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Code location 

	

The	release	of	python	package	particleShear	used	in	this	CodeOcean	capsule	is	archived	

at	Zenodo:	https://doi.org/10.5281/zenodo.4589212.	The	most	recent	source	version	is	

at	Github	(https://github.com/tbgitoo/particleShear).	

	

The	latest	release	of	the	particleShear	package	can	be	installed	via	the	usual	pip	installer	

commands.	Depending	on	your	installation,	this	can	be:	
 

pip3 install particleShear	

or		
pip install particleShear	

or	
python3 -m pip install particleShear	

or	
python -m pip install particleShear	

	

The	minimum	required	version	of	Python	is	3.5,	you	may	want	to	check	with	python	--

version	or	python3	--version	that	indeed	the	python	executable	invoked	has	the	

correction	version.	

	

See	also	the	quick	install	guide	available	in	this	capsule	at	

	
	/code/Documentation/Simulation particleShear/Quick install.pdf 
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3. Simulation and stress tensor evaluation in granular media 
	

3.1. Introduction to the physical framework of the simulation 
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Our	aim	in	simulation	is	to	evaluate	the	behavior	of	variously	crosslinked	microgel	

suspensions.	Ignoring	the	effect	of	interstitial	fluid	viscosity	–	assumed	to	be	small	

compared	to	the	large	elastic	forces	involved	–	we	are	facing	a	simulation	of	a	granular	

medium1,2.	

	

Granular	media	consist	of	discrete,	interacting	particles,	and	are	typically	simulated	as	

such1,2.	The	physical	framework	for	simulation	of	frictionally	interacting	granular	

particles	is	well	established3.	For	spherical	particles,	it	involves	torque-free	forces	and	

frictional	forces	generating	rotational	torques3.	The	effects	of	forces	and	torques	follow	

Newtonian	mechanics,	with	associated	conservation	laws	for	linear	and	angular	

momentum4.	The	resulting	equation	sets	are	well	known5	and,	with	minor	details	

regarding	various	levels	of	approximation,	similar	between	different	simulations	

documented	in	the	literature5-7.	For	the	physical	framework,	we	use	mainly	the	

terminology	and	equations	provided	by	Otsuki	et	al,7	as	it	also	relates	to	microgel	

suspensions.	In	order	to	make	the	simulation	stable	at	large	deformation	amplitudes,	we	

implemented	two	specific	changes:	adaptation	of	the	frictional	torque	to	reflect	particle	

compression	(with	the	aim	of	improving	conservation	of	angular	momentum)	and	a	

non-linear	contact	law	(with	the	aim	of	better	approaching	Hertzian	3D	contact	forces	

and	also	to	avoid	entanglement	of	permanently	bound	spheres	at	very	large	amplitude).		

	

Details	of	the	physical	framework	are	given	in	Section	4.		Calculation	of	the	necessary	

simulation	constants	from	physical	material	properties	is	provided	in	Section	5,	

followed	by	a	short	discussion	on	particle	ensemble	equilibration	in	Section	6.	

	

3.2. Introduction to stress tensor evaluation 

	

A	rheometer	quantifies	shear	forces	as	shear	stress	and	shear	deformation	as	shear	

strain8.	Hence	in	addition	to	a	physical	framework	enabling	the	simulation	per	se,	we	

also	need	evaluation	of	the	shear	stress	in	response	to	shear	deformation7.	To	do	so,	we	

evaluate	the	shear	stress	tensor	and	extract	the	relavant	components	for	analysis.		

	

Shear	stress	tensor	evaluation