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Abstract

In the context of time-domain simulation of integrated circuits, one often encounters large systems of coupled
differential-algebraic equations. Simulation costs of these systems can become prohibitively large as the
number of components keeps increasing. In an effort to reduce these simulation costs a twofold approach
is presented in this paper. We combine maximum entropy snapshot sampling method and a nonlinear
model order reduction technique, with multirate time integration. The obtained model order reduction
basis is applied using the Gauß-Newton method with approximated tensors reduction. This reduction
framework is then integrated using a coupled-slowest-first multirate integration scheme. The convergence of
this combined method verified numerically. Lastly it is shown that the new method results in a reduction
of the computational effort without significant loss of accuracy.

Keywords:
Mulitrate, Model Order Reduction, Differential-Algebraic Equations, Snapshot Sampling.

1. Introduction

During the previous decades the number of transistors on a chip has grown exponentially, whilst the
chip size remained nearly constant or even decreased. As the number of transistors increases and the area
in between them diminishes, very detailed effects have to taken into account. Due to these developments,
the manufacturing of integrated circuits became increasing complex. Before a chip is produced, it needs to
be analysed whether or not it behaves according to desired specifications.

With the increased complexity, it has become unfeasible to do this analysis through prototype experi-
ments. Therefore computer-aided design (CAD) using modelling and simulation tools has become a crucial
and necessary element in the industrial optimization flow. Mathematical models of the integrated circuits
are derived from the network topology and natural phenomena occurring inside these chips. Now how-
ever, due to the ever increasing complexity of the circuits, we even run into limitations using CAD as the
mathematical models become prohibitively large.

In the context of time-domain simulation of multiphysical integrated circuits, one often encounters large
systems of coupled differential-algebraic equations (DAEs). To keep the simulation times of these systems
feasible, a multitude of techniques can be applied exploiting different characteristics of the underlying
systems. As there are different natural phenomena occurring at once inside these circuits, one of the
exploited characteristics is the difference of time scales for each of these phenomena. This is done through
multirate (MR) time integration, [8].

Another way of drastically improving the feasibility of these simulations is by incorporating nonlinear
model order reduction (MOR) techniques, for which the Maximum Entropy Snapshot Sampling (MESS)
method is used, [11]. This MOR technique directly reduces the snapshot matrix according to an estimate
of the second-order Rényi entropy, instead of creating a basis according to information based on linear
transformations, such as done by Proper Orthogonal Decomposition (POD) through singular values, which
is currently an industry standard. Besides preserving the nonlinear characteristics of the snapshot matrix the
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MESS method also has reduced memory constraints, as the QR-decomposition is called after the snapshot
matrix has been reduced. Finally, the MESS method relies solely on pairwise distance computations, and
its performance can be improved through the use of CPU/GPU parallelism.

This technique can be supplemented with hyper-reduction methods for the reduction of nonlinear function
evaluations. Without this extension, the nonlinear function evaluations of the back-transformed reduced
state vectors can still become a dominant factor in the computational effort. These are methods such
as the Discrete Empirical Interpolation Method (DEIM) [5, 6] or, as used for our hyper-reduction, data
reconstruction through the gappy POD method [16], where in our case a MESS constructed basis is used
for the reconstruction.

In this paper a twofold approach is presented to efficiently simulate coupled nonlinear DAEs by combining
these two techniques, into a reduced order multirate (ROMR) scheme. This is is a generalisation of [1] by
also considering the possibility of DAEs in the slower subsystems. In the next section the mathematical
problem is formulated and preliminaries are discussed. Section 3 is related to the numerical analysis of the
ROMR method. Then in section 4 numerical experiments are performed and results presented. In the final
section conclusions are drawn.

