
	 1	

Code	ocean	calculation	capsule	
An	injectable	meta-biomaterial	

for	the	manuscript	
“An	injectable	meta-biomaterial:	From	Design	and	
Simulation	to	In-vivo	Shaping	and	Tissue	induction”		

(https://doi.org/10.1002/adma.202102350)	
	
1.	 Aim	and	scope	of	the	Code	Ocean	capsule	“An	injectable	meta-biomaterial”	2	
1.1.	 Python	Simulation	“particleShear”	..	2	
1.2.	 Simulation	figures	...	2	
1.3.	 Physical	measurements	and	in-vivo	data	..	3	

2.	 Python	simulation	particleShear	...	3	
2.1.	 Source	code	..	4	
2.2.	 System	requirements	..	4	
2.3.	 Installation	Guide	..	5	
2.4.	 Demo	...	6	
2.4.1.	 Run	instructions	..	6	
2.4.2.	 Expected	output	...	7	
2.4.3.	 Short	demo	...	8	

2.5.	 Instructions	for	use	and	reproduction	of	the	results	presented	in	the	main	
manuscript	...	10	

3.	 Structure	of	the	CodeOcean	capsule	..	11	
3.1.	 The	run	file	..	11	
3.2.	 Demo	simulations	..	12	
3.3.	 Data	analysis	..	12	
3.4.	 Main	scripts	of	the	CodeOcean	capsule	..	12	
3.4.1.	 Short	simulation	demo	...	13	
3.4.2.	 Full	simulation	demo	..	13	
3.4.3.	 Data	import	...	13	
3.4.4.	 Plotting	and	statistical	analysis	..	14	

3.5.	 Details	on	the	python	simulation	in	a	capsule	without	graphical	display	14	
3.6.	 Details	on	data	analysis:	import	from	raw	files,	figure	plotting	and	statistics	..	15	
3.6.1.	 Data	analysis	process	flow	...	15	
3.6.2.	 Reproducibility	of	the	data	evaluation	...	17	

4.	 Documentation	...	18	
4.1.	 Python	simulation	..	18	
4.1.1.	 Quick	install	guide	..	18	
4.1.2.	 Manual	...	18	
4.1.3.	 API	documentation	..	19	

4.2.	 Custom	R	libraries	...	19	
4.3.	 R-Data	files	..	20	
4.4.	 CodeOceanOnly	figures	...	20	
4.5.	 Statistical	reporting	..	20	

5.	 Datasets	in	this	CodeOcean	Capsule	..	20	
6.	 Bibliography	...	21	

	 2	

1. Aim and scope of the Code Ocean capsule “An injectable meta-
biomaterial”

	
The	aim	of	this	Code	Ocean	capsule	is	to	provide	reproducible	calculation	support	to	the	
associated	manuscript	“An	Injectable	Meta-biomaterial:	From	Design	and	Simulation	to	
In-vivo	Shaping	and	Tissue	induction”[1].	It	aims	at	providing	reproduction	of	the	Python	
“particleShear”[2]	simulation,	and	also	of	the	quantitative	figures	of	the	manuscript.		
	
The	associated	manuscript[1]	indeed	relies	in	part	on	a	new	software:	a	Python	
simulation	(“particleShear”[2])	of	microgel	particles,	either	as	spherical	individual	
particles	or	crosslinked	together	to	form	various	overall	irregular	particles.		This	
CodeOcean	capsule	provides	a	reproducible	environment	where	this	software	can	be	
run,	in	addition	to	reproducible	generation	of	the	figures.	
	
This	document	describes	the	high-level	structure	and	usage	of	the	calculation	capsule	
associated	with	the	manuscript	indicated	above.	

1.1. Python Simulation “particleShear”
	
The	capsule	provides	demos	and	unit	tests	of	
the	Python	particleShear	microgel	
simulation[2].	This	includes	representative	
simulations	(Supplemental	Videos	S1-S4)	as	
used	for	the	main	manuscript[1].	These	remain	
however	demos	(a	few	hours	of	calculation	
time).	Data	from	ca.	30’000	hours	worth	of	
calculation	time	ran	un	the	Baobab	cluster	of	
the	University	of	Geneva	is	however	evaluated	
in	this	CodeOcean	Capsule.		
	

	

1.2. Simulation figures
	
Fig.	2	in	the	associated	manuscript[1]	draws	
on	the	Python	simulation.	The	capsule	
contains	the	overview	data	from	a	cluster-
based	Python	particleShear[2]	simulation	
(Baobab,	University	of	Geneva,	Switzerland).	
It	allows	recreating	the	quantitative	figures	
related	to	simulation,	but	also	to	explore	the	
rich	dataset	without	an	immediate	need	for	
cluster.	
	
	
	

	
	
	

	 3	

	
	

1.3. Physical measurements and in-
vivo data
	
	In	the	associated	manuscript[1],	we	used	
numerical	simulation	to	design	a	novel	
type	of	biocompatible	injectable	meta-
material	that	obtains	a	softening	
transition	combined	with	large	yield	
strains	by	frictional	interaction	between	
irregular,	porous	particles.	We	confront	
this	theoretical	design	with	physical	
measurements	on	our	novel	material,	
termed	EPI	biomaterial	for	“Elastic	
Porous	Injectable”.	This	Code	Ocean	
capsule	also	contains	our	quantitative	

raw	data	on	rheology,	uniaxial	compression,	porosity,	injectability,	in-vivo	shape-ability,	
in-vivo	survival	and	weight	gain,	as	well	as	hematology	data.	The	Code	Ocean	capsule	
therefore	enables	replotting	of	the	quantitative	physical	measurements	(Fig.	3	of	the	
manuscript),	in-vivo	shape	performance	and	biocompatibility	(Fig.	4	of	the	manuscript)	
as	well	as	meta-material	generalization	including	cell	adhesion	data	(Fig.	5	of	the	
manuscript).	It	also	enables	replotting	of	all	the	supplementary	figures	(reported	in	the	
supporting	information	to	the	main	manuscript[1])	as	well	as	a	series	of	additional	
CodeOcean-only	figures	(documented	in	
/code/Documentation/CodeOceanOnlyResults/CodeOceanOnlyResults.pdf).	Detailed	
information	about	the	statistical	testing	and	description	are	collected	from	the	output	of	
the	R	scripts	in	this	Capsule	and	reported	in	the	Excel	table	available	at	
/code/Documentation/Statistical	Reporting.xlsx	and	also	summarized	in	Table	S7	in	the	
supporting	information	of	the	main	manuscript[1].	
	
