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In this paper, a new application for collaborative Multidisciplinary Design Analysis and
Optimization (MDAQO) workflow modeling is presented. The MDAO Workflow Design Accel-
erator, short MDAXx, enables workflow integrators and disciplinary experts to model, inspect,
and explore workflow components and their relationships, and export workflow configurations
for execution on integration platforms. The necessity for such an MDAO design environment
stems from the inherent complexity in aircraft design, in which the segregation of disciplines
on technical and managerial scale result in time intensive workflow integration efforts. In
practice, it can be observed that the integration of simulation tools to solve real-life MDAO
problems produces large, interconnected workflow systems that lead to a loss in oversight of
the application network, lack in transparency due to the many participants, and consistency
issues with the resulting models. To facilitate a more effective collaboration among disciplinary
experts, MDAx provides an intuitive workflow modeling environment using an expansion of
the XDSM (eXtended Design Structure Matrix) format with additional design rules. Various
functionalities to automate repetitive design tasks to resolve ambiguities and inconsistencies in
complex workflows are provided. Importance is given to fearless workflow design through con-
tinuous feedback and user guidance without requiring expert knowledge in MDAO architecting,
which shows considerable effects on the removal of barriers in the adoption of existing MDAO
paradigms in collaborative teams. This paper introduces MDAYX, its founding methodology
and implementation, its user interface and effects on usability, and a case study demonstrating
its impact on the coordination and communication among collaborators in a realistic design

problem.
Nomenclature

ADO = Architecture and Design Optimization
CDS = Central Data Schema
1/0 = Input/Output
MDAO = Multidisciplinary Design Analysis and Optimization
MDAx = MDAO Workflow Design Accelerator
OoP = Object-Oriented Programming
SoS = System of Systems
SSOT = Single Source of Truth
Ul = User Interface
XDSM = eXtended Design Structure Matrix

I. Introduction
N spite of a spread of Multidisciplinary Design Analysis and Optimization (MDAO) and its principles across the
Iaviation industry, considerable barriers still remain that prevent a deeper adoption of MDAO among engineering teams.
While the application of MDAO in an aircraft design campaign is an intricate endeavor due to its technical complexity,
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the barriers to a more widespread application of MDAO are not exclusively of technical, but also of organizational
nature [1]; it is even suggested that the existing technical barriers are far easier to solve that organizational and cultural
barriers [2]. Non-technical barriers such as the resistance to change, "black box" perception or absence of insight into
the inner workings, and a lack of confidence in the approach prevent a genuine application of MDAO methodologies in
industry [3].

Coupling disciplines in an MDAO problem formulation poses a difficult task not only due to the fact that those
disciplines generally have become more numerous and complex with the increase in computational power in the past
years and decades, but especially due to the lack of organizational integration of disciplinary teams within and across
organizations. The general trend of aircraft manufacturers towards outsourcing design tasks [4, 5] increases the need for
a more integrated basis on which cooperation takes place. Research into the application of collaborative MDAO have
recently been a point of focus in projects such as AGILE [6], an EU-funded program that has contributed to new design
paradigms and methodologies which provide the means to better integrate heterogeneous teams and therefore enable a
more effective use of MDAO.

Collaborative MDAO Collaborative MDAO implies a close cooperation of domain experts on complex design
problems through the integration of design competences and knowledge on an overall system scale. This is seen as an
evolution of past MDAO systems in which disciplinary capabilities are integrated in a monolithic manner or through
isolated, distributed analyses [7]. In collaborative MDAO, the disciplinary expert, his knowledge and his simulation
tools are an integral part of the system. Due to their inherent limit in scope, however, domain experts tend to lack the
overview of the complete system and their interaction with other domains, which emphasizes non-technical issues in the
adoption of MDAO as previously mentioned. A key factor in overcoming these barriers is to employ the appropriate
MDAO workflow modeling tools that facilitate a better understanding of the interactions in a complex system.

Current Approach and Limitations Although MDAO workflow modeling tools already exist and have actively been
developed for the implementation of the AGILE paradigm [8], additional steps are required for an extensive adoption in
industry. This can generally be attributed to three major drawbacks, some of which are mentioned in [9], including
considerable inflexibilities in the setup processes, difficult customization of workflows, and lack of user-friendliness.
Process inflexibility refers to the fact that prescribed steps must be adhered to in the MDAO workflow setup without
the user understanding the reasons behind it. Further, tedious or lacking customization of the MDAO workflow forces
existing workflows to adapt to a standard architecture as defined in literature [10], which is difficult to justify to engineers
that have been using custom workflow structures successfully elsewhere. Lastly, the lack of user-friendliness, which
manifests itself through a complicated user interface, extensive use of jargon, and strong reliance on implementation
details, such as the use of a graph theoretic approach proposed in [11], significantly steepens the learning curve for users
that are not familiar with the topic. In combination, these drawbacks pose a critical obstruction to introducing engineers
to the AGILE paradigm.

Proposed Methodology With the MDAO Workflow Design Accelerator (MDAX) presented here, a different approach
to simplify collaboration among engineering teams in large projects is attempted. Instead of defining an MDAO problem
a priori and model their workflow according to predefined steps, workflow integrators using MDAX can directly interact
with an eXtended Design Structure Matrix (XDSM)[12] interface using drag and drop operations with instant feedback
and reversible actions without following forced procedures. This enables users to create and refine their workflow
models that represent the tool configuration and process logic of an executable workflow in an efficient and flexible
manner.

No prerequisites such as an existing schema or a tool repository must exist to start modeling, as they can be defined
during the process as the project matures, allowing for the modeling of workflows according to custom preferences
and enabling the exploration of possible workflow configurations that users may not have been aware of. Standard
architectures can be generated on demand if the need arises, but are not strictly prescribed in order to generate executable
workflows.

Being XDSM-centric, the user interface (UI) provides for standardized workflow model and enables an unambiguous
inspection of tool interactions, which includes live assessment with respect to variable collisions and unconverged
feedback couplings. A clean and straightforward graphical interface gets users started with minimal introduction and
explanation, removing the steep learning curve in the process. Export features to various Process Integration and Design
Optimization (PIDO) tools enable the generation and structuring of MDAO workflows before executing them in the
framework of choice, minimizing manual labor in the setup of such workflows.
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Figure 1 XDSM-representation of a workflow model (a) for the executable simulation workflow (b).

Rather than following a step-by-step process, MDAX is used like an MDAO workflow model editor to remove
barriers to usability. It provides an environment for domain experts and integrators to explore and understand the overall
system in a manner that requires little knowledge of specific methodologies and jargon. The aim is to take away the fear
of looking across domain boundaries while making engineers aware of the complexity of the overall system, thereby
making collaborative MDAO processes more efficient.

To emphasize important terminology, this paper makes a clear semantic distinction between simulation workflow
and workflow model. While a simulation workflow represents the entity that orchestrates a sequence of operations
among its components and regulates their exchange of data, a workflow model is merely its blueprint that can not be
executed. In the context of MDAO, this blueprint is formalized in the form of an XDSM, as shown in Figure 1.