2. Problem Formulation

Consider the following coupled system of two semi explicit DAE systems, where the subscripts {F, S}
indicate a fast or slow time-scale, respectively, and independent transient sources have been omitted for
notational convenience:

d

dt
yF = fF(t, yF, zF, yS, zS), yF(t0) = yF0 , (1a)

0 = gF(t, yF, zF, yS, zS), zF(t0) = zF0
, (1b)

d

dt
yS = fS(t, yF, zF, yS, zS), yS(t0) = yS0

, (1c)

0 = gS(t, yF, zF, yS, zS), zS(t0) = zS0 , (1d)

with the functions fA : R × Ra × Rb × Rc × Rd → Ra, with A ∈ {F,S}, where {a, b, c, d} ∈ N are the
respective dimensions, and equivalent definitions for gA. Consistent initial conditions are assumed, which
means that Equations (1b) and (1d) are satisfied at initial time t0. The quantities y{F,S} : I → R{a,b} and

z{F,S} : I → R{c,d} denote the differential and algebraic variables defined on the time interval [t0, t1]. Both
subsystems and the joint system are guaranteed to be index-1 by the assumption that the Jacobians

∂gF
∂zF

,
∂gS
∂zS

and

(
∂gF
∂zF

∂gF
∂zS

∂gS
∂zF

∂gS
∂zS

)
are regular (2)

in the neighbourhood of the solution of the system. From this assumption the algebraic variables z{F,S} can
be solved locally by using the implicit function theorem

z{F,S} = Gt,{F,S}(yF, z{S,F}, yS), (3)

where the second z subscript is the opposite of the first z subscript. The partition of the system into
subsystems can originate from different physical systems, such as temperature diffusion and electric currents.
However, differences in time scale can also be identified by different orders of time derivatives. Here the
partition is considered to be fixed during the time integration.

3. Overview of the Reduced Order Multirate Method

To keep this paper as self-contained as possible, this section provides an overview of each individual
method that is used in a ROMR scheme. First a description of the Maximum Entropy Snapshot Sampling
method proposed in [11], and the subsequent gappy data reconstruction, [16], for the approximation of the
nonlinear functions are given. Second, the multirate implicit Euler scheme is described using a Coupled-
Slowest-First approach.
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3.1. Maximum Entropy Snapshot Sampling

Let m and n be positive integers and m � n > 1. Define a finite sequence X = (x1, x2, ..., xn) of
numerically obtained states xj ∈ Rm at time instances tj ∈ R, with j ∈ {1, 2, ..., n}, of a dynamical system
governed by either ODEs or DAEs. Provided probability distribution p of the states of the system, the
second-order Rény entropy of the sample X is

H(2)
p (X) = − log

n∑
j=1

p(xj)
2 = − logE(p(xj)), (4)

with E(p(X)) the expected value of the probability distribution p with respect to p itself. When n is large
enough, according to the law of large numbers, the average of p1, p2, ..., pn almost surely converges to their
expected value,

1

n

n∑
j=1

p(xj)→ E(p(X)) as n→∞, (5)

thus each p(xj) can be approximated by the sample’s average sojourn time or relative frequency of occurrence.
To obtain this frequency of occurrence, considering a norm ‖ · ‖ on Rm. Then the notion of occurrence can
be translated into a proximity condition. In particular, for each xj ∈ Rm define the open ball that is centred
at xj and whose radius is ε > 0,

Bε(x) = {y ∈ Rm | ‖x− y‖ < ε}, (6)

and introduce the characteristic function with values

χi(x) =

{
1, if x ∈ Bε(xi),
0, if x /∈ Bε(xi).

(7)

Under the aforementioned considerations, the entropy of X can be estimated by

Ĥ(2)
p (X) = − log

1

n2

n∑
i=1

n∑
j=1

χi(xj). (8)

Provided that the limit of the evolution of Ĥ
(2)
p exists, for n large enough, and measures the sensitivity of the

evolution of the system itself [3, §6.6], a reduced sequence Xr = (x̄j1 , x̄j2 , . . . , x̄jr ), with r ≤ n, is sampled
from X, by requiring that the entropy of Xr is a strictly increasing function of the index k ∈ {1, 2, . . . , r} [10].
The state vector x̄jk added to sampled snapshot space is the average value of all states in the selected ε-ball.
A reduced basis is then generated from Xr with any orthonormalization process. The MESS procedure is
outlined in Algorithm 1. It has been shown [11] that, depending on the recurrence properties of a system,
any such basis guarantees that the Euclidean reconstruction error of each snapshot is bounded from above
by ε, while a similar bound holds true for future snapshots, up to a specific time-horizon.