This	data	evaluation	in	R	is	in	part	based	on	custom	R	libraries	automatically	loaded	in	
the	Capsule,	but	also	available	for	separate	download:	textureAnalyzerGels[3]	for	
analysing	gel	compression	data,	rheologyEvaluation[4]	for	importing	and	analyzing	
rheological	sweeps	and	particleShearEvaluation[5]	for	importing	and	analyzing	digital	
rheological	sweeps	generated	by	the	particleShear	Python	simulation[2].	For	graphing	
and	validation	of	numerical	precision	we	use	further	custom	R	packages[6,	7].			

2. Python simulation particleShear
	
The	simulation	“particleShear”	is	an	installable	Python	module.	It	enables	simulation	of		
elastically	and	frictionally	interacting	particles.	It	is	inspired	by	the	simulations	from	
Otsuki	et	a.l.[8],	but	provides	the	added	possibility	to	crosslink	neighboring	particles.	
Regarding	evaluation,	it	is	mainly	aimed	at	performing	simulated	shear	rheology,	
including	at	large	amplitudes,	and	special	care	was	taken	to	ensure	strictly	symmetrical	
stress	tensor	evaluation	(using	the	framework	of	Nicot	et	al.[9],	with	correction	for	some	

	 4	

calculation	mistakes,	see	“/code/Documentation/Simulation	particleShear/Manual	
particleShear.pdf”,	part	1).	
	
	
2.1. Source code
	
The	source	code	of	the	Python	module	particleShear	is	located	on	the	Python	
distribution	server	(webpage	at	https://pypi.org/project/particleShear/),	and	thus	
installable	automatically	via	the	Python	installer	pip	(e.g.	via	pip	install	particleShear	or	
variants	of	it;	the	exact	install	command	on	the	present	CodeOcean	capsule	in	the	
Dockerfile	is	(corresponding	to	graphical	view	in	screenshot	1):	
	
pip3 install -U --no-cache-dir \
 particleshear==1.0.2
	
	
	
Releases	of	particleShear	are	archived	permanently	on	Zenodo,	release	1.0.2	in	
particular	is	available	at	https://doi.org/10.5281/zenodo.4589212.[2]	The	current	
development	version	is	hosted	on	Github:	https://github.com/tbgitoo/particleShear,	for	
development	purposes,	it	is	best	to	clone	the	repository	from	there.			
	
2.2. System requirements
	

• To	run	the	particleShear[2]	simulations	as	preconfigured	on	this	CodeOcean	
capsule,	no	particular	external	System	requirements	need	to	be	satisfied.	All	the	
dependencies	are	pre-installed	within	this	Capsule.	

	
• To	run	the	simulation	locally	(after	download	and	installation,	see	below),	a	

processor	capable	of	running	Python	3.5	or	higher	is	required;	at	the	time	of	
writing,	this	includes	all	common	personal	computer	and	server	architectures	
(Examples	:	Intel	Atom®	processor	or	Intel®	Core™	i3	processor),	but	also	some	
embeddable	systems	like	the	Raspberry	Pi.	There	is	no	requirement	for	non-
standard	hardware.	

	
• Local	installation	have	successfully	been	tested	on	Windows	7,	Windows	10,	

MacOSX	10.11.1,	and	Linux	(CentOS	6.1)		
	

		
	
Screenshot	1.	Configuration	of	the	particleShear	package	in	the	CodeOcean	capsule.	
Following	configuration	in	the	environment	section,	the	installation	is	automated	from	the	
Python	distribution	server	(pypi.org).	
	

	 5	

	
	
	
2.3. Installation Guide
	
As	the	particleShear	simulation	is	automatically	installed	in	the	CodeOcean	capsule,	no	
local	installation	is	required.	In	the	CodeOcean	capsule,	the	installation	is	handled	via	
the	standard	Python	installer	(pip3,	see	above)	from	the	standard	Python	server	where	
a	copy	of	the	particleShear	Python	module	is	hosted	
(https://pypi.org/project/particleShear/)	
	
The	simulations	can	however	also	be	run	locally	after	download	and	install.	Detailed	
installation	instructions	are	provided	as	a	separate	Quick	Install	Guide	(at	
“/code/Documentation/Simulation	particleShear/Quick	install.pdf",	see	Screenshot	2).	
In	the	nominal	case,	the	local	installation	takes	about	10	minutes.		Running	the	small	
demo	described	in	the	Quick	install	guide	takes	another	20-30	minutes,	the	unit	test	a	
few	minutes.	
	
This	being	said,	in	our	experience,	while	supposedly	trivial,	the	installation	of	Python	
itself	can	be	tricky.	We	therefore	recommend	to	at	least	initially	use	the	CodeOcean	
environment.	Issues	with	Python	installation	are	not	directly	related	to	particleShear,	
and	possible	unfortunate	users	are	referred	to	the	many	relevant	forum	discussions	
regarding	all	sorts	of	problems	ranging	from	system	path	configuration,	concurrent	
Python	versions	and	pip	package	installers,	to	missing	or	inappropriately	configured	
graphical	display	devices	that	may	arise.	
	

	
	
Screenshot	2.	Quick	install	guide.	The	Quick	install	guide	can	be	viewed	directly	on	this	
CodeOcean	capsule,	at	“/code/Documentation/Simulation	particleShear/Quick	install.pdf”	

	 6	

	
	
2.4. Demo
	

2.4.1. Run instructions
	

	
	
Screenshot	3.	Starting	a	“Reproducible	Run”.	This	is	common	to	all	CodeOcean	capsules:	in	
the	upper	right	corner	of	the	web	interface,	a	reproducible	run	can	be	launched	by	clicking	
the	“Reproducible	Run”	button.	Since	reproducible	runs	add	their	output	data	to	the	
capsule,	it	may	be	necessary	to	duplicate	the	published	capsule	first.	
	