Paper Outline The structure of this paper is as follows. First, an overview of the state of the art is given in Section II,
in which current tools and approaches are presented. The use cases for the development of MDAX are discussed in
Section III, followed by a description of corresponding system requirements in Section IV. The presentation of the
methodology used to create MDAX is done in Section V. In Section VI, more detailed insights into the user interface
are provided, and the application of MDAX in a case study is presented in Section VII. A conclusion in Section VIII
summarizes the design decisions and feature development of MDAX, and provides and outlook for future work.

I1. State of the Art

A. Workflow Modeling

Workflow modeling is not a new endeavor and is being applied in many industries to set up and run simulations using
computational tools. Tool integration is usually done using PIDO tools, also referred to as integration environments,
that are specifically designed to provide a integrators with a User Interface (UI) for better usability. Most current PIDO
tools, however, lack the capabilities and methodologies to support collaborative MDAO in the AGILE paradigm [13].
In particular, the absence of an ability to define tool interfaces, explore tool repositories, inspect tool couplings and
formalize workflow models before their execution, poses a barrier to the full capacities of MDAO. It can be said that
integration environments generally lay focus on the execution of tools and evaluation of results rather than the preceding
modeling process, which in turn makes the current creation and application of MDAO systems inflexible and time
intensive.

Recent attempts to establish a modeling environment for MDAO workflows propose the application of a graph-
theoretic approach to model the exchange of data among simulation tools [11]. KADMOS [14], a software application
developed as part of the AGILE project, expands this approach and implements a methodology associating specific
graph-configurations with certain steps in the MDAO development process. It uses graph networks to store and
manipulate workflow data and provides visualization capabilities through the client-side application VISTOMS [15].
An overview of these graphs is shown in Figure 2. Each step in the modeling process applies strict conditions on the
associated graph structure, and only if those conditions are fulfilled is the graph structure "valid" and the modeling
process can be continued. In the following, the most important open challenges in the approach and implementation of
KADMOS are highlighted:



User Interface Although KADMOS provides a user [Baseclasses , Legend
interface through VISTOMS, it was not originally de- petworicx-picraph
signed to be a UI workflow modeling tool. Its emphasis T 4 subclass relation
on graph networks results in an application that is build KadmosGraph A dependency
around mathematical structures and their application for LY

automating specific modeling processes. User experience |Main graph
. . . classes DataGraph ProcessGraph

and ease of use come secondary to the strict application
of its proposed methodology, manifesting itself in the |mpao system
lack of usability. UI design practices such as continu- |graph classes
ous user feedback and gratification, safe exploration, and Repository

. . ConnectivityGraph
habituation, are not accounted for.

FundamentalProblem BusinessProcess
Graph Graph
Language The focus on methodologies and mathemat-
ical representations of workflow models entails a heavy MdaobataGraph  [<----) MdaoProcessGraph
exposure to technical terminology in the application. Al-
though the methodology may be sound given its assump- Figure 2 KADMOS graph class diagram. [16]

tions, it is not approachable by the common user. This

poses large entry barriers for those unfamiliar with associated academic publications, even for those experienced in
modeling MDAO workflows. Heavy use of jargon with little accompanying documentation or guidance is regarded as
detrimental in a collaborative environment.

Modeling Inflexibilities KADMOS’ strict enforcement of its methodologies make the workflow modeling process
stiff and inflexible. Its design choices emphasize the imposition of MDAO architectures defined in academia onto the
workflow instead of focusing on customization and keeping workflow modeling as generic as possible, which is regarded
as an important factor in bridging usability barriers.

Assumptions KADMOS uses assumptions in its methodology that are not well-reasoned and do not bear scrutiny in
real-life scenarios. Self-loops, for instance, are not allowed in its workflows, as they may be seen as "Read and write
simultaneously", whereas these scenarios occur frequently in MDAO workflows as "Read value, compute, and update”
cases. Similarly, simulation tools without I/O are not allowed, whereas reality oftentimes requires execution of such
tools that do not modify the parameters in the data schema, such as visualization programs, serializers, database tools,
and others.

Software Engineering Lack of unit testing and a weak application of Object-Oriented Programming (OOP) means
that KADMOS is volatile when it comes to extensions and modifications. SOLID principles [17] are not adhered to in
the design of the application, making an adaption of the code-base time intensive. The lack of unit testing would make
such an extension a difficult and error-prone task.

As a consequence, the authors decided to leverage the lessons learned from KADMOS and approach MDAO
workflow modeling from a perspective of flexibility. Instead of focusing on a methodological use of a graph-theoretic
representation of a workflow and strictly following predefined modeling stages, MDAX shifts the attention away from
graphs and purely fixates on the use of the XDSM format as a modeling interface, where graphs and other mathematical
structures are merely seen as implementation details. As an example, Figure 3 shows the comparison of a simple
workflow represented in both the familiar graph and a possible matrix form, each one being valid representations of the
data exchange among simulation tools when taking into account their position on the XDSM diagonal. The following
section describes the methodology which was applied in MDAX to improve modeling capabilities in MDAO.

B. Development Towards Modeling of Complex Systems

The development of modern complex systems needs to account for an ever increasing number of capabilities to be
delivered, as well as for organizational boundaries, integration and communication challenges, and constraints stemming
from all stages of the product’s life-cycle. Ideally every decision taken at each stage of the development should be
evaluated along the entire life cycle. The management of such development complexity requires a shift to a novel system
development paradigm.
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Figure 3 The same design problem represented in graph (left) and matrix (right) form. MDAO workflow
entities and their relationships can be represented using various mathematical structures and are regarded as
an implementation detail instead of being central to the methodology used in MDAx. In this example, the I/O
couplings of each parameter in the graph are expressed as a stack of N> Diagrams.

In this context, the DLR Institute of Systems Architecture in Aeronautics is developing a novel “model-based
conceptual framework™ for architecting, designing and optimizing complex aeronautical systems. The expected impact
is a drastic reduction in time and costs associated with the development, via an increased transparency, efficiency, and
traceability of the design and decision making processes. The conceptual framework, introduced in [18], extends the
scope of design and optimization methods to all the phases of the development life cycle of complex systems.

On one hand, the framework focuses on the acceleration of upstream architecting phases such as the trade-off of goals,
the definition of scenarios and requirements accounting for all the involved stakeholders, the design and optimization
of the architecture of the system of interest (e.g. an aircraft), or a system of systems (SoS). On the other hand, it is
concerned with accelerating the downstream product design phases, including the selection of the capabilities needed at
every design stage (e.g. conceptual, preliminary, detailed), the integration into a design process, and the deployment
of design systems (e.g. computational environments) for the exploration of the design space and the selection of the
optimum solution. The architecture of the conceptual framework has a layered structure, as shown in Figure 4. The
identified five layers and major activities within each layer are:

Enterprise Layer Modeling and optimization of goals and capabilities via value-driven decision making approaches,
enabling trade-off between policies by the enterprise.

System of Systems Layer Architecting and designing complex SoS scenarios for a given set of capabilities to be
delivered, enabling trade-off between concept of operations.

Complex System Layer Architecture Design and Optimization (ADO) of a complex system of interest for a given
set of requirements and concept of operations, enabling trade-off between architectures.

Development System Layer Deployment and operation of a development system and processes (e.g. MDAO
process) for the design and optimization of the system of interest for a given architecture, selected design strategy
(e.g. minimum costs), and dimensionality of the design space.

Competence Layer Providing heterogeneous capabilities (e.g. disciplinary analysis) and services available, or to
be developed, enabling the system design and optimization.