The Estimation of ε: The open ball parameter ε, which is directly responsible for the degree of reduction
within the MESS framework, can be chosen arbitrarily, much like the number of selected basis vectors
provided by a POD approach. For a ballpark estimate of this parameter the following optimisation approach
is provided [12]. The quantity within the logarithm in the entropy estimate (8) is often referred to as the
sample’s correlation sum and can be written as

Cε =
1

n2
‖Rε‖2F, (9)

with Rε ∈ {0, 1}n×n being the recurrence matrix whose entries are unity, when ‖xi−xj‖ < ε, and ‖·‖2F being
the Frobenius norm. In terms of probability theory, Cε is a cumulative distribution function of ε, and hence,
its derivative dCε/dε is the associated probability density function of ε. A commonly justified hypothesis is
that the correlation sum scales as εD [13, Chapter 1], with D ≥ 0 being the so-called correlation dimension

3
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Algorithm 1: Maximum Entropy Snapshot Sampling

input : Snapshot matrix X ∈ Rm×n, tolerance ε.
output: Reduced basis V ∈ Rm×r.

1 Pi,j ← ||xi − xj ||, ∀i, j ∈ {1, ..., n};
2 P ← P/max(P );
3 R← P < ε;
4 Y ← [ ];
5 for j = 1,..., n do
6 idx← {i ∈ [1, ...,m] | Ri,j = 1};
7 if |idx| 6= 0 then
8 Y ← [Y mean(X:,idx)];
9 R:,idx ← 0, Ridx,: ← 0;

10 end

11 end
12 [V,−]← qr(Y );

of the manifold that is formed in Rm by the terms of X. Under this power law assumption, the maximum
likelihood estimate [14, Chapter 8] of the correlation dimension is estimated as follows. We find a sample
{εi}, with εi ∈ [0, 1] for all i ∈ {1, 2, . . . , q}, of a random variable E that is sampled according to Cε. Then,
the probability of finding a sample in (εi, εi + dεi) in a trial is

q∏
i=1

DεD−1dεi. (10)

To calculate the ε value for which this expression is maximized, we take the logarithm

q · lnD + (D − 1)

q∑
i=1

ln εi, (11)

and note that the maximum of this expression is attained when

q

D
+

q∑
i=1

ln εi = 0. (12)

This results in the most likely value D∗ = −1/〈lnE〉, and ε can be estimated by

ε∗ = argmin(|D∗ − lnCε/ ln ε|). (13)

The algorithm to calculate this most likely value for a given snapshot matrix X is described in Algorithm 2.

3.2. The Gauß-Newton with approximated tensors method

Unfortunately, a direct application of MESS is not feasible in practice, [15, Section 7.6], therefore a
simplified Gauß-Newton with Approximated Tensors (GNAT), equipped with a function-sampling-hyper-
reduction scheme is used. Firstly, a direct Galerkin projection may yield an unsolvable reduced system for
DAEs. Secondly, the computational effort required to solve this reduced system and the full system is about
the same in the nonlinear cases. This is due to the fact that the evaluation costs of the reduced system are
not reduced at all because the projection basis will be a dense matrix in general.

Considering a general DAE in the form

φ̇(t, u) + ψ(t, u) = 0, (14)

4
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Algorithm 2: Epsilon estimation for a given snapshot matrix X

input : Snapshot matrix X ∈ Rm×n.
output: Estimated tolerance value ε∗.

