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Abstract

In refined network simulation one is faced with simulating coupled dynamical systems, as for instance circuits
are coupled to heat or electromagnetics. Simulation costs of such coupled systems can be reduced by both
model order reduction and multirate techniques. In this paper we discuss the coupling of both approaches
by linking the slowest first multirate technique to the nonlinear proper orthogonal decomposition model
order reduction. For a nonlinear coupled thermal-electrical test example numerical results show the proven
convergence of the combined reduced order multirate scheme.
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1. Introduction

In time-domain simulation of multiphysical electric circuits, characteristics of the governing set of equa-
tions can be exploited: firstly, the multirate (MR) behaviour of the system in the time domain; secondly
the vast number of system equations. Previous work [1] regarding the linking of techniques to exploit both
characteristics has been done but with respect to linear Model Order Reduction (MOR). In this paper we
extend it to the case of differential-algebraic equations (DAEs) coupled to nonlinear ordinary differential
equations (ODEs), where the DAEs describe the fast dynamics of electronic circuits, while the ODEs govern
slower multiphysical aspects. A twofold approach is presented to efficiently simulate these coupled nonlinear
DAEs with first order convergence: by linking the results of [2] to the nonlinear MOR approach of [3] and
extended by [4], the differential-algebraic system is reduced and partitioned to be integrated by a reduced
order multirate (ROMR) scheme. In the next section we formulate mathematically the dynamical systems
to be solved within the multiphysics simulation and, based on that, describe the multirate and MOR tech-
niques. The convergence analysis for our approach is presented in Section 3. Section 4 collects numerical
results for a coupled thermal-electric test example. Finally, conclusions are drawn in Section 5.

2. Problem Formulation

This section introduces the preliminaries and definitions needed for the subsequent discussions. In the
first part the definition of a coupled dynamical system of DAEs is described, followed by an outline of both
POD Q-DEIM model order reduction technique and multirate time integration.

2.1. Coupled multiscale dynamical systems
The dynamics of an electrical circuit is described by DAE network equations, which are analytically

equivalent to a semi-explicit DAE of the form, see [5],

ẏ = f̃(y, z, t) := f(y, z, u), y(t0) = y0, u(t0) = u0, (1)

0 = g̃(y, z, t) := g(y, z, u), z(t0) = z0, (2)

Preprint submitted to Applied Mathematics Letters June 2020



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

with functions f̃ : Rn × Rm × I → Rn and g̃ : Rn × Rm × I → Rm for the differential and algebraic part,
respectively. The quantities y : I → Rn and z : I → Rm denote the differential and algebraic variables defined
on the time-interval [t0, t1], and u couples the network to the PDE model described below. Furthermore
y0 and z0 need to be consistent initial conditions: for index-1 system assumed in the following, this reads
0 = g(y0, z0, u0). Secondly, other phenomena requiring to describe spatial effects can be included via
PDEs, which are denoted in general form, given by u̇ = L(u), where L is a differential operator acting on
u ∈ D ⊂ Rd, with d ∈ {1, 2, 3} denoting the dimension of the spatial domain. This PDE system is coupled to
the DAE system above via boundary conditions, source terms and/or parameters. After applying a suitable
space discretization to the PDE system, overall an initial value problem of semi-explicit DAEs is obtained:

ẏ = f(y, z, u), y(t0) = y0, (3)

0 = g(y, z, u), z(t0) = z0, (4)

u̇ = h(y, z, u), u(t0) = u0. (5)

This system is guaranteed to be of index-1 by the assumption that the Jacobian

∂g(y, z, u)

∂z
is invertible, (6)

in a neighbourhood of the solution of the system (3-5). From this assumption the algebraic variable z can
be solved locally by using the implicit function theorem

z = G(y, u). (7)

Since the coupled system (3-5) is constructed by the combination of two different processes it can be assumed
that they act within different time scales. To exploit this characteristic, the total system is partitioned into
fast (xF = y and zF = z) and slow (xS = u) subsystems,

ẋF = fF (xF , zF , xS), xF (0) = xF,0, (8)

ẋS = fS(xF , zF , xS), xS(0) = xS,0, (9)

0 = gF (xF , zF , xS), zF (0) = zF,0, (10)

with fF := f, fS := h and gf := g. The subscripts {F, S} in the differential variables xF ∈ RnF (nF := n),
xS ∈ RnS and algebraic variables zF ∈ RnZ (nZ := m) indicate fast or slow dynamics, for t ∈ [t0, t1] with
consistent initial conditions. The algebraic constraints are assumed to be fast, as the whole dynamics of the
DAE system is fast. This type of coupling lets us consider electrical circuits with a differential index up to
1, coupled to slower ODE systems.