The implementation of the concept is supported by the development of novel design methods and approaches,
leveraging digital design engineering and modeling technologies. The work presented in this paper focuses on the
Development System Layer, and is part of the European Commission funded project AGILE 4.0 (2019-2022) *.

*https://www.agile4.eu/


https://www.agile4.eu/

.;—T@ Enterprise

\

E \\\
\
N\
System of "\
Systems »
D N
System of
. /@ Interest
P
’t‘.- Development ,
I:- System /
H
ke

" rsj Competence

Figure 4 System architecting environment DLR-SL concept: multi-layered approach [18].

III. Identified Needs

This section presents the objectives that MDAX is designed for, which are derived from experience in working with
both workflow integrators and disciplinary specialists, as defined per [19], and attempts to cover the most relevant
scenarios in collaborative engineering.

The objectives are expressed as use cases and classified into three categories, as shown in Figure 5: Exploration,
Verification, Documentation. The exploratory category deals with processes such as the set up and inspection of
available workflow components, the organization and use of a common data schema, and the creation of a workflow
model. The verification category is concerned with the inspection of the selected workflow configuration, the set
up for the right conditions for the execution of the workflow, and the inspection of connections among the workflow
components. Finally, the documentation category describes the aspect of formalizing and communicating the MDAO
workflow models.

A. Exploration

1. Establish Data Schema

In order to simplify the communication between simulation tools, aircraft design workflows frequently use a Central
Data Schema (CDS) such as CPACS [20] to establish a common language which the tools use to exchange data. These
schemas are not static and often require modifications or expansions, especially when new disciplines join the tool
landscape that have not been considered before. Due to the fact that tool interfaces are defined by those schemas,
changes in a schema always propagate towards the tools that use it, entailing a lot of repetitive work.

On the other hand, projects that do not have an established data schema have an emerging need for the continuous
definition and expansion of such a schema as the competences and contributions of each project member become more
explicit. In these scenarios, tool definitions and creation of the data schema occur concurrently requiring frequent,
iterative adjustments.

2. Build Tool Interfaces

A common scenario in projects involving multiple partners from heterogeneous disciplines is the derivation of
workflow entities and their interfaces in the presence of an existing data schema. Project planning often requires a clear
definition of work package contributions, and since workflow components such as software tools may not exist at these
early stages, collaborators need to establish the required interfaces before the components are realized and integrated.



Parallels can be drawn between this prac-
tice and the software process of test-driven <Exploration>
development (TDD) [21], where unit tests de-
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Figure 5 Overview of main use cases and actors in MDAXx.

3. Select and modify workflow configuration

One of the main use cases for the development of MDAX is the selection and modification of workflow configurations
that can subsequently be executed in the appropriate PIDO environment. Based on the available tool landscape,
integrators and architects are often interested in the quick setup of workflow models to determine which tools to use for
a specific MDAO problem at hand. Since the demands on the workflow configuration may change over time, such as
when product models go from initial to preliminary design phases and the required fidelity increases, agile modifications
and refinements of workflow models are needed. This necessitates capabilities to import, reuse and modify existing
workflow models or their components according to those changed requirements. One of the main criteria for this to
occur in a seamless manner is the ability to add or remove tools at any point in time, without a need to restart modeling
from scratch.

More often than not, workflow integrators have a good idea about the tool landscape that is used for a particular
design problem. In such cases, workflows are modeled using common sense and domain experience, and do not follow
specific MDAO architectures. Specifically, the use and application of architectures defined in academia [10] are often
seen as impractical or require expertise, and therefore not given much attention. There is a preference towards freedom
and flexibility in workflow modeling without having to follow predefined methods or processes. Imposing a solution
strategy takes control away from the user that has a lot of experience in the setup of his workflows. That said, an
automated application is viewed as beneficial when the design problem and tool configuration is fully defined and the
most efficient workflow, based on metrics such as execution time, is desired.

B. Verification

1. Inspect Connections

In cases where both the schema and simulation tool I/O are defined, workflow integrators are challenged with
keeping an overview of the connections that exist between tools. The inability to inspect connections among tools in a
clear manner constitutes a major reason for time intensive debugging activities. Not having the oversight to determine
which parameters are exchanged between which entities and at which point in time means that large parts of the workflow
must be examined to assert the origin of any appearing issues. Enabling an efficient inspection of tool connections
allows tool integrators to keep and overview of the complete data exchange in a simulation workflow.



2. Apply efficient tool sequence

Instances in which workflow integrators are not familiar with the tool repository, or where complex and nested
workflows are subject to change as new simulation tools and technologies are developed, finding an efficient tool
sequence may prove to be difficult. When tool sequencing support is lacking, the efficiency of the workflow execution
exclusively depends on the integrators experience and insight into the parameter couplings among tools.

Equally important is the support for removing redundant tools that do not impact the parameters of interest, adding
avoidable inefficiencies to the workflow execution. Complex workflows, however, can make it difficult to manually
determine which simulation tools affect those parameters, resulting in a need to automate such activities.

3. Resolve parameter collisions

Workflow integrators are frequently faced with the issue that parameter collisions are not emphasized during the
modeling process, leading to an ambiguous exchange of parameters that inevitably results in design inconsistencies.
Although collisions in workflows are common, they are often recognized late in the design process and only after
investing considerable effort. Approaches to quickly find and resolve such collisions in a straightforward way do not exist,
resulting in the application of trial-and-error debugging methods through manual search and workflow modification.

C. Documentation

1. Formally define and communicate workflow

Although workflows can be exchanged among collaborators on existing platforms using implementation-specific
files, they often use internal standards and are not easy to interpret by users unfamiliar with the workflow, tool landscape,
or integration platform. There exists a need to formulate the most relevant details of a workflow model in a structured,
implementation-neutral form such as XDSM that can effortlessly be interpreted by humans and easily serialized to
machine code.

2. Track tool and workflow configurations

Since workflow models are rarely static and have to evolve with time due to design maturity, changes in design
requirements, or changes in the available tool landscape, the ability to track workflow modifications may become
important. Similar to well-known version-control systems, needs exist for the state of a workflow to be tracked through
the implementation of a workflow tree structure, where each workflow builds on top of another workflows, making it
easy to track modifications and inspect differences among them.

3. Export and share workflow model

Workflow models are not only useful for the production of executable workflows, but can also be a useful tool in
communicating workflow integration, discussing the tool landscape, and defining or refining tool interfaces with a
project consortium. Aside from the requirement for exporting an executable workflow model, there exists as strong need
in export functionalities that represent workflow information in commonly used data formats such as PDF, SVG, and
HTML.

IV. Modeling Environment Requirements
Following the use cases from Section III, the main system requirements that the authors identified as being essential
to an application that enables collaborative MDAO are presented and discussed. In particular, the MoSCoW method
[22] is used for this analysis to identify and rank these requirements according to their importance. Many of the listed
requirements are posed in the spirit of the Agile Software Development manifesto [23], as it pertains to many best
practices in software development.

A. Must Have

Intuitive UI In order to remove barriers to MDAO workflow modeling, disciplinary engineers and integrators
should only be exposed to an intuitive user interface and not know about implementation details.