1 Pi,j ← ||xi − xj ||, ∀i, j ∈ {1, ..., n};
2 P ← P/max(P );
3 {εicdf} ← LinearSpace(0, 1, nε);
4 for i = 1, ..., nε do
5 Cεicdf

← 1
n2
ε
||Rεicdf

||2F, Equation(9);

6 end

7 {εi}qi=0 ← RandomFromCDF (q, {εjcdf}, {Cεjcdf}), for j = 1, ..., nε;

8 D∗ ← − 1
〈ln εi〉 ;

9 ε∗ ← εicdf , for which i = argminj(|D∗ − lnCεjcdf
/ ln εjcdf |);

where φ and ψ are functions of time t and some state vector u. In the discrete case, we assume that the
numerical scheme exactly solves the following nonlinear system for each time step ti,

R(u) = 0, (15)

where u ∈ RN , u0 the initial condition and the residual R : RN → RN . Note that for ease of notation, the
relevant time subscripts have been omitted, as this equation is solved for each individual time step. For the
reduction of the dimension of Equation (15), a projection is used to search the approximated solution in the
incremental affine trial subspace u0 + V ⊂ RN . Thus ũ is given by

ũ = u0 + Vuur, (16)

where Vu ∈ RN×nu is the nu-dimensional projection basis for V, and ur denotes the reduced incremental
vector of the state vector. Now deviating from the direct Galerkin projection process, Equation (16), is
substituted into Equation (15). This results in an overdetermined system of N equations and nu unknowns.
Because Vu is a matrix with full column rank, it is possible to solve this system by a minimisation in
least-squares sense through

minũ∈u0+V ||R(ũ)||2. (17)

This nonlinear least-squares problem is solved by the Gauß-Newton method, leading to the iterative process
for k = 1, ...,K, solving

sk = argmina∈Rnu ||JkVua+Rk||w, (18)

and updating the search value wkr with
wk+1
r = wkr + sk, (19)

where K is defined through a convergence criterion, initial guess w0
r , R

k ≡ R(u0 + Vuw
k
r ) and Jk ≡

∂R
∂u (u0, Vuu

k
r ). Here Jk is the full order Jacobian of the residual at each iteration step k. Since the com-

putation of this Jacobian scales with the original full dimension of Equation (15) this is a computational
bottleneck. This bottleneck can be circumvented by the application of hyper reduction methods, for which
this paper utilises a gappy data reconstruction method.

Gappy Maximum Entropy Snapshot Sampling: The evaluation of the nonlinear function R(u0+Vuw
k
r ) has

a computational complexity that is still dependent on the size of the full system. To reduce the complexity
of this evaluation the gappy MESS procedure, based on gappy POD [7], is applied. Like the gappy POD
approach gappy MESS uses a reduced basis to reconstruct gappy data. However, unlike the gappy POD
approach the basis used is now not obtained through POD but by MESS. Gappy MESS starts by defining

5
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a mask vector n for a solution state u as

nj = 0 if uj is missing,

nj = 1 if uj is known,

where j denotes the j-th element of each vector. The mask vector n is applied point-wise to a vector by
(n, u)j = njuj . This sets all the unobserved values to 0. Then, the gappy inner product can be defined as
(x, y)n = ((n, x), (n, y)), which is the inner product of the each vector masked respectively. The induced
norm is then (||x||n)2 = (x, x)n. Considering the reduction base obtained by MESS Vgap = {vi}ri=1, now we
can construct an intermediate “repaired” full size vector g̃ from a reduced vector g with only r elements by

g̃ ≈
r∑
i=1

biv
i, (20)

where the coefficients bi need to minimise an error E between the original and repaired vector, which is
defined as

E = ||g − g̃||2n. (21)

This minimisation is done by solving the linear system

Mb = f, (22)

where
Mij = (vi, vj)n, and fi = (g, vi)n. (23)

From this solution g̃ is constructed. Then the complete vector is reconstructed by mapping the reduced
vectors elements to their original indices and filling the rest with the reconstructed values.

Algorithm 3: Gappy reconstruction

input : Snapshot matrix X ∈ Rm×n, tolerance ε.
output: Matrix M .