2.2. POD Q-DEIM

Applying a space discretization to the PDE can result in large nonlinear ODE systems. To reduce the
computational effort needed to solve this system in each time step MOR techniques are used. Due to the
nonlinearity of the ODE most conventional MOR techniques can be discarded as they are tailored to linear
systems. Hence the chosen method for this system is a reduction by a Galerkin projection constructed by
Proper Orthogonal Decomposition (POD), [6]. This is then extended by the application of the Discrete
Empirical Interpolation Method (DEIM), [3], exploiting a QR selection procedure (Q-DEIM), [4]. By using
a Galerkin projection a reduced model is constructed, [4], which guarantees that the reduced system is again
index 1. Let V ∈ RnS×r be a non-square matrix with independent columns, with nS � r, then Vr denotes
an r-dimensional subspace spanned by these columns. The full state of the slow subsystem xS is then
approximated by xS ≈ V xS,r using the model reduction basis V . The reduced model in the fast unknowns
xF , zF and slow unknowns xS,r is then defined by

ẋF = fF (xF , zF , V xS,r), xF (0) = xF,0, (11)

ẋS,r = fS,r(xF , zF , xS,r), xS,r(0) = xS,r,0, (12)

0 = gF (xF , zF , V xS,r), zF (0) = zF,0 (13)
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with fS,r(xF , zF , xS,r) = V T fS(xF , zF , V xS,r), where the full state is needed for the coupling. The reduction
basis V is constructed through POD. First a numerical simulation of the full system (8-10) is performed.
From the numerical results of this simulation snapshots {xi} are obtained, with xi for i = 1, . . . , NS denoting
the numerical approximation of xS at time point ti of the full system. Then the POD snapshot matrix, for
the slow variables only, is defined by

X = [x1, . . . , xNS
] ∈ RnS×NS . (14)

From this the Singular Value Decomposition (SVD) is computed

X = ZΣY T , (15)

where Z ∈ RnS×k, Y ∈ RNS×k are orthogonal and Σ = diag(σ1, . . . , σk) ∈ Rk×k with k = min(nS , NS).
Now a reduction basis V can be constructed by taking the leading r singular vectors of Z corresponding to
the r largest singular values. However, denote that there is still a problem with the Galerkin projection of
the reduced term, fS,r(xF , zF , xS,r), causing computational inefficiencies. This term has a computational
complexity that depends on the non-reduced full order size nS . To reduce the computational complexity
Q-DEIM is applied, [3].

Consider the nonlinear function fS : T → RnS with T ⊂ RnS , and matrix U ∈ RnS×m of rank m. Then
the DEIM approximation of fS is defined by [3, Definition 3.1],

f̂S(τ) := U(SU)−1ST fS(xF (τ), zF (τ), xS(τ)), (16)

where S is a selection matrix of size nS ×m by selecting columns of identity matrix I of size nS × nS . Then
the reduced nonlinear function fS,r is approximated with the Q-DEIM, we replace fS by fS,r (the coupled
terms xF and zF are dropped here from the notation as these are not reduced)

fS,r(xS,r) ≈ V TU(SU)−1ST fS(V xS,r). (17)

Using the interpolation of general nonlinear functions, outlined in [3, Section 3.5], a general nonlinear
function can be represented as[

F (y)
]
i

= Fi(y) = Fi(yji1 , yji2 , . . . , yjini
) = Fi

(
y(ji)

)
, (18)

where Fi : Yi → R, Yi ⊂ Rni , with integer vector ji = [ji1, j
i
2, . . . , j

i
ni

] denoting the indices of the components
required to evaluate Fi. The numerical implementation of this allows to compute (17) without the full
evaluation of fS .