	
particleShear	simulations	are	preconfigured	in	this	CodeOcean	capsule	and	are	thus	run	
with	each	“Reproducible	Run”	(run	time	about	5h,	for	shorter	demos	see	below;	this	will	
also	generate	the	other	output	such	as	the	figures	and	supplementary	figures	associated	
with	the	manuscript).	This	generates	time-lapse	videos	of	the	format	of	the	
supplemental	videos	S1-S4	to	the	associated	manuscript[1],	each	time	this	CodeOcean	
capsule	is	run.	They	are	available	after	completion	of	the	reproducible	runs,	in	the	
/results	section	(see	Screenshot	3	for	starting	a	reproducible	run,	and	Screenshot	4	for	
the	location	of	the	demo	output	in	the	/results	section).	Of	note,	the	particleShear	
simulations	not	only	provide	graphical	output	to	illustrate	the	particle	movements	and	
interactions,	but	also	quantitative	output	(simulation	description,	primary	G’	and	G’’	
output	values,	as	well	as	detailed	stress	tensor	evaluation).	The	location	of	these	
quantitative	text	output	files	is	shown	in	Screenshot	5.	The	structure	of	these	output	
files	is	documented	in	the	particleShear	simulation	manual	(at	
“/code/Documentation/Simulation	particleShear/Manual	particleShear.pdf”,	Fig.	S2-2,	
Tables	S2-2	and	S2-3).		
	

	 7	

	
Screenshot	4.	Output	of	the	demo	simulations.	The	output	is	re-generated	at	each	run,	and	
stored	in	the	results	area	(internal	path	in	CodeOcean	“/results”).	In	the	example,	the	
output	movie	of	the	demo	in	the	conditions	of	supplemental	Video	S1	(spherical	particles)	
is	shown.	At	present	(2021),	preview	of	movie	files	within	the	CodeOcean	capsule	is	not	
supported,	and	so	it	is	necessary	to	download	the	movies	(.mov)	to	view	them.	
	

2.4.2. Expected output
	
Full-scale	demo	simulations	(with	N=150	particles)	are	provided	as	supplemental	
videos	S1-S4	to	the	associated		publication[1].	These	demos	show	the	expected	output	in	
different	configurations	(Supplemental	Video	S1:	non-crosslinked	spheres;	
Supplemental	Video	S2:	bulk	from	fully	crosslinked	spheres;	Supplemental	Video	S3:	
Spheres	crosslinked	into	irregular	compact	particles;	Supplemental	Video	S4:	Spheres	
crosslinked	into	irregular	loose	particles	to	emulate	porosity).	Each	simulation	also	
produces	a	quantitative	text	output	file	(Screenshot	5).	
	

	 8	

	
	
Screenshot	5.	Textual	output	of	the	demo	simulations.	The	text	output	is	provided	along	
with	the	visual	output	(Screenshot	4),	each	.mov	file	is	associated	with	a	.txt	file.	The	
content	of	the	text	files	can	be	viewed	in	the	CodeOcean	viewer,	although	it	tends	to	be	
rather	lengthy	and	thus	more	appropriate	for	scripted	analysis.	

2.4.3. Short demo
	

	 9	

	
Screenshot	6.	Running	a	shorter	demo.	This	is	most	easily	obtained	by	setting	the	file	
“/code/Simulation	demo/video_demo.sh”	as	the	main	file	to	run	(Click	on	the	V	sign	
appearing	by	hovering	over	the	file).	The	next	“reproducible	run”	(see	screenshot	3)	will	
run	specifically	the	video_demo.sh	script,	completing	in	about	10	minutes	instead	of	5h	as	
for	the	complete	run.	Of	note,	setting	the	“video_demo.sh”	script	as	the	main	file	to	run	
automatically	modifies	the	main	run	file	(“/code/run”),	see	screenshot	7	for	resetting	the	
capsule	to	its	original	state.		
	
The	particleShear	simulations	are	rather	calculation-intensive	in	the	standard	
configuration	used	in	the	manuscript[1];	and	so	in	addition	to	the	“Reproducible	run”	
with	its	present	run	time	of	about	5h,	we	provide	also	a	quicker	demo	version.	This	can	
be	run	by	setting	the	bash	file	“video_demo.sh”	at	“/code/Simulation	demo”	as	the	main	
run	file	(screenshot	6).	As	this	modifies	the	file	“/code/run”,	it	may	be	advantageous	to	
be	able	to	undo	these	changes	afterwards,	they	are	provided	along	with	screenshot	7.	
	

	 10	

	
	
Screenshot	7.	Discarding	changes	due	to	using	the	video_demo.sh	(i.e.	screenshot	6).	
Running	the	short	demo	as	a	standalone	has	the	side	effect	of	modifying	the	main	run	file	
at	/code/run.	As	shown	in	the	screenshot,	this	leads	to	the	main	content	being	commented	
out	and	replaced	by	a	line	launching	“video_demo.sh”.	To	undo	these	changes,	use	the	
“Discard	Changes”	option	as	shown	in	the	screenshot,	appearing	when	clicking	on	the	V	
sign	next	to	the	run	file.	Click	“Confirm”	in	the	ensuing	dialog	(not	shown).	
	
	
2.5. Instructions for use and reproduction of the results presented in the main

manuscript
	
The	particleShear	simulation	was	used	to	generate	the	simulation	data	presented	in	the	
associated	manuscript[1].	The	actual	simulations	were	run	on	a	cluster	(Baobab,	
University	of	Geneva),	and	represent	about	30’000	CPU	hours.	Therefore,	they	cannot	
easily	be	reproduced	on	this	CodeOcean	capsule	or	on	a	present	(2021)	desktop	station.	
This	CodeOcean	capsule	however	reproduces	the	complete	data	evaluation	process	flow	
for	these	data	in	each	reproducible	run.	
	
Detailed	instructions	for	the	reproduction	of	the	simulations	on	an	appropriate	cluster	
are	nevertheless	provided	in	the	manual	available	on	this	CodeOcean	capsule	(at	
“/code/Documentation/Simulation	particleShear/Manual	particleShear.pdf”).	In	
particular,	Table	S2-4	provides	the	detailed	instructions	for	complete	re-running.	At	
present,	this	is	slightly	outdated	since	we	ran	some	more	simulations	in	the	mean	time,	
the	complete	list	of	Python	scripts	run	is	at	
/data/Raw/Simulation/python_scripts_Baobab		on	this	CodeOcean	capsule.	
	

	 11	

3. Structure of the CodeOcean capsule
	
This	CodeOcean	capsule	provides	the	simulation	particleShear,	in	a	reproducible	
runnable	format	along	with	shorter	demos	(see	section	2	above).	
	