1 U ←MESS(X, ε);
2 [Q,R]← qr(U, thin), such that AP = QR;
3 S ← triu(R);
4 for j = 1, ...,m do
5 if j ∈ S then
6 nmask

j = 1;

7 else
8 nmask

j = 0;

9 end

10 end
11 for i = 1, ...,m do
12 for j = 1, ...,m do
13 Mi,j = ||U:,i, U:,j ||nmask ;
14 end

15 end

3.3. The Reduced System
To incorporate the previous two sections into the partitioned DAE system (1a)-(1d), we first rewrite

(1c)-(1d) in a more general DAE form, to have the slow subsystem encapsulated into one equation.

d

dt
yF = fF(t, yF, zF, uS), yF(t0) = yF0

, (24)

0 = gF(t, yF, zF, uS), zF(t0) = zF0
, (25)

d

dt
φ(uS) = FS(t, yF, zF, uS), uS(t0) = (yS0

, zS0
)>, (26)

6
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where FS : R × Ra × Rb × RmS → RmS and uS = (yS, zS)>. Into these equation we incorporate the back
projected reduced state ũSr = u0S + VuuSr

d

dt
yFr

= fF(t, yFr
, zFr

, ũSr
), (27)

0 = gF(t, yFr
, zFr

, ũSr
), (28)

d

dt
φ(ũSr) = FS(t, yFr , zFr , ũSr). (29)

and then, with the Gappy MESS complexity reduction incorporated we obtain

d

dt
yFr

= fF(t, yFr
, zFr

, ũSr
), (30)

0 = gF(t, yFr , zFr , ũSr), (31)

d

dt
φ(ũSr) = FSr(t, ySr , zFr , ũSr). (32)

Where FSr
denotes the function FS solved by the reduced least squares approach. Note that the subscript

r denotes a reduction, and not the reduction factor.

3.4. Multirate Implicit Euler

The overall index-1 system (30)-(32) can be integrated with the stiffly accurate implicit Euler scheme,
which automatically assures that also for t > 0 the quantities will remain consistent. To exploit the assumed
different time scales, a multirate integration scheme is proposed. This approach is analogous to [1], but
with a slow subsystem consisting of DAEs. where h = H/m and the coupling variables are denoted by ȳF,
z̄F, ¯̃uSr

. The coupling strategy is chosen to be the Coupled-Slowest-First approach as this is shown to have
a consistency of order 1 for the problem posed in [9]: First the whole system is solved for the macro-step,
tn → tn+1 = tn +H

y∗Fr,n+1 = yFrn +HfF(y∗Fr,n+1, z
∗
Fr,n+1, ũSr,n+1), (33)

0 = gF(y∗Fr,n+1, z
∗
Fr,n+1, ũSr,n+1), (34)

φ(ũSr,n+1) = φ(ũSr,n) +HFSr(y
∗
Fr,n+1, z

∗
Fr,n+1, ũSr,n+1). (35)

The step size H is chosen according to the slow dynamics, whilst the full system remains solvable. From
this it follows that the fast solutions, y∗Fr,n+1 and z∗Fr,n+1, are not accurate enough and can be discarded,
as they will be computed in the last micro step. In a second step, the fast solutions are computed for the
micro steps l = 0, . . . ,m− 1,

yFr,n+(l+1)/m = yFr,n+l/m + hfF(yFr,n+(l+1)/m, zFr,n+(l+1)/m, ¯̃uSr,n+(l+1)/m), (36)

0 = gF(yFr,n+(l+1)/m, zFr,n+(l+1)/m, ¯̃uSr,n+(l+1)/m), (37)

φ(ũSr,n+(l+1)/m) = φ(ũSr,n+l/m) + hFSr
(ȳFr,n+(l+1)/m, z̄Fr,n+(l+1)/m, ũSr,n+(l+1)/m). (38)

For stability reasons, the interpolated values ¯̃uSr,n+(l+1)/m are obtained by constant interpolation based on
ũSr,n+1, then the Coupled-Slowest-First Euler approach is unconditionally A-stable.