2.3. Multirate Implicit Euler

The overall index-1 system (11)-(13) can be integrated with the stiffly accurate Implicit Euler scheme,
which automatically assures that also for t > 0 the quantities will remain consistent. To exploit the assumed
different time scales, a multirate integration scheme is proposed. This approach is analogous to [2], but
with the algebraic constraint in the fast subsystem, and taking the subsequent MOR into account. The
integration of the coupled system (11)-(13) for one macro-step tn → tn+1 = tn +H is defined as

xF,n+(l+1)/m = xF,n+l/m + hfF (xF,n+(l+1)/m, zF,n+(l+1)/m, x̄S,n+(l+1)/m), (19)

xS,n+1 = xS,n +HfS,r(x̄F,n+1, z̄F,n+1, xS,n+1), (20)

0 = gF (xF,n+(l+1)/m, zF,n+(l+1)/m, x̄S,n+(l+1)/m), (21)

with l = 0, . . . ,m − 1, counting the micro step approximations at the micro grid, where h = H/m. The
coupling variables are denoted by x̄F , z̄F , x̄s. The coupling strategy is chosen to be the Coupled-Slowest-
First approach as this is shown to have a consistency of order 1 for the problem posed in [2]. First the whole
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system is solved for the macro-step.

x∗F,n+1 = xF,n +HfF (x∗F,n+1, z
∗
F,n+1, xS,n+1), (22)

xS,n+1 = xS,n +HfS,r(x
∗
F,n+1, z

∗
F,n+1, xS,n+1), (23)

0 = gF (x∗F,n+1, z
∗
F,n+1, xS,n+1). (24)

The step size H is chosen according to the slow dynamics, whilst the full system remains solvable. From
this it follows that the fast solutions, x∗F,n+1 and z∗F,n+1, are not accurate enough and can be discarded,
as they will be computed in the last micro step. In a second step, the fast solutions are computed for the
micro steps l = 0, . . . ,m−1, using for the interpolated values x̄S,n+(l+1)/m linear interpolation based on the
available information xS,n and xS,n+1in time values for the slow variables.

3. Numerical Analysis

Let y{full,red} : [t0, tend] → Rk denote all the variables of the full system (8)–(10) and of the reduced
system (11)–(13), respectively. Let the exact values be denoted with y(t) for t in the interval [t0, tn].
Furthermore, let yn denote the numerical approximation after n macro-steps. Let || · || denote the 2-norm
in Euclidean space. To numerically integrate the reduced order system (11)-(13) with a ROMR scheme we
are interested in the difference between the numerical approximation computed by the reduced multirate
scheme and the exact solution of the full order model.∥∥∥yfull(tn+1)− Ṽ yred,n+1

∥∥∥ , (25)

where Ṽ is the orthonormal projection matrix for the full system, defined asI 0 0
0 V 0
0 0 I

 . (26)

Here V is the projection of the slow part, the other quantities are not reduced. We split the approximation
errors into two parts, the reduction error and the numerical error.∥∥∥yfull(tn+1)− Ṽ yred,n+1

∥∥∥ ≤ ∥∥∥yfull(tn+1)− Ṽ yred(tn+1)
∥∥∥− ∥∥∥Ṽ yred(tn+1)− Ṽ yred,n+1

∥∥∥ . (27)

By using [7, Theorem 4.2], we have that

∫ tn+1

0

∥∥∥yfull(t)− Ṽ yred(t)
∥∥∥2 dt ≤ C(tn+1)(Ey + EF ), (28)

where C(tn+1) is the magnification factor, and Ey and EF are the 2-norm errors from approximating the

solution yfull(t) with POD and the nonlinear function with Q-DEIM. Now we have that
∥∥∥yfull(t)− Ṽ yred(t)

∥∥∥2
is a Riemann integrable function and thus it holds that∫ tn+1

0

∥∥∥yfull(t)− Ṽ yred(t)
∥∥∥2 dt ≤ C(tn+1)(Ey + EF ) =⇒

∥∥∥yfull(tn)− Ṽ yred(tn)
∥∥∥2 ≤ C̃(tn+1)(Ey + EF ),

(29)

where C̃(tn+1) = 1
tn
C(tn+1), following the upper and lower bound inequality of Riemann integrals. For the

bound of the numerical error from Equation (27) we first observe that obtaining the fast algebraic approx-
imates via the implicit function theorem and via the implicit Euler method are the same, as the implicit
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Euler method is stiffly accurate and thus automatically consistent. Therefore the numerical approximation
error in the algebraic variable only depends on yF and ySr :

zF,n+ l
m
− zF (tn+ l

m
) = G(yF,n+ l

m
, ySr,n+

l
m

)−G(yF (tn+ l
m

), ySr (tn+ l
m

)). (30)

This is equal to the case c in, [2, Lemma 2]. Therefore, [2, Theorem 2], can be applied which gives that the
numerical error ∥∥∥Ṽ yred(tn+1)− Ṽ yred,n+1

