more advanced and accurate
models. It is in fact common in many modelling activities to face
the need for more powerful and flexible regression techniques,
which may appreciatively enhance the quality and applicability
of the model. Always beyond the specific application to irradiated
materials, another valuable take-home message that can be
applied in plenty of other fields is to always treat ANN with a crit-
ical eye. Our experience tells that ANN, expectedly or not, lead to
accurate and trustworthy predictions, providing that at least two
important conditions are fulfilled.

First of all, the provided set of training reference data must be
strictly self-consistent. Often, this condition might seem obvious
and fulfilled by default, but this is not always the case. For instance,
in the case of a single vacancy migrating in an Fe-based alloy, all
events treated by the ANN are unquestionably of the same kind,
thus self-consistency concerns essentially the numerical
parametrization. In that respect, it is necessary to handle the large
amount of required NEB calculations with some automatic scripts,
which might be more challenging than expected considering that it
is no longer possible to carefully examine and verify each individ-
ual case. Many times, we have realized that something was not
optimal in the NEB setup, only after having trained the ANN and
analysed its predictions (e.g., similar plots to those in Figs. 6 and
9). While outliers clearly mark specific (pathological) cases that
are easily addressable, it is surely not straight-forward to identify
and solve the issue in a blurry cloud of points. Sometimes it was
necessary to recompute whole NEB batches with more stringent
convergence parameters, or to improve the convergence of the
end-state relaxations, to obtain a more satisfactory ANN quality
of prediction. The task was most challenging in the lattice-free
AKMC models, given the variety and complexity of many encoun-
tered migration paths, and the possibility that even a specific type
of transition (e.g., a vacancy migrating or not) can unexpectedly
change during the NEB relaxation.

Secondly, a particular attention must be paid to the risk of end-
ing up with hidden correlations in the training database. In addi-
tion, some clumsy mistakes, such as the accidental mixing of
unrelated but not incompatible data, can be equally dangerous.
In a way, this may be regarded as the worst, and at the same time
most natural enemy of a black-box approach, that can transform
their best quality into their most serious shortcoming. If the train-
ing set is sufficiently self-consistent, the ANN will undoubtedly
manage to perform “accurate” predictions of the reference set,
even when there is something terribly wrong with the former. Hid-
den correlations and mistakes in the data can thus be hard to spot,
because of the ANN capability of assimilating and integrating them
in its inner logic, without showing evident symptoms to the blind
user. We provide here three illustrative examples:
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o In the hardening prediction based on surveillance data, reported
in Section 2.3, it was easy to accidentally compile a training set
referring to samples with correlated chemical compositions. In
the surveillance dataset, the Ni content was in a linear correla-
tion with the Cu content, which is not surprising, as this is dic-
tated by a certain justified technological logic. If this dataset is
used as such for training, the obtained ANN is unavoidably
bound to that logic, and is not treating the two parameters Ni
and Cu content as independent variables, as opposed to the
original scope.

e Hidden correlations were also found in the application of the
lattice-free AKMC in Section 4.2. With an incautious approach,
it is easy to put together a database of migration events that
are not sufficiently diversified, or whose associated end states
are highly correlated. For instance, the migration vector d®,
which should be in principle independent from the initial state,
was found instead to be statistically deducible from it, due to an
inadequate sampling of the possible migration events, or to the
fact that the training configurations were too similar to bulk
bcc. As a consequence, the ANN most likely exploited this acci-
dental statistical correlation, thus learning a logic that is only
partially applicable to all events that can be encountered during
the simulation.

e Finally, we witnessed incredible cases where the ANN was able
to assimilate to a high degree of accuracy training data that was
completely and unquestionably wrong, as a consequence of
(human) mistakes that can be likely when handling large
amounts of data with automatic scripts. For example, while
assembling the training dataset to design the FeNi NNP
described in Section 3, we accidentally mixed two batches of
incompatible data, namely referring to two different definitions
of the cohesive energy of each chemical species. In spite of the
evident inconsistency, the obtained NNP was (apparently) satis-
factory, at least for the cases shown in Fig. 6! During the atomis-
tic simulations, nothing wrong emerged as long as the system
remained close to regular bcc; however, as soon as it departed
from it (e.g. during static relaxation, or at the saddle point of
a migration event), the energy landscape became unstable and
inconsistent, which made us realize that the NNP training went,
in fact, completely wrong.

To conclude, ANNs are clearly very promising tools, but they
must be handled with care. With their black-box approach, they
often provide a high-quality parametrization that can be comfort-
ably and fruitfully exploited, but that can hide completely unphys-
ical results. In other words, this shows that artificial intelligence
and machine learning do not free us human scientists from the
duty of critical thinking. They rather allow us to build up more
advanced models, as well as to divert our thinking from lower-
level repetitive tasks (such as looking for mathematical expres-
sions to describe a migration energy as a function of the LAC) to
more valuable and meaningful aspects: is the problem well formu-
lated from a mathematical and physical standpoint? Is the pro-
vided data relevant or adequate? Are all physical aspects taken
into account?
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