4. Numerical Analysis

In this section, the error induced by the ROMR scheme from one macro-step tn → tn+1 = tn + H is
estimated. We define the error in each variable class as

||yF(tn+1)− yFr,n+1||, (39)

||zF(tn+1)− zFr,n+1||, (40)

||uS(tn+1)− ũSr,n+1||. (41)

7
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Here || · || is the 2-norm in Euclidean space. The analytical solutions of a state variable is notated by with
a parenthesised time argument whilst the numerical approximation is noted with subscript, e.g. uS(tn) and
uS,n. To analyse this error, it is split into two parts, the numerical approximation error and the discrete
reduction error.

||yF(tn+1)− yFr,n+1|| ≤ ||yF(tn+1)− yF,n+1||+ ||yF,n+1 − yFr,n+1||, (42)

||zF(tn+1)− zFr,n+1|| ≤ ||zF(tn+1)− zF,n+1||+ ||zF,n+1 − zFr,n+1||, (43)

||uS(tn+1)− ũSr,n+1|| ≤ ||uS(tn+1)− uS,n+1||+ ||uS,n+1 − ũSr,n+1||. (44)

The first error term on the right-hand side of the inequality can be identified to be the error induced by
a non-reduced order implicit multirate scheme. This error EMR is O(H2), following [9, Theorem 2]. The
second error on the right-hand side, the error induced by the GNAT and hyper-reduction method, can be
analysed in the following manner. For the slow subsystem, we only have to consider the macro-step and
thus it holds that

||uS,n+1 − ũSr,n+1|| ≤ Emacro (45)

where Emacro is the error bound of [4, Proposition 4.1]. This, due to the fact that the macro-step of the
ROMR scheme is an implicit Euler step using GNAT and hyper-reduction, identical to the prerequisites of
the proposition, using the fact that the algebraic variable values are directly obtained through the implicit
function theorem. The only error that now needs to be bounded such that the whole ROMR induced error
is bounded, is the micro-step error. For each micro-step, again using the fact that the algebraic values are
solved locally by the implicit function theorem, we only have to analyse the error in the fast dynamical
variables yF

Rn(yF,n+(l+1)/m) = yF,n+(l+1)/m − yF,n+l/m − hfF(yfull,n+(l+1)/m), (46)

and
R̃n(ỹFr,n+(l+1)/m) = yFr,n+(l+1)/m − yFr,n+l/m − hfF(ỹfull,n+(l+1)/m). (47)

Here yfull,n is a shorthand notation for the full state (yF,n, zF,n, uS,n) for f . Using ζ : (x)→ x− hfF(x) and
the inverse Lipschitz constant

Ln ≡ supx 6=y
||x− y||

||ζ(x)− ζ(y)||
. (48)

we obtain a bound for the local micro-step approximation error

||yFr,n+(l+1)/m − ỹFr,n+(l+1)/m|| ≤ Ln
(
εNewton + ||R̃n(ỹFr,n+(l+1)/m)||+ ||yF,n+l/m − ỹFr,n+l/m)||

)
(49)

This then results in

||yFr,n+1 − ỹFr,n+1)/m|| ≤
m−1∑
k=0

ak
(
εNewton + ||R̃k(ỹFr,n+(k+1)/m)||+ ||yF,n+k/m − ỹFr,n+k/m)||

)
(50)

where a = L ≡ supk∈{0,...,m−1 Lk. For h small enough, it follows that

||yF,n+1 − yFr,n+1|| ≤ Emicro. (51)

Thus it has been shown that the cumulative micro-step error is bounded as well. Now we assume that
the reduction induced error bound E{macro,micro} � EMR, which should always be the case as model order
reduction should only be used if the reduced model is able to accurately capture the full order dynamics.
So for a macro-step, the following holds,

||yF(tn+1)− yFr,n+1|| ≤ EMR + Emicro ≈ O(H2), (52)

||zF(tn+1)− zFr,n+1|| ≤ EMR + Emicro ≈ O(H2), (53)

||uS(tn+1)− ũSr,n+1|| ≤ EMR + Emacro ≈ O(H2). (54)

Then, for the error propagation over several macro-steps we obtain by using [9, Theorem 2] that the
global error is O(H). To illustrate this result and deduct if the reduction of the computational effort is
adequate, numerical experiments are performed in the next section.
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5. Numerical Experiments

In this section the previously found analytical results are verified numerically. The reduced order mul-
tirate scheme is compared against a standard implicit Euler integration scheme. A transient analysis is
performed for an academic test case and the convergence of the error is investigated. Furthermore, compu-
tational times are compared to verify the efficiency of the reduced order multirate scheme.