Continuous Feedback To take full advantage of modeling capabilities, users should receive visual feedback on
each action. Each action should yield an immediate effect that reveal program behavior to the user. This not
only helps to keep track of introduced changes and issues, but also encourages a learning-by-doing approach,
minimizing the need for documentation.

Workflow Inspection Inspecting relevant workflow details such as parameter exchange and collisions, feedback
couplings, tool sequence and tool metadata, should be straightforward and obvious.

XDSM-Based To represent workflows in an implementation-neutral format, the XDSM scheme should be used as
it conveys both data exchange and process flow of workflows in a concise and transparent way.

Customization Workflow models must be customizable and not strictly follow MDAO architectures described in
academia. Practical scenarios often require a high degree of customization, especially in nested and complex sub
workflows.

No Jargon Integrators and disciplinary experts should not have to have detailed knowledge on MDAO architecting
or associated methodologies to be able to model workflows.

Modularization To follow best practices in software development, the business logic of the application must be an
independent unit. It must be completely independent of the Input and Output (I/O) schema and format selected for
the simulation workflow, any persistence choices, and the user interface.

Export In order to share and execute workflow models, capabilities must exist that provide a means to export the
workflows to PDF and CMDOWS [24].

B. Should Have

Undo To allow for fearless modeling [25], redo/undo functionalities must be available to the user. This way, design
decisions can easily be reversed and configurations changed without repetition.

Workflow Collapse Large workflows can quickly become convoluted, leading to difficulties reading and interpreting
relevant information. To allow for a better overview and encapsulation of sub modules, workflow nesting and
collapse capabilities should be available.

Schema Flexibility As projects rarely have a static CDS, and changes frequently occur, modifications and extensions
of the used schema should be easily done. Existing workflow models must be flexible to changes in the used data
schema.

Workflow Version Management Over the course of a collaborative design campaign, multiple versions of an
MDAO workflow may exist. A way to manage these versions and relate them to each other should be provided.
Tool Redundancy Redundant tools for a specific design problem should be able to be found and removed

automatically.

Tool Sequencing The sequence of tools in an executable workflow has a high impact on workflow performance. A
way to apply sequencing algorithms onto the selected tool configuration should be available.

C. Could Have

Automatic Architectures Automated MDAO architecture generation is a very convenient feature that can save
time in the implementation of executable workflows.

Workflow Import Domain-specific workflow models should be able to be created separately and subsequently
integrated in the interdisciplinary workflow. Just like disciplinary tools are treated as black boxes, entire workflows
should be as well. This enables an independent modeling process in which a sub-workflows can be isolated by
defining their interface with the parent workflow.

D. Won’t Have

Workflow Execution Close integration with a specific integration platform, or providing the capability to execute
workflows, adds convenience to the use of a seamless integration between modeling and execution.

V. Methodology
As previously mentioned, the main idea of MDAX is to extend the XDSM format with a set of rules to make the
XDSM modeling environment easier to use and understand. The application of graphs in the construction of an XDSM



is regarded as an implementation detail and not of central importance to the modeling process. MDAx does not strictly
follow the graph-based methodologies developed in [16] since the algorithms pertaining to the business logic of the
application can be implemented in many different ways; using a non-graph approach, for instance. In essence, the focus
on a clear user interface and straightforward use of modeling capabilities is more important than strict adherence to
methodologies in the design of complex systems, which is expressed well by the Agile Software Development philosophy
of Individuals and interactions over processes and tools.

A. XDSM Design Rules

In order to simplify modeling simulation workflows in the XDSM format, MDAXx extends the rule set that is placed
on that format. On one hand, an expansion of the existing rule set limits the design space of all possible workflow
configurations. On the other hand, MDAX leverages the clarity that the format provides while aligning its usability in a
modeling environment with the intentions of a workflow integrator. Challenges present themselves in finding the fine
balance between flexibility, clarity, and simplicity in the use of this modeling environment.

Block Sequence While the XDSM format does not derive any
execution information from the position of the blocks on the diagonal,
the rule extension in MDAx does so. With the sequence of blocks —%, E
counted from top left to bottom right, downstream blocks are generally

executed at a later point in time than upstream blocks. This holds true
for all sequential couplings and along concurrent threads as seen in %
Figure 6, where the blocks upstream from block E are run later in the

workflow due to existing concurrency. Encoding the block execution &
precedence from left to right on the diagonal has been found to be |
intuitive as it aligns with the left-to-right writing system.

>

w N
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Driver Encapsulation In XDSM, driver blocks can generally be
placed anywhere on the diagram diagonal and may drive non-adjacent
blocks. The process lines and numbers provide the information on
when the blocks execute and which driver runs them. MDAX confines
the driver block position to the top of the blocks that they "wrap", and
wrapped blocks must also be adjacent to one another. This means
that each driver has an envelope with at least one non-driver block,
and any number of nested driver envelopes. Two envelopes may not
overlap, meaning a tool block can only be in one envelope at a time.

This rule has several important effects on the modeling environment. First, each driver envelope becomes equivalent
to an independent block and can the represented as such by collapsing the envelope, as seen in Figure 7. Complex
sub-workflows can therefore be modeled as independent components and visualized as such, hiding the inner workings
and only exposing their interfaces. The encapsulation of driver envelopes prohibits their overlap, where one block may
be part of two separate envelopes at the same time. This reduces ambiguity of block execution sequences since each
wrapped block can be distinguished as part of the same, and only that, envelope. However, a repeated execution of the
same simulation tool within different envelopes requires a separate block in the diagram.

23
E

Figure 6 Block sequence in concurrent
workflow where independent workflow
threads are executed simultaneously, as in-
dicated by block numeration.

Schema-Based Data Exchange MDAX assumes a data exchange according to a CDS in its system composition and
therefore applies further restrictions to the XDSM. The adherence to a common data schema in combination with an
inherent sequential order based on block position results in limitations on how parameters can be exchanged, or routed,
within the workflow. As a direct result, configurations as shown in Figure 8, where one block output "overtakes" the
same parameter written later in the sequence, are prohibited in executable workflows, since the parameter would be
overwritten by a more recent value implicitly. Although this rule constraints the possible workflow configurations, it
ensures that data exchange is always performed consistently, even when dealing with a high degree of concurrency,
and adds to more clarity in the temporal dimension of data exchange. The limitations can generally be remedied by
repositioning the blocks on the diagonal or by modularizing tools to separate affected parameters into new blocks.

10



2.0,2.3 = 2.1 r,l 2
[ “convBcD =2 B-C-D oz
- A
. e ==y} v xy |

Figure 7 Collapsing nested driver envelopes to equivalent block representations. Each envelope, depicted as a
gray rectangle, can be reduced to a block with the same I/0 interface.

Block Couplings Two rules worth mentioning pertain to the ex-
istence of self-loops and lack of block I/O, that deviate from the
approach presented in [11] and [14]. MDAX regards self-loops of
blocks as "value updates" rather than "simultaneous reading and
writing of the same parameter address". Value updates are a common
scenario in practice where initial values are assumed or parameter
fidelity changes, and should therefore exist in a workflow model.
Similarly, blocks that have no input and/or no output and thus no
connection to the used data schema are frequently used to visualize
results, as in the case of TiGL [26], or to write to a database or file.
Although not modifying the design, their presence in the workflow
may be required, and therefore also represented in the workflow
model.

fx]
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Figure 8 Example of a prohibited data ex-
change due to sequencing rules, where a pa-
rameter is overwritten by a preceding block.

Parameter Ambiguity In order to obtain executable workflows,
ambiguity on the source of parameter values must be removed. These
ambiguities can manifest themselves in the shape of parameter col-
lisions and feedback couplings. Parameter collisions exist when more
than one workflow component provides the same parameter at the same time, whereas parameter feedback occurs
when parameters are required before being made available by the system. Although workflow models are considered
valid despite the existence of collisions and feedback, MDAx will indicate them to be non-executable since practical
applications of these workflows will inherently suffer from design inconsistencies.

B. Single Source of Truth

In order to have a fully consistent workflow diagram that displays identical behavior when receiving the same inputs,
MDAX follows the Single Source of Truth (SSOT) principle. This principle dictates that data can be modified in one
place only, and all other links to that data are done by reference. MDAX views the following items as its sources of truth
in order to construct executable workflow diagrams:

1) Blocks containing I/O information, block meta data, and envelopes
2) Index of each block on the diagonal
3) Collision resolution decisions

The first item refers to the presence of block input and output information, as well as meta data such as block type, name
and version. These are required to establish connections between present blocks based on their needed and provided
parameters as described by a central data schema. Driver blocks, in addition, contain envelopes that outline all their
encapsulated blocks for the application of feedback algorithms. To assemble the diagram and apply the modeling rules
stated in Section V.A, the index of each block must be stored. This way, both data and process algorithms that determine
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block coupling and execution sequence can be applied. Finally, collision resolution decisions are stored to determine
how coupling ambiguities in the form of parameter collisions are eliminated.

The application of the SSOT concept means that the same workflow can be created and recreated based only on
those few pieces of information. This helps keeping the dependency system organized while asserting that information
conflicts do not occur. All generated object structures, graph networks, and adjacency matrices are a mere result of
these source objects. Changes in any of those items will propagate through the application and ultimately result in a
different workflow. This also means that modifications to the workflow configuration are internally performed on these
objects, triggering the diagram to adopt these adjustments using a lazy call-by-need evaluation strategy [27].

C. Diagram Generation

Due to the employment of XDSM design rules and the adherence to the SSOT, many of the state-of-the-art
methodologies outlined in Section II are not strictly followed in the generation of a XDSM workflow model. Instead,
MDAX relies on OOP paradigms to construct the diagram and to remove all workflow ambiguities. Blocks display a
strongly polymorphic behavior such that the diagram does not know about the type of block it deals with; interactions
with each block occur over common interfaces. This helps in keeping the algorithmic logic separate and independent of
other code that concerns the construction of the XDSM diagram. The creation of the diagram itself can be divided into
three phases, as seen in Figure 9, and can be described as follows:

Phase @ The initial phase performs a forward iteration on a container that stores all blocks sorted by index,
loading each block object into the diagram diagonal and extracting their I/O definitions. Based on those definitions,
the connections between all blocks are determined. At the end of this phase, a diagram that may contain parameter
collisions and feedback couplings is established. Driver blocks do not have any connections at this point, as those
are established in Phase 3 during the backward iteration.

Phase @ This phase is solely concerned with the resolution of parameter collisions. For this purpose, collision
resolution objects that contain decisions on the method of removing collision, are applied. These objects typically
contain information on which connections to keep, cut, and create. Figure 9 shows an example case where the
collision affecting parameter a is resolved by eliminating the route B-a-C. Both automated and manual collision
resolution, along with related parameter routing principles, are explained in more detail in Sections V.D.4 and
VLB, respectively. Important to keep in mind is that even when collision resolutions are applied, the original
couplings are kept track of in order to uphold SSOT principles.

Phase @ The last phase iterates the diagram blocks backwards and polymorphically calls their feedback resolution
methods. These methods apply each block’s feedback resolution algorithm onto its own envelope. Since only driver
blocks contain envelopes, calling these methods on other block types has no effect. The backward progression takes
advantage of the fact that each driver immediately precedes its envelope and that those envelopes are self-contained,
making related algorithms straightforward and free of side-effects. Deeply nested workflow configurations are thus
possible and follow the same mechanisms as flat workflows. At the end of this phase, a check is performed on
any existing ambiguities in the diagram. If all collisions are removed and feedback couplings are eliminated, the
process sequence for the workflow execution is determined. An exported workflow model can subsequently be
executed in a PIDO tool such as RCE" without causing inconsistencies due to parameter exchange.

The generation and update of workflow diagram occurs dynamically based on user inputs, and generally undergo the
same three phases. Many component states and configurations, however, are cached and do not have to be re-computed
when re-loading the diagram so as to enhance performance. Changing a block position on the diagonal, for instance,
may result in different forward and feedback parameter couplings since coupling placement depends on block placement.
However, the coupling itself is not affected. This means that Phase 1, where all blocks are loaded into the diagram, does
not have to be triggered. This application of lazy evaluation and caching of results preserves component states that are
not affected by diagram modifications, making MDAX responsive even for large workflows.

D. Efficient Architecting

In order to simplify workflow modeling and reduce repetitive tasks, MDAX features various functionalities and
automatic procedures allowing workflow integrators to focus on creative work and maximize value generation. The
most important ones are described in this section.

https://rcenvironment.de/
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Figure 9 The three phases in MDAx workflow diagram generation. Phase 1 calls each block to construct
the diagonal, load the I/0, and establish all variable connections. The diagram now contains all blocks and
variable couplings. In Phase 2, any existing collision resolution decisions are applied to the diagram to eliminate
ambiguities. If selected, automated resolution algorithms are applied to resolve all collision according to a
single convention. Phase 3 iterates the block diagonal backwards and forces each block’s feedback resolution
algorithms to be applied on its own envelope. If no workflow ambiguities exist at the end of this phase, the
execution sequence is derived.

1. Automated Sorting

Although MDAX emphasizes the flexibility for users to model customized workflows, it offers the application of
automated sorting algorithms for more convenience since the execution of an efficient tool sequence is desired in most
use cases. One such algorithm, as proposed in [28], minimizes the amount of parameter feedback couplings in the
diagram. Figure 10 shows how the block sequence of a generic workflow can be reordered for minimum feedback
connections through a single button click. These algorithms are recursive and work equally well on both flat and nested
workflows at any complexity.

2. Collaborative Interface Modeling

To allow for workflows to be modeled from scratch even when no commonly agreed upon data schema exists, MDAx
enables the concurrent definition of tool interfaces and data schema. The methodology in [14] expects a fully defined
schema and tool repository, which in reality is often not available. The process of setting up a data schema among
heterogeneous partners is not only very time intensive, but also highly iterative in the early stages of a project. Clashing
interests have to be resolved and technical descriptions agreed on before the parameters can be formalized in a data
format. MDAX views this phase as part of the modeling process and provides an environment to support engineers in a
collaborative development of schema and tool interfaces while constructing the workflow.

3. Redundant Blocks and Parameters

Projects that reuse an existing tool configuration but only require the computation of a subset of parameters may not
need to execute all simulation tools. To easily filter out blocks that are not required, those redundant for the computation,
MDAX allows to select target blocks or parameters and remove blocks that are not needed. Figure 11 shows the Sellar
problem [29] workflow where parameter f is selected as a single target parameter and all blocks that do not affect it,
directly or indirectly, are marked red for removal. This way, tool configurations can instantly be minimized to only those
required for a specific computation.