It	also	provides	the	reproducible	evaluation	of	all	quantitative	main	and	supplementary	
figures	of	the	associated	manuscript	An	Injectable	Meta-biomaterial:	From	Design	and	
Simulation	to	In-vivo	Shaping	and	Tissue	induction”[1]	and	also	a	set	of	CodeOcean	only	
figures	(see	section	4.4).	
	
Section	3	describes	the	overall	structure	of	the	CodeOcean	capsule,	with	a	focus	on	the	
CodeOcean-specific	approach	of	completely	reproducible	runs.	
	

	
Scheme	1.	Content	of	this	CodeOcean	calculation	capsule.	The	figure,	supplemental	video	
and	table	numbering	refer	to	the	main	manuscript	and	its	supplementaries,[1]with	added	
CodeOceanOnly	figure	reported	at	/results/Figures_Codeocean_only.	The	file	“Statistical	
Reporting.xlsx”	is	located	at	/code/Documentation/Statistical	Reporting.xlsx	and	was	
generated	manually	by	collecting	the	statistical	output	from	the	different	R	scripts	in	this	
CodeOcean	capsule.		
	
3.1. The run file
	
As	for	any	other	CodeOcean	capsule,	the	main	entry	point	for	reproducible	“re-runs”	is	
the	“run”	file	located	in	/code.	Thus,	the	“run”	file	constitutes	the	master	script	of	the	
computation	capsule	(Scheme	1).		
	
The	“run”	file	invokes	various	additional	bash	script	files.	For	data	import	from	various	
raw	data	file	formats,	it	calls	Data	“data_import.sh”,	located	in	the	
“data_import_sh_scripts”	folder,	which	in	turn	invokes	various	data	import	scripts.	The	
run	file	also	launches	“unittest_demo.sh”,	“simulation_demo.sh”	(c.f.	section	2.4.3)	,	
“figures.sh”,	and	“figures_supplementaries.sh”,	which	are	all	located	at	the	same	level	as	

Python simulation
(Codeocean)

Simulation demo
Videos S1-S4

Python simulation
(Cluster UNIGE)

Figure 2
Simulation

Experimental data

Figure 3-5
Empirical

Codeocean
capsule

Cluster

Data plottingData analysis

Demo

data_import.sh

figures.sh

Data import

Plotting and
statistics

simulation_demo.sh

unittest_demo.sh

self test

demo

run

Master script

Simulation demo/
video S1.sh
video S2.sh
video S3.sh
video S4.sh

data_import_supplementaries.sh

figures_supplementaries.sh

Figures in the supporting information,
statistics (Table S7, Statistical Reporting.xlsx) ,
CodeOceanOnly figures

	 12	

“run”	in	/code.	Further,	the	“run”	file	starts	the	scripts	for	the	supplementary	videos	3-6	
in	the	folder	“Simulation	demo”.	Details	on	these	files	are	given	below.	The	purpose	of	
these	scripts	is	to	provide	a	demo	of	the	Python	simulation	on	the	one	hand,	and	to	
reproduce	all	main	figures	and	supplementary	figures	of	the	paper	“An	injectable	meta-
biomaterial”,	as	outlined	in	scheme	1.	Additionally,	a	set	of	CodeOcean	only	figures	is	
generated;	these	CodeOcean	only	figures	are	part	of	the	additiona	technical	
documentation	provided	at	/code/Documentation/CodeOceanOnlyResults.	
	
All	further	bash	scripts	invoked	by	the	“run”	file	are	designed	as	standalone	files	and	can	
be	run	individually,	for	example	by	commenting	out	the	others	in	the	run	file.	
	
3.2. Demo simulations
	
For	practical	purposes,	it	is	not	possible	to	re-simulate	the	integrality	of	the	Python	
simulations	underpinning	this	CodeOcean	capsule,	this	amounts	to	about	30’000	CPU	
hours.	
	
To	nevertheless	provide	an	environment	where	small-scale	simulations	can	be	run	and	
evaluated,	we	provide	various	demonstrations	with	visual	(video)	output.	
	
A	first	set	of	small-scale	demos	is	run	by	“simulation_demo.sh”,	illustrating	the	basic	use	
of	the	particleShear	python	package	(c.f.	section	2.4.3).	The	“unittest_demo.sh”	invokes	a	
small	series	of	more	specific	simulations,	designed	as	self-test	for	the	Python	package.	
		
In	addition,	the	“run”	file	also	contains	longer	simulations,	corresponding	to	the	videos	
provided	as	supplemental	videos	S1-S4	to	the	associated	manuscript[1].	These	longer	
simulations	replicate	the	format	of	the	simulations	run	at	the	Baobab	cluster	at	
University	of	Geneva,	Switzerland,	to	generate	the	simulation	data	analyzed	in	this	
capsule.	For	demonstration	purposes	and	to	provide	re-usable	code,	we	also	carry	out	
evaluation	of	these	four	simulations	up	to	the	constitution	of	overview	files	analogous	to	
the	ones	obtained	from	the	cluster	(c.f.	section	2.4.2).		
	
Screenshots	4	and	5	indicate	the	location	of	the	output	files	produced	by	these	
simulation	demos.	
	
3.3. Data analysis
	
In	addition	to	demonstration	of	the	Python	simulation,	the	capsule	also	provides	
reproducible	evaluation	of	the	raw	data,	including	plotting	of	the	quantitative	sub-
figures.	All	quantitative	data	in	the	main	text	of	the	associated	paper[1]	is	covered	by	the	
scripts	“data_import.sh”	and	“figures.sh”	(see	scheme	1).	The	scripts	
“data_import_supplementaries.sh”	and	“figures_supplementaries.sh”	cover	data	import,	
figure	plotting	for	the	supporting	information	and	CodeOcean	only	figure	plotting.	
	
3.4. Main scripts of the CodeOcean capsule
	
Scheme	1	shows	a	more	detailed	view	on	the	role	of	the	main	scripts	in	the	CodeOcean	
capsule.	The	global	“run”	script	is	the	main	entry	point	and	invokes	all	other	scripts	in	a	
reproducible	run.	