5.1. The Test Model

The underlying test case consists of a large diode chain model, [2], that is very suitable for reduction
due to internal redundancy, coupled to a two dimensional oscillating DAE system. This second subsystem
is dependent on the large diode chain through the voltage at Φ2.

Φin

Φ1 Φ2

R C

Φ3

R C R C

Φm−2

Figure 1: The diode chain

The diode chain model is described by the following differential-algebraic equations

Φ1 − Φin = 0,

I(Φ1,Φ2)− I(Φ2,Φ3)− C dΦ2

dt
− 1

R
Φ2 = 0,

I(Φi−1,Φi)− I(Φi,Φi+1)− C dΦi
dt
− 1

R
Φi = 0,

I(Φi,Φi+1)− C dΦi+1

dt
− 1

R
Φi+1 = 0,

iE − I(Φ1,Φ2) = 0.

I(x, y) = Is

[
e(x−y)/0.0256 − 1

]
, Φin = 8 sin(7 · 108 · t

2π
).

Where C = 10−11 and R is a coupled resistance term. Through this term, the variables of the slow
subsystems depend only weakly on the variables variables of the fast subsystem, this coupling is given by
R = R0 + y1 · 102, where y1 is defined by a fast oscillating academic DAE system that is dependent the
nodal voltage Φ2.

0 = CA
dy1
dt
− y2 −

1

R
Φ2

0 = y2 − sin(7 · 108t).

Below, in Figure 2 and 3, the results of a transient analysis for a time interval from 0 to 37.5 ns is shown.
The diode chain parameters are R0 = 10000 Ω and C = 10−11.
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Figure 2: The evolution of the slow subsystems from the
transient analysis. From top to bottom we have Φ1, ...,Φm.
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The fast subsystem

Figure 3: The evolution of the fast subsystems from the
transient analysis. In blue we have y1 and in red y2.

For the fast subsystem the resistance is taken to be equal to that of the diode chains resistors, and the
capacitance is set to CA = 10−10. The dimension parameter of the diode chain is set to m = 1000. The
snapshot matrix is provided by a high accuracy integration of the full system and snapshots are taken with
∆tHF = 0.0375 ns. By applying the ε estimation procedure we obtain ε∗ = 0.1928 and this results in the
reduced system size r = 14. The same reduced basis size is used for the gappy reconstruction.

5.2. Implicit Euler versus ROMR

Regarding the convergence of the ROMR integration scheme, Figure 4 illustrates the order 1 convergence
rate. We see that the ROMR accuracy is nearly identical to that of the full order solutions. Furthermore,
in Figure 5 it shows that this accuracy is achieved with a significant reduction in computational time. The
computational effort is almost a order of magnitude lower for the reduced schemes, while the precision is
maintained. The positive effects of model order reduction, multirate time integration and the combination
of both is evident.

100 200 300 400 500 600 700 800

Number of macro steps
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Figure 4: The order 1 convergence of the computational
error descending parallel to the black reference convergence.
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Figure 5: The effect of the different numerical methods on the
computational time and accuracy.
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6. Conclusions and outlook

In this work, the mathematical foundations of the reduced order multirate (ROMR) scheme have been
presented. The method consists of the Gauß-Newton with approximated tensors (GNAT) nonlinear model
order reduction method. This has been extended with a hyper reduction by gappy data reconstruction
and a coupled slowest-first multirate integration scheme. Both the reduction and hyper reduction methods
use a reduced basis obtained by the maximum entropy snapshot sampling (MESS) method followed by a
QR-decomposition.

By numerical analysis, the ROMR has been shown to have an order 1 convergence rate for the error,
under the assumption that the large dimensional slower time scale model can be accurately reduced. The
analytical results have been verified by a numerical experiment. A diode chain model was reduced and
coupled to an oscillator and a transient analysis of the resulting model has been performed. The results
show that the ROMR scheme performs as predicted and is capable of outperforming a regular integration
scheme.

Further research will be done to incorporate these techniques into fully functional simulation software and
measure the performance with real world test cases as provided by STMicroelectronics. Another interesting
topic for further research regards the optimallity of the reduction base as provided by the MESS method.
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