4. Automatic Collision Resolution

In order to avoid repetition in the collision resolution process, such as when a high number of parameters exhibit
collisions, the availability of automated resolution capabilities becomes important to MDAx usability. Modeling
workflows where the same simulation tool has to be executed multiple times at different stages, for instance, always
results in parameter clashes that have to be resolved. MDAX offers three algorithms that help integrators to perform
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Figure 10 Automated block sorting algorithm applied to a generic workflow configuration (a) to minimize
feedback couplings by adjusting block sequence (b).

automated parameter routing in case of collisions.
The algorithm in Figure 12a resolves collisions in
such a way that each block receives the latest available

parameter value as well as the last global value. Based

on the perspective of a specific block, available refers to

the fact that a parameter has been computed before the D1 @ @
point of execution of that block, whereas global parameter

values.may be computed at some point after the .blocks D @
execution and therefore must be fed back for consistency.
Feeding back the latest computed parameter in the block
sequence ensures that the latest update of a parameter G1
value will be used in all blocks that require it.

A second algorithm shown in Figure 12b eliminates
collisions by taking the closest available and feedback
values, allowing workflow sections to be encapsulated
and made independent of downstream processes. Closely E F
related is the algorithm seen in Figure 12c that follows
the same logic, but takes into account consecutive blocks
that provide that parameter value. Here, the latest value
of the closest consecutive set of blocks is used to resolve
parameter collisions.

If selected, the application of the mentioned automatic
collision resolution algorithms occurs automatically during Phase 2 of the workflow construction process described in
Section V.C.

Figure 11 GI and G2 marked red for removal when
selecting parameter f as a target. Multiple target pa-
rameters and blocks may be chosen.

VI. User Interface
Formulating MDAO workflows is a complicated and iterative task. To ease this task, the user should be updated
about the progress and given hints on how to proceed next. To do this, MDAXx employs a graphical user interface that
enables users to create and manipulate executable MDAO workflows. The following design guidelines are adhered to:

Intuitive The Ul should be easy to understand, and it should be possible to operate it without in-depth knowledge
of MDAO.

Explain When Needed For more complicated concepts, as will be inevitably needed, clearly explain the concept
at the same spot as where it is used.
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Figure 12 Automated collision resolution options. In algorithm (a), the latest available and latest feedback
values are routed to the blocks requiring the parameter. In (b), the values from the closest blocks in the
sequence are taken. Similarly, (c) resolves the collision by routing the parameter through the latest of the closest
consecutive set of blocks that provides the value.

Customizable The workflow should be fully customizable: it should be possible to change anything at any time.

Users have some expectations when using software. Some common user patterns [30] describing these expectations
are taken into account into the design of the UI:

Safe Exploration Users should get the feeling that it is "safe" to explore the user interface. The main implication is
that some mechanism of reversing any action is needed. In MDAX, an undo/redo mechanism (the Multi-Level
Undo pattern) is implemented to provide safety. From a software perspective there are two ways to implement this:
Command (implement all actions as commands with an undo action) or Memento (store the program state after
every action, and simply replace the program state with a previous state when undoing an action). MDAX uses the
Command pattern.

Instant Gratification Users want to get immediate feedback from the actions they perform. This means that the
UI should be quick to respond, always represent the most recent underlying data, and let the user know when
some action has been completed. The backend and frontend code has been optimized to be as fast as possible.
For actions that take longer than half a second, the user will know that the program is working through a spinner.
Finally, for actions that do not lead to visible changes in the workflow, a popup message with a success message
upon completion is shown.

Deferred Choices Related to Instant Gratification, this means that users expect short processes for doing some
actions, where only immediately important choices (like giving some input) have to be taken. It should be possible
to take other choices, that might be important, but not needed for the thing the user wants currently, at a later time.
When adding tools, it is not needed to also provided the tool input and output files, but the user can add a tool
right away and start editing its input and output from there. Furthermore, there are never forms where more than
approximately three items are required input: the rest is optional and can be added later on.

Incremental Construction Users do not create things in a precise order, but rather starts with a small piece, and
then incrementally and iteratively build the thing. Here, getting feedback is important to allow users to fix mistakes
and stay on the right path. It should be possible to easily start over if the current progress is not what the user
wants. Similarly, it is important to immediately show the user the new state of the workflow after some action is
performed on it. The central design philosophy is that editing the workflows should be flexible, which enables
incremental construction.

Habituation Users already have much experience using other user interfaces, and therefore for common operations
the user interface of MDAX should be as similar as possible to other user interfaces. Examples of this include
commonly used keyboard shortcuts for saving a file or creating a new file, or using the gears icon for showing the
workflow settings.

Streamlined Repetition Sometimes the user might need to repeat some chain of actions many times to achieve
something. In these cases, a way of performing them all at once using only a few clicks should be provided. For
MDAKX, adding many tools to a workflow is an example of this. A batch import function was implemented to add
multiple tools at once to ease this.

15



The main structure of the program is built around the Canvas Plus Palette pattern: the main window contains
a canvas whereupon the workflow is built, with small buttons above it that enable actions to be performed on the
workflow. Editing and inspecting elements in the workflow is directly done by clicking on the elements, or dragging
them to rearrange the order of the tool blocks. This is a design pattern used often for editors [30]. The workflow itself
is displayed using the eXtended Design Structure Matrix (XDSM) notation [12]. This is a well-known format in the
MDAQO field, and directly conveys the most important information needed for understanding a workflow: which tools
are there, what data do they exchange, in what order are they executed, and how do convergers and optimizers interact
with them.

In addition, the following patterns [30] are used to make the program as easy to use as possible:

Tree Table The variables being communicated between tools are represented as a hierarchy, and displayed in the
user interface as a tree table: data is displayed as a list in a table, indentation is used to denote hierarachy, and
nested levels are collapsible. This allows us to display long lists with many nested lists in them.

Action Panel Buttons for manipulating the centrally displayed workflow are displayed in a panel (toolbar) that is
always visible. This is done so that it is always clear what actions can currently be performed on the workflow. In
addition, buttons related to similar actions are placed near each other according to the Button Groups pattern.

Modal Panel Popups that take attention away from the main screen (modals) are used for requesting input from the
user for more complicated actions, and for showing data such as the variable tree. The modals feature Escape
Hatches, ways of getting out of the current action, and Prominent Done Buttons, easily recognizable buttons that
need to be clicked to apply the action. A Preview is shown when the action to be applied potentially changes the
layout of the workflow.

A. UI Implementation

The core of MDAX is implemented as a Python library, where all workflow logic is handled. The UI of MDAX is
implemented as a layer on top of the code. A web-based UI architecture is used: on the backend side, a Python script
starts a web server and initializes the core; on the frontend side a Vue.js* application renders the frontend and handles
user input. Communication between the backend and frontend is handled using a websocket. Such an architecture
allows us to separate the execution of the backend and frontend, such that in the future the application can be offered as
a service accessible through any common browser, without the user having to install anything on their local computer.
However, it is also possible to deploy it as a standalone application if that is needed.

Figure 13 shows the main screen of the UI: the workflow is displayed on the central canvas, and above it are buttons
for manipulating the workflow and managing the current project. One important item is the status indicator: it tells the
user whether the workflow currently would be executable, and can either show a red exclamation mark, indicating the
workflow has issues (as shown in the figure), or a green check mark, indicating the workflow is runnable. In addition to
there being no executable blocks, the two main reasons a workflow can have issues are:

Unconverged Feedback If a workflow has feedback connections that are not handled by an MDAO block (e.g. a
converger or an optimizer), these feedback connections are unconverged.

Collisions When multiple tools output the same variable, this is called a collision. Collisions need a collision
resolution, which can either be done using an automated strategy (as discussed in Section V.D.4), or manually
using the UI (see Section VI.B).

Inspecting the workflow variable tree and individual variables is shown in Figure 14. The connections from and to
the individual variables can be edited from the variable information screen. The interface for adding converger elements,
which is very similar to the interface for adding optimizers and Design of Experiment (DoE) elements, is shown in
Figure 15.

1. Workflow Branching

Over the course of a design campaign, multiple workflows might be needed that are based on the same base workflow
but are used for different things. For example, one might just run an analysis to debug and validate the workflow, one
might perform a Design of Experiments (DoE) to inspect the sensitivities of the base design, whereas another one might
actually run an optimization to find the best possible design, all using the same analysis tools. To facilitate this, MDAXx
uses the concept of workflow branches to easily derive new workflows from existing workflows. This results in a tree

https:/ivuejs.org/
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Figure 13 Main screen of MDAx with loaded Sellar problem. The workflow is displayed as an XDSM on
the central canvas, above which is the toolbar with buttons for manipulating the workflow: undo/redo, adding
new elements, inspecting the variable tree, sorting, etc. On the right, the status indicator shows whether the
workflow has any issues (i.e. is not executable yet), and a textual explanation is given when the user clicks the

status indicator.
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Figure 14 Popups showing the workflow variable tree and variable information. The variable tree lines can be
collapsed to help display large trees. The variable information popup allows editing the connections to and from
this variable: tools connecting to the variable are outputting the variable, tools connecting from the variable

need the variable as input.
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Figure 15 Modal panel showing the interface for adding a converger element. The position and wrapping
behavior, taking into account nested loops, can be changed using the interactive XDSM. Similar interfaces are

used for adding optimizer and Design of Experiments (DoE) elements.
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Figure 16 The workflow branch tree showing workflows derived from each other. The Sellar problem is shown
for which two workflows using different converger strategies (Gauss-Seidel and Jacobi) are derived from the
initial workflow. Thereafter, two design strategies (Optimization and DoE) are derived from the Gauss-Seidel
workflow. The workflow branch tree helps keep track of different versions of similar workflows.
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Figure 17 Selection of manual collision resolution strategies. Collisions are indicated in the XDSM by a red
color and an icon with converging (colliding) arrows. By opening the variable info popup, the "edit routing'
environment can be accessed. Here, the collision resolution strategy can be created (shown in the center column).
Resulting XDSMs are shown on the right.

structure, where the user can easily trace which workflows derive from which. Its workings are analogous to a version
control system, however no retroactive updating is supported: only leaf workflows (i.e. workflows from which no other
workflows derive) can be edited. Figure 16 shows the interface implementing the branch tree.

B. Manual Collision Resolution

Collisions occur when multiple tools output the same variable. In that case, there exists and ambiguity in choosing
which output is used for supplying other tools with input. MDAX offers two main strategies for resolving collisions:
applying an automated collision resolution strategy (see Section V.D.4) or defining a collision resolution manually. In
most cases, the automated strategy prepares the workflow well enough to give meaningful results when executed, but a
manual collision resolution might be needed in special cases. Manual collision resolutions are defined per variable, and
define which output of which tool is connected to the input of which tools. Only one tool output can be connected at a
time, otherwise there would be a collision again.

Manual collision resolutions are defined using a table-like display of the tools of the workflow, with providing (i.e.
writing output) tools on the left and needing (i.e. needing as input) tools on the right, as shown in Figure 17. The user
can then connect blocks on the left with blocks on the right to construct the preferred collision resolution strategy. Not

all combinations are possible:
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* Routes may not overtake each other (see Figure 8).
* Routes may not cross into another driver envelope, or loop: no feedback may be provided to a tool surrounded by
a feed forward connection, and vice-versa.

These restrictions result from the use of a CDS, as discussed in Section V.A. The UI makes sure that the restrictions

are enforced, by not allowing prohibited connections to be made, and by highlighting possible connection targets when
selecting an output block on the left.

C. Export Formats

MDAX can export the created workflows in the following formats:

PDF Saves the rendered XDSM in a PDF file.

SVG Same as PDF export, but saved as an SVG (Scalable Vector Graphics) file.

HTML Interactive visualization of the XDSM that allows users to inspect tool couplings, variable tree, and block
meta data. The workflow is static and can not be modified.

RCE Exports the workflow for execution in RCE (Remote Component Environment), a Process Integration and
Design Optimization (PIDO) environment developed by the DLR. Export is provided in several different modes,
for increased compatibility with different execution methods of the tools.

CMDOWS The Common MDO Workflow Schema [24], a proposed standard for storing MDAO workflows that
can be interpreted by various PIDO environments for execution.

Tool I/O Exports a zip file with the tool input and output files that can be used to reconstruct the created workflow.
Can be helpful in the exploration phases, or to keep the tool repository up-to-date with the actual workflow in
MDAXx. Additionally, a file containing the complete workflow tree is exported, which can be seen as the base
central schema for that workflow.

Workflow Input An empty XML file containing all variables that are workflow input: variables that are purely
input (i.e. not outputted by any tool), and variables that need to have an initial value for convergence. Can be
helpful for creating a starting point for workflow execution.

B8 MDA MDO Workfiow Design Acceleator

Output Variables

;:
EngineBlock

~ geometry

1/0 Definition diameter

Figure 18 Variable tree menu for the definition of input and output parameters according to the used data
schema. By clicking on the link icon of a tree node, the parameter is added to the outputs of the simulation tool
EngineBlock.
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Table 1 Description of simulation tools in the simplified workflow for a design of a hybrid-eletric propulsion
aircraft used in Figure 19.

Simulation Tool Description

Initializer Generates a parametric baseline design using textbook methods.

EngineBlock Calculates engine performance such as specific fuel consumption (SFCnew), geometry
(diameter), and mass (EngineDryMass)

HybridSystemBlock Determines performance and mass of the combined hybrid-electric propulsion and battery
system

MissionBlock Computes mission fuel consumption for all phases of the mission.

MassesBlock Determines total aircraft masses (mTOM, mOEM).

PerformanceBlock Provides engine thrust model for design conditions.

EngineBlock SFCnew H EngineDryMass /

SFCnew H mHybridSystem /

(a)

EngineBlock EngineDryMass

N |

MassesBlock

(b)

Figure 19 Example workflow for a hybrid-electric propulsion aircraft. The unconfigured workflow (a) con-
tains parameter collisions, marked red, as well as numerous feedback connections. Using automated collision
resolution algorithms and function sorting results in a collision-free workflow with minimal feedback couplings

(b).

21



VII. Application

To demonstrate the capabilities that have been described in the preceding sections, a simplified, but realistic workflow
for the preliminary design of an aircraft with hybrid-electric propulsion is used. Table 1 lists the used simulation tools
and describes their role in the workflow .