	 13	

	
As	shown	in	scheme	1,	this	CodeOcean	calculation	capsule	pursues	two	related	goals:	
	
1)	Demo:	This	part	provides	a	small	demo	of	the	Python	simulation	“particleShear”	
underpinning	the	theoretical	part	of	the	manuscript[1],	along	with	self-testing	by	
predefined	unit	tests,	and	production	of	the	demo	videos	for	supplemental	videos	S1-S4.	
See	section	2.	
	
2)	Data	analysis	and	plotting:	This	part	provides	the	statistical	analysis	and	plotting	of	
the	raw	data,	both	originating	from	the	Python	simulation	run	on	an	external	cluster	
(Baobab	at	the	University	of	Geneva,	Switzerland)	and	various	physical	measurements.	
The	data	arising	from	the	physical	experiments	is	fully	treated	in	the	calculation	capsule	
.	The	simulations	were	performed	on	an	external	cluster	to	handle	the	heavy	calculation	
workload,	but	the	data	treatment	of	the	simulation	output	files	is	provided	here	in	a	
reproducible	manner	(screenshot	5).	Along	with	the	figures,	the	CodeOcean	capsule	also	
provides	all	relevant	statistical	evaluation	in	an	automated	fashion.	
	
Eight	main	bash	scripts,	all	invoked	by	the	main	script	“run”,	are	the	main	work	horses	
of	this	CodeOcean	calculation	capsule	(scheme	1):	
	

3.4.1. Short simulation demo
	
unittest_demo.sh:	Bash	script	launches	elementary	test	cases	for	the	particleShear	
Python	simulation.	These	test	cases	as	well	as	their	recorded	output	are	described	in	the	
particleShear	manual	(see	section	4.1.2).	Completes	in	a	few	minutes.	
	
simulation_demo.sh:	Bash	script	launching	a	minimalistic	simulation	(with	only	20	
microspheres)	for	illustration.	Completes	in	about	20	minutes.	See	section	2.4.3.		
	

3.4.2. Full simulation demo
	
“video	S1.sh”,	“video	S2.sh”,	“video	S3.sh”,	“video	S4.sh”:	Located	in	folder	
/Simulation	demo,	these		scripts	launch	complete	simulations	corresponding	to	the	
video	supplemental	videos	S1-S4.	These	scripts	take	each	about	1h	to	complete,	and	
produce	output	as	shown	in	screenshots	4	and	5.	
	
In	addition	to	providing	video	examples	of	the	simulation,	the	text	file	output	of	the	
scripts	“video	S1.sh”	to	“video	S4.sh”	also	serves	to	demonstrate	the	initial	evaluation	of	
the	simulation	output	files.	This	is	done	by	the	script	
“supplementary_demo_evaluation.sh”,	located	in	the	folder	“/code/Simulation	demo”.	
This	evaluation	can	only	be	run	together	and	immediately	following	“video	S1.sh”	to	
“video	S4.sh”.	Therefore,	contrary	to	the	other	main	.sh	scripts	described	here,	
“supplementary_demo_evaluation.sh”	is	not	designed	as	a	standalone	script.		
	

3.4.3. Data import
	

	 14	

data_import.sh,	data_import_supplementaries.sh:	These	two	script	import	various	
raw	data	file	formats	into	R	Data	files	(.rda)	that	can	then	be	used	to	plot	the	figures	in	
the	main	text	and	supplementaries.	For	this,	various	R	scripts	are	invoked	by	
“data_import.sh”	and	“data_import_supplementaries.sh”.	See	also	the	file	
“/code/Documentation/Data	analysis	file	locations.xlsx”	(and	also	section	4.3	and	
section	5	in	this	document)	for	details	on	the	various	intermediate	.rda	files	and	the	R	
scripts	used	to	produce	them.	
	

3.4.4. Plotting and statistical analysis
	
figures.sh,	figures_supplementaries.sh:	These	scripts	plot	the	figures	and	evaluate	the	
associated	statistics.	Along	with	the	plotting,	all	relevant	statistical	parameters	and	tests	
are	evaluated	and	reported,	generally	in	dedicated	text	files	produced	along	with	the	
figures.	In	addition	to	the	detailed	statistical	results	reported	in	the	text	files	along	with	
the	figure	output,	they	are	also	gathered	in	an	aggregated	manner	in	Table	S7	in	the	
supporting	information	of	the	associated	manuscript[1],		and	in	deeper	detail	at	
/code/Documentation/Statistical	Reporting.xlsx.	
	
3.5. Details on the python simulation in a capsule without graphical display
	
Running	of	a	demo	of	a	fundamentally	visual	simulation	is	slightly	complicated	in	an	
environment	without	a	graphical	display.	
	
Three	options	are	demonstrated	in	the	calculation	capsule	(Table	1):		
1.	Running	the	simulation	without	graphical	display	by	passing	suitable	arguments	to	
the	high-level	function	doParticleShearSimulation;		
2.	Using	the	virtual	frame	buffer	xvfb	to	provide	a	virtual	graphical	display,	along	with	
image	file	saving	from	within	the	simulation;	and		
3.	Running	parallel	xvfb	and	simulation	processes	with	periodical	screenshot	taking	by	
the	main	script.	
	
Option	 Details	 Example	scripts	
1)	No	graphics	 Use	doDrawing=False	and	

plotStress=False	as	arguments	to	
doParticleShearSimulation	(see	
Manual	of	particleShear	package	at	
“/code/Documentation/Simulation	
particleShear/Manual	
particleShear.pdf”,	part	2)	

/code/simulation_demo.sh	,	first	part,	along	with	
/code/Simulation	demo/no_graphics_demo.py	

2)	xvfb	to	
buffer	graphics,	
internal	saving	
from	python	
simulation	

Use	the	utility	xvfb-run	to	supply	a	
local	graphical	environment	

/code/Simulation	demo/video_demo.sh	along	
with	
/code/Simulation	demo/video_demo.py	
	
Supplemental	videos	S1-S4.	

3)	xvfb	to	
buffer	graphics,	
external	
screenshots	

xvfb	and	the	python	simulation	are	
launched	as	separate,	connected	
processes	(here,	using	
DISPLAY=:1).	Periodically,	the	
main	script	takes	screenshots	
(import	function	from	
imagemagick)	

/code/unittest_demo.sh	along	with	
/code/Simulation	
demo/particleShearUnitTest.py	

	 15	

Table	1.	Options	to	run	the	Python	simulation	in	a	“headless”	environment	(without	
physical	graphical	display).	
	