∥∥∥ ≈ O(H), (31)

where H is the macro step-size of the mrIRK-DAE1 scheme. From this it follows that the reduced order
multirate global approximation error is given by∥∥∥yfull(tn+1)− Ṽ yred,n+1

∥∥∥ ≈√C̃(tn+1)(Ey + EF ) +O(H). (32)

Thus if the reduction error is chosen such that√
C̃(tn+1)(Ey + EF ) = O(H) (33)

the method converges with order 1 in H to a solution which is within O(H) distance of the full solution.
This small choice is always possible as the bound can be made arbitrarily small. One caveat could be
that if the system is unsuitable for reduction, the reduction error will only be small for a small dimension
reduction. Then this will not lead to improved computational times as the system will not be sufficiently
reduced and the large projections can increase the computational effort. However, our thermal-electrical
benchmark perfectly allows for reduction.

4. Numerical Results

This section verifies the convergence results obtained in the previous section numerically by applying
the reduced order multirate scheme to a test problem. As the test circuit needs to contain both coupling
and different intrinsic time scales, the thermal-electric test circuit as described in [8] is used, Figure 1.
This circuit consists of an operational amplifier, two resistors, a diode and a capacitor. The resistor R(T )

v(t)

u1 u2

R(T )

u3 u4

C RL

Figure 1: Electric description of the benchmark circuit.

produces and transports heat and is temperature dependent. The amplifier is a heat source and the diode
has a temperature dependent characteristic curve. The electric behaviour of the circuit is modelled by nodal
analysis yielding from Kirchhoff’s laws. Following the discretisation as done in [8] we arrive at the following
thermal-electric system:

Electric network:

0 = (Av(t)− u3)/R(T ) + idi(u3 − u4, Tdi),

Cu̇4 = idi(u3 − u4, Tdi)− u4/RL,

5
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Coupling interfaces:

Pop = |(vop − |v(t)| · (Av(t)− u3)/R|, Pw = (Av(t)− u3)2/R,

R(T ) =

(
1

2
(ρ(0, T0) +

N−1∑
i=1

ρ(Xi, Ti) +
1

2
ρ(l, TN )

)
· h,

Heat equation:

M ′w,ihṪi, = Λ
Ti+1 − 2Ti + Ti−1

h
+ Pw

ρ̃(Xi, Ti)

R
h− γS′w,ih(Ti − Tenv), (i = 1, ..., N − 1),

(M ′w,0 ·
h

2
+Mop)Ṫ0 = Λ

T1 − T0

h
+ Pw

ρ̃(0, T0)

R

h

2
− γ(S′w,0

h

2
+ Sop) · (T0 − Tenv) + Pop,

(M ′w,N ·
h

2
+Mdi)ṪN = Λ

TN−1 − TN

h
+ Pw

ρ̃(XN , TN )

R

h

2
− γ(S′w,N

h

2
+ Sdi) · (TN − Tenv)
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Figure 2: Full system solution, consistent with [8] (left), heat flow in time through the resistor (right).

The coupled thermal-electric system is simulated over the time interval [0 1.125·10−4]. The thermal PDE
is spatially discretized into N = 1000 voxels. The model is reduced such that σr+1

σ1
< 1 · 10−15. In Figure 2

the evolution of the thermal electrical system through time is shown. To assess the error of the ROMR
scheme the obtained voltages at nodes u3 and u4 are compared to a highly accurate reference solution.
Figure 3 shows this comparison for the single rate (SR) scheme, the MR scheme and the ROMR scheme. It
shows that the reduced order multirate scheme error, the left figure, follows the O(H) convergence rate in
both the algebraic, u3, and dynamic, u4, variables. In the right figure, it shows the computation time versus
the difference with the reference solution.

5. Conclusion and Outlook

The multirate time integration scheme has successfully been extended to incorporate model order reduc-
tion methods. The resulting reduced order multirate scheme is guaranteed to be consistent and converges
with order 1. The numerical results obtained for the test example confirmed these analytical results and
showed that the reduced order multirate scheme can be successfully applied to coupled dynamical systems.
Further research will be conducted by applying a reduced order multirate scheme to a coupled dynamical
system composed of two differential algebraic systems.
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Figure 3: Convergence of the numerical schemes, where the error is plotted against the number of macro steps (left). Compu-
tational effort of the numerical schemes, where the error is plotted against the computation time in seconds (right). The error
is defined as the absolute value between the computed voltage and reference voltage for each node.
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