Before workflow modeling can begin, the workflow compo-
nents for the given MDAO problem must be built up in the form Project Branch Tree
of a tool repository while following a specified CDS for con-
sistent data exchange. To do this, MDAx implements features
that allow competence specialists to upload a schema instance
and easily define tool inputs and outputs in a generic sense. 3
Figure 18 shows the selection modal for the output parameters 1 =
of tool EngineBlock.

Once the inputs and outputs have been defined for the
simulation tools required to solve the MDAO problem, and the
tools have been added to the workflow diagram, the integrator
can inspect the connections among them, as shown in Figure 19a, Added Gauss-Seidel Converger Added Jacobi Converger
and rectify all ambiguities that may exist in the workflow. MDAx : r:
distinguishes between two types of workflow ambiguities as = : : 7]
mentioned in Section V.A: parameter collisions and feedback o g
couplings. Both these ambiguities are present in the workflow
model of the imported tool and must be resolved before exporting
it for a successful execution.

To resolve the collision parameter SFCrnew, the user can rdded Optimizer
either use manual or automatic features in MDAX, as described =
in Sections VI.B and V.D.4, respectively. In this case, the i ‘ v
application of automatic resolution algorithm Latest Variable ; :
results in the desired configuration, wherein HybridSystemBlock
updates the parameter that it receives from upstream.

Before applying a converger to remove feedback couplings
between the tools, the workflow can be sequenced to minimize
the amount of feedback couplings, which reduces the amount
of parameters that must be converged when exporting and
executing the workflow. This can easily be done automatically using the algorithm described in Section V.D.1 without
the use of manual drag-and-drop operations, resulting in the workflow seen in Figure 19b.

Hybrid-Electric Propulsion Workflow

Initial workflow

Figure 20 Workflows can be frozen and used as
a basis to derive more sophisticated workflows of
different configurations.

[¢] [=] [+] [5]
b
{i}
(] [} ]
{ SFCnew | {_SFCnew,mHybridsystem _J SFCnew | { mHybridsystem |

2.1.4:
MissionBlock

Figure21 Optimization workflow for a hybrid-electric propulsion aircraft without parameter collisions or feed-
back couplings, which was achieved through an application of collision resolution algorithms and convergence
mechanisms.
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Having the initial configuration defined, the workflow can be branched off of to store this workflow for future
references. Multiple scenarios can be implemented going off the same configuration, as seen in Figure 20, which can be
useful in tracking the development of workflow models across the project life cycle. An element of safety is provided to
the user by freezing workflow models that have been proven to deliver the desired results in the execution environment,
and using these models for further development.

Without having to define a specific MDO architecture, the user can make ad-hoc modifications by adding convergers
and optimizers to the workflow deemed appropriate for the specific use case. In this example, a Gauss-Seidel converger
and Optimizer are added to the workflow to drive the optimization, shown in Figure 21.

With all ambiguities resolved and driver elements added, the workflow can be exported to run in a PIDO environment.
Given that the used competence tools correctly implement their input and output interfaces, MDAx guarantees a
successful execution of the complete workflow, meaning that tools are guaranteed to run if the parameters they receive
have the appropriate range. Since each competence is treated as a black box, MDAx cannot guarantee specific values for
the parameter that are exchanged in the workflow, but instead builds on the promise that the specified parameters will be
available at execution time.

Currently, MDAX supports a direct export to RCE, as well as to the MDAO exchange schema CMDOWS which
enables the execution of the workflow model in OpenMDAO [31] through the translation framework OpenLEGO [32].
An example of the exported optimization workflow shown in Figure 21 to RCE 9 is seen in Figure 22.

L

L 5

Figure 22 Exported optimization workflow model for the hybrid-electric propulsion design to RCE 9. It can
be seen that the MDAx workflow model (left) directly maps to an executable RCE workflow (right). In order to
launch the execution of this workflow, the driver elements must be configured and a system input file must be
provided.

Because RCE uses files as the primary means to exchange data among workflow components, additional elements
have to be added to the RCE workflow in order to keep the data exchange consistent with the workflow model in MDAX.
For instance, only those input and output parameters that have been defined in MDAX are allowed to be provided to or
received from the tool in RCE, in order to maintain consistency. Therefore, any modifications in the tool interface,
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Table 2 List of use cases as described in Section III and their implementation in MDAXx.

Use Case Implementation in MDAXx

Establish data schema Variable tree modal; Basefile import

Build simulation tool interfaces I/O file import; Variable tree links

Import and modify workflow configuration /0O file import; Tool/Driver creation modal

Inspect connections Canvas click operations; Variable tree modal

Apply efficient tool sequence Canvas drag-and-drop operations; Sequencing algorithms;

Redundancy elimination
Resolve parameter collision Manual resolution modal; Automatic resolution algorithms
Formally define and communicate MDAO workflow XDSM-centric Ul
Track tool and workflow configurations Workflow branching

Export and share workflow model Export to RCE, CMDOWS, PDF, SVG, HTML (interactive)

like adding input parameters to make a more precise analysis, must first be implemented in the MDAXx model before
exporting the updated workflow. In addition to ensuring that the workflow model in MDAX stays up to date, changes to
the workflow model are guaranteed to not cause workflow failure due to the presence of ambiguities such as parameter
collisions.

In order to execute this workflow and run the optimization, the user is left with configuring the driver elements, such
as selecting an optimization algorithm or setting converge characteristics, and providing a (possibly empty) system input
file. The complete execution is controlled by RCE and does not affect its MDAx model.

VIII. Conclusion and Outlook

In the current state of affairs, simulation workflows are assembled manually through time-intensive and repetitive
tasks, and modifications to a workflow (e.g. through the addition of removal of simulation tools, or modification of tools
to increase analysis fidelity) entail significant effort, especially in complex systems with many interacting disciplines.

As has been shown, MDAXx offers a flexible modeling environment for simulation workflows that attempts to remedy
these bottlenecks. Its XDSM-centric design reduces the learning curve in workflow modeling, enabling engineers
without a background in MDAO methods to participate in and drive collaborative design studies. Since all workflow
components are assumed black boxes, the scope of MDAX is targeted at generic applications to cover a wide array of
engineering disciplines.

The entire process from defining simulation tool interfaces, over resolving workflow ambiguities, to exporting a
well-defined workflow for execution in a PIDO environment can be handled in MDAX, covering all use cases as defined
in Section III. Table 2 lists these use cases and summarizes how MDAX fulfills them. The table shows that MDAX offers
features for each of the posed use cases to eliminate bottlenecks in the application of MDAO methodologies, ultimately
facilitating a closer collaboration between disciplinary experts in the realm of MDAO and workflow design.

The further developments of MDAX include a web integration to improve collaboration on workflow models by
providing a workspace for shared tool repositories and workflow databases. Moreover, the representation of nodes that
guide the execution of parts of the workflow based on predefined conditions, as well as the definition of sub-workflows
are part of the ongoing research concerning workflow modeling.

A more elaborate dissemination of complex MDAO case studies will be presented in future publications, as MDAx
will be used in AGILE 4.0, where multiple case studies involve large-scale modeling of MDAO processes that are
assembled by cross-organizational teams.
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