On	a	technical	level,	we	use	the	virtual	graphical	display	Xvfb	for	providing	the	
simulations	with	a	simulated	screen	display	(thus	enabling	Python’s	Tkinter),	and	
imagemagick	+	ffmpeg	for	handling	screenshots	and	output	images,	and	finally	provide	
them	as	videos	(.mov	files,	see	for	example	screenshot	4).	
	
In	a	local	installation	with	a	graphical	display	attached	to	the	computer,	it	is	easier	to	
directly	follow	the	quick	install	instructions	(located	at	
/code/Documentation/Simulation	particleShear/Quick	install.pdf,	see	section	4.1.1)	to	
obtain	graphical	output	instead.	
3.6. Details on data analysis: import from raw files, figure plotting and statistics
	

3.6.1. Data analysis process flow
	

	 16	

	
	
Scheme	2.	The	data	evaluation	for	the	manuscript	“An	injectable	meta-biomaterial”	
comprises	two	major	steps:	The	first	step	is	data	preparation	(data	acquisition,	and	export	
to	text	or	Excel	files	in	proprietary	software),	the	second	is	data	analysis	of	these	machine-
readable	files.	This	CodeOcean	capsule	provides	the	possibility	to	reproduce	the	data	
analysis	part	in	a	controlled	environment	
	
	
The	CodeOcean	capsule	also	includes	the	data	treatment	from	primary	data	to	figure	
plotting.	The	process	is	shown	in	Scheme	2.	The	CodeOcean	capsule	implements	most,	
although	not	all	of	the	data	treatment.	Upstream	of	the	CodeOcean	capsule	are	two	
elements:	for	the	simulation,	acquisition	of	the	simulation	raw	data	on	a	cluster	(Baobab,	
University	of	Geneva),	with	conversion	to	r-data	(.rda)	and	header	files		(.txt)	to	save	
storage	space.	For	the	physical	measurement,	the	primary	raw	data	are	sometimes	in	
proprietary	formats	(rheology,	uniaxial	compression),	from	which	we	extracted	ASCII	

Experiments Data filesVarious file formats

Measurements Experiments

Digital storage

Data export or
primary
image analysis

Raw

Evaluation

Figures

ASCII text,
Excel files

R Data files

Figures

Data import

Figure plotting,
statistical analysis

3) Data analysis:
codeocean capsule

2) Data preparation:
Various software

ExperimentsData files Text files, 400GB

Simulation runsSimulation

1) Data preparation:
Python simulation

Split, comrpession

Header files
R Data files

data_import.sh
data_import_supplementaries.sh

Main scripts

Main scripts

figures.sh
figures_supplementaries.sh

	 17	

text	files	or	Excel	files	for	data	treatment.	Likewise,	image	treatment	of	confocal	images	
for	porosity	and	particle	shape	analysis	was	performed	outside	the	CodeOcean	capsule,	
generating	Excel	files	with	the	results	uploaded	into	the	raw	data	section	of	this	
CodeOcean	capsule.	
	
The	remaining	data	treatment	is	reproducibly	implemented	into	the	CodeOcean	capsule.	
It	takes	place	in	two	consecutive	steps,	implemented	generally	by	two	consecutive	
scripts	(Scheme	2):	
	

1) Importation	of	raw	data	into	R	data	files.	This	is	done	by	the	bash	script	
data_import.sh	(respectively	data_import_supplementaries.sh	for	data	used	
solely	in	supplementaries	of	the	manuscript	“An	injectable	meta-biomaterial”),	
which	invokes	a	number	of	R	scripts	for	reading	the	various	text	and	Excel	files.	A	
detailed	list	of	R	data	(.rda)	files	with	the	R	scripts	used	to	generate	them	can	be	
found	in	/code/Documentation/Data	analysis	file	locations.xlsx.	

2) Analysis	of	the	data	and	figure	plotting.	This	is	done	by	the	bash	script	figures.sh,	
and	for	the	supplementary	figures	figures_supplementaries.sh.	These	scripts	
invoke	the	R	scripts	for	plotting	of	the	individual	sub-figures;	there	is	one	R	script	
per	subfigure.		

3.6.2. Reproducibility of the data evaluation
	

	
	
Scheme	3.	Comparison	of	the	CodeOcean	evaluation	to	the	reference	evaluation.	
	
In	the	CodeOcean	capsule,	we	evaluate	the	raw	data	by	using	“data_import.sh”.	This	
yields	a	series	of	.rda	files	(see	/code/Documentation/Data	analysis	file	locations.xlsx	
for	details	on	these).	To	ensure	matching	with	the	R	data	files	used	for	the	associated	
manuscript[1],	we	set	up	and	run	automated	comparison	between	the	reference	
evaluation	(uploaded	to	the	/data/Evaluation	section	of	the	capsule)	and	the	CodeOcean	

	 18	

evaluation	(generated	at	each	run	of	data_import.sh	in	the	“Evaluation”	folder	of	the	
output	section,	noted	here	as	“/results/Evaluation”).	This	is	done	at	the	end	of	the	
data_import.sh	script,	by	invoking	the	R	script	“/code/Data	analysis/Data	
import/compare_to_local_evaluation.R”.	
	
The	comparison	between	reference	evaluation	and	CodeOcean	evaluation	is	done	at	the	
level	of	the	.rda	files	by	one-by-one	comparison,	as	implemented	in	the		custom	R	
package	“reproducibleCalculationTools”.[7]	For	each	of	the	rda	files,	we	assess	whether	it	
contains	the	same	variables	and	whether	values	that	should	correspond	do	correspond.	
The	corresponding	entries	should	indeed	be	identical,	with	a	few	exceptions	such	as	
local	paths.	In	cases	involving	sophisticated	numerical	evaluation	such	as	least	squares	
fitting,	we	find	near	exact	matches	(precision	better	than	10-6	for	more	involved	
algorithm	such	as	least	squares	fitting,	and	typically	better	than	10-10	for	simple	data	
input),	probably	reflecting	slightly	different	implementations	of	similar	algorithms	on	
different	platforms.	The	comparison	is	reported	in	the	results,	as	
“validation_evaluation.txt”	in	the	output	section.	
	
Providing	the	reference	evaluation	as	a	permanent	set	of	.rda	files	in	the	/data	section	
also	has	the	advantage	that	the	analysis	and	figure	plotting	scripts	“figures.sh”	and	
“figures_supplementaries.sh”	can	be	run	independently	of	the	“data_import.sh”	script,	
allowing	substantial	gain	of	time	if	desired	(this	can	be	done	by	setting	them	as	main	run	
files,	analogously	to	screenshot	6).	The	automated	comparison	between	prior	and	
current	evaluation	of	the	data	also	provides	a	sensitive	means	to	detect	inadvertent	
changes	arising	through	updating	of	internal	or	external	libraries	and	scripts.	

4. Documentation
	
In	addition	to	this	readme	file,	this	CodeOcean	capsule	contains	detailed	documentation	
on	both	the	Python	simulation	particleShear	and	custom	R	libraries	used.	
	
4.1. Python simulation
	
Extensive	documentation	for	the	Python	simulation	is	available.		

4.1.1. Quick install guide
A	very	brief	quick	install	guide	is	provided	at	“/code/Documentation/Simulation	
particleShear/Quick	install.pdf”.	The	aim	of	this	document	is	to	provide	for	rapid	
instructions	for	a	local	installation	and	usage	of	the	Python	simulations.	

4.1.2. Manual
	The	manual	“Manual	particleShear.pdf”,	located	at	“/code/Documentation/Simulation	
particleShear/Manual	particleShear.pdf”	provides	extensive	documentation	on:	

- The	mathematical	framework	of	the	simulation	(Part	I	in	Manual	
particleShear.pdf;	this	namely	contains	developments	over	[8]	and	[9])	

- Usage	instructions,	including	local	installation	(Part	II)	
- Implementation	details,	including	sub-modules,	class	hierarchy	and	pseudo-

code	for	a	typical	simulation	run	(Part	III)	
- Description	of	the	unit	tests	performed	as	part	of	each	run	of	this	CodeOcean	

capsule	(Part	IV)	

	 19	

	

4.1.3. API documentation
An	automatically	generated	API	documentation	of	the	particleShear	Python	simulations	
is	available	at	“/code/Documentation/Simulation	particleShear/particleShear	API	
Documentation/index.html”.	This	file	is	best	used	when	looking	for	details	on	a	particle	
function	or	class	in	particleShear.	Also,	with	limited	javascript	functionality	within	the	
CodeOcean	preview,	it	is	better	to	download	the	folder	and	view	it	locally.	
	
4.2. Custom R libraries
This	R	capsule	uses	a	series	of	custom	R	functions.	These	functions	are	organized	in	
custom	R	libraries.	The	libraries	themselves	are	hosted	at	github	for	incremental	
development,	with	an	archive	copy	generated	at	each	release	on	Zenodo.	The	custom	
libraries	used	here	are:		

- particleShearEvaluation[5]:	Utility	functions	to	read	and	analyze	output	from	
the	Python	package	“particleShear”.	The	latest	source	version	of	this	library	is	
publicly	available	at	https://github.com/tbgitoo/particleShearEvaluation;	the	
release	used	here	is	archived	at	Zenodo	
(https://doi.org/10.5281/zenodo.4594649).	

- plot.counts[6]:	A	collection	of	plotting	functions,	particularly	for	plotting	both	
aggregated	(average	and	standard	deviation)	and	individual	data.	The	latest	
source	of	this	library	is	available	at	https://github.com/tbgitoo/plot.counts;	the	
release	used	here	is	archived	at	Zenodo	
(https://doi.org/10.5281/zenodo.4589498)	

- rheologyEvaluation[4]:	Utility	functions	to	read	and	analyze	rheology	data	(from	
Rheowin,	exported	as	Ascii	data).	The	latest	source	of	this	library	is	available	at	
https://github.com/tbgitoo/rheologyEvaluation;	the	release	used	here	is	
archived	at	Zenodo	(https://doi.org/10.5281/zenodo.4594353).	

- textureAnalyzerGels[3]:	Utility	function	to	read	and	analyze	output	from	the	
textureAnalyzerXT	machine	(after	conversion	to	ASCII	files).	The	latest	source	of	
this	library	is	available	at	https://github.com/tbgitoo/textureAnalyzerGels.	The	
release	used	here	is	archived	at	Zenodo	
(https://doi.org/10.5281/zenodo.4589276).	

- reproducibleCalculationTools[7]:	Comparison	of	successive	evaluations	in	R	
with	definition	of	numerical	tolerance.	The	latest	source	of	this	library	is	
available	at	https://github.com/tbgitoo/reproducibleCalculationTools.	The	
release	used	here	is	archived	at	https://doi.org/10.5281/zenodo.4594515.	

	
In	the	CodeOcean	capsule,	these	libraries	are	automatically	installed	from	the	Github	
repositories.	Locally,	this	installation	carried	out	by	the	commands:	
	
library(devtools)	
install_github(“tbgitoo/plot.counts”)	
	
and	analogously	for	the	other	R	packages.	This	may	require	installation	of	devtools,	via	
the	usual	R	package	installer.			
	

	 20	

4.3. R-Data files
A	detailed	technical	overview	over	the	R-data	files	(.rda	files)	of	this	CodeOcean	capsule	
can	be	found	at	“/code/Documentation/	Data	analysis	file	locations.xlsx”,	including	the	
scripts	used	to	produce	them.	A	global	overview	is	given	below	(section	5).	
	
4.4. CodeOceanOnly figures
In	addition	to	the	figures	reported	in	the	associated	manuscript[1]	and	its	
supplementaries,	there	are	a	number	of	figure	evaluations	reported	only	in	this	
CodeOcean	capsule.	They	are	reported	in	the	folder	“Figures_Codeocean_only”	in	the	
Results	section.	This	folder	also	comprises	an	extensive	description	of	these	figures:	
CodeOceanOnlyResults.pdf	(copied	from	/code/Documentation/CodeOceanOnlyResults	
during	capsule	evaluation).	
	
4.5. Statistical reporting
Most	R	scripts	used	for	the	production	of	main	figures,	supplementary	figures	or	
CodeOceanOnly	figures	report	their	statistical	output	in	text	files	produced	along	with	
the	graphical	files	in	the	corresponding	section	in	the	/results.	From	these	text	files,	we	
compiled	an	in-depth	overview	document,	stored	at	/code/Documentation/Statistical	
Reporting.xlsx.	In	the	supporting	information	of	the	main	manuscript,[1]	table	S7	
summarizes	the	most	important	points	of	this	information.	

5. Datasets in this CodeOcean Capsule
	
In	addition	to	the	automated	and	reproducible	evaluation,	this	CodeOcean	capsule	also	
contains	some	datasets	that	may	have	an	interest	on	their	own.	As	a	direct	result	of	
result	of	the	two-step	evaluation	with	intermediate	data	files(Scheme	2),	the	datasets	
are	available	in	the	R-loadable	.rda	format.	A	full	overview	along	with	the	relations	to	
the	scripts	and	figures	is	provided	at	“/code/Documentation/	Data	analysis	file	
locations.xlsx”	
	
Regrouped	by	area	of	interest,	the	main	datasets	are	summarized	in	Table	2,	below.	
	
Area	of	
interest	

Datasets	(.rda)	 Path		in	
/data/Evaluation	

Content	

In	vivo	 =>in_vivo_data.rda	
=>in_vivo_colonization_
vascularization.rda
=>in_vivo_inflammation
_encapsulation.rda
=>in_vivo_degradation.r
da

/In vivo

	

-Shape	data	
-Implant	colonization	
	
-Peri-implant	
inflammation	
-	Degradation	kinetics	in-
vivo	

Physical	
properties	

=> various rheology
datasets (EPI / Juvéderm
/ Sephacryl S200 /
Cultisphere / synthesized
control materials)

/Rheology, various
sub folders

/Ejection Force

- Stress sweeps
- Stress recovery
- Self healing
- Injectability (large delivery
cannula, Thiebaud

	 21	

=>
ejection_force_data.rda,
ejection_force_data_agg
regated.rda
=> various ejection force
datasets in
“from_additional_experi
ments”

=>
stress_sweeps_comparis
on.rda

=>
stress_sweeps_adipose_
tissue_mouse.rda

/Ejection Force/
from_additional_exp
eriments

/For
Supplementaries/
Supplementary 9
Material comparison

F9020100)

- Datasets acquired during
manuscript review, partially
used

- CMC control materials
(non-porous irregular and
spherical)

- Rheology subcutaneous
and visceral fat mouse

Geometry	 =>	various	pore	size	
datasets	in	“Porosity”	
=>	
particle_size_overview_
EPI.rda	
=>	Particle	shape:	
particle_shape.rda	

/Porosity	
	
	
/Particle	Geometry	
	
	
/Particle	
Geometry/Particle	
Shape	

-	Pore	size	as	a	function	of	
polymer	concentration	
	
-	EPI	particle	size	
	
	
-	Particle	shape,	EPI	and	
EPI	variants,	Juvéderm	
Voluma,	Sephacryl	S200,	
Cytodex,	spherical	and	
irregular	control	
materials.	Cultisphere	S	
from	literature[10].	

Simulation	 =>General	simulations:	
overview_simulation_ju
mps_corrected.rda	
	
=>	Modified	force	law:	
plateau_contact_law_fig
_5e.rda	

/Simulation/Overvi
ew_data_files	
	
	
/Simulation/	
plateau_law	

-	Overview	results	
simulation	(Baobab	
Cluster	UNIGE)	
	
-	Specific	adaption	of	the	
contact	force	law	to	match	
experimental	EPI	data	

	
Table	2.	Main	datasets	in	this	CodeOcean	capsule	
	
	

6. Bibliography
	
	
	

	 22	

[1]	 A.	Beduer,	F.	Bonini,	C.	Verheyen,	M.	Genta,	M.	Martins,	J.	Brefie-Guth,	J.	Tratwal,	
A.	Filippova,	P.	Burch,	O.	Naveiras,	T.	Braschler,	Adv	Mater	2021,	DOI:	
10.1002/adma.202102350.	
[2]	 T.	Braschler,	particleShear:	Discrete	Python	particle	simulation	with	digital	
rheology	and	stress	tensor	evaluation	(Version	v1.0.2),	Zenodo,	
https://doi.org/10.5281/zenodo.4589212,		2021.	
[3]	 P.	Burch,	M.	Braschler,	T.	Braschler,	textureAnalyzerGels:	R	package	for	importing	
and	analyzing	hydrogel	compression	data	(Version	v1.0),	Zenodo,	
https://doi.org/10.5281/zenodo.4589276,		2001.	
[4]	 T.	Braschler,	rheologyEvaluation:	R	package	to	read	and	analyze	rheowin	text	
export	files	v1.1	(Version	v1.1),	Zenodo,	https://doi.org/10.5281/zenodo.4594353,		
2021.	
[5]	 T.	Braschler,	particleShearEvaluation:	Import	and	analysis	of	output	files	
generated	by	the	discrete	particle	simulation	Python	module	particleShear	(Version	
v1.0),	Zenodo,	https://doi.org/10.5281/zenodo.4594649,		2021.	
[6]	 T.	Braschler,	plot.counts:	R	package	with	convenience	functions	for	plotting	count	
data	(v1.0),	Zenodo,	https://doi.org/10.5281/zenodo.4589498		
,		2021.	
[7]	 T.	Braschler,	reproducibleCalculationTools:	R	package	for	comparing	numeric	
output	from	successive	evaluations,	Zenodo,	https://doi.org/10.5281/zenodo.4594515	
,		2021.	
[8]	 M.	Otsuki,	H.	Hayakawa,	Phys	Rev	E	2017,	95,	062902.	
[9]	 F.	Nicot,	N.	Hadda,	M.	Guessasma,	J.	Fortin,	O.	Millet,	Int	J	Solids	Struct	2013,	50,	
2508.	
[10]	 S.	de	Bournonville,	L.	Geris,	G.	Kerckhofs,	Sci	Rep	2021,	11,	2819;	R.	Alfred,	J.	T.	
Taiani,	R.	J.	Krawetz,	A.	Yamashita,	D.	E.	Rancourt,	M.	S.	Kallos,	Biomaterials	2011,	32,	
6006;	C.	E.	Nweke,	J.	P.	Stegemann,	J	Mater	Chem	B	2020,	8,	3972;	A.	A.	Akasha,	
"Attachment	of	Embryonic	Stem	Cells-derived	Cardiomyocytes	in	Cultispher-S	
Microcarriers	by	using	Spinner	flask",		2012.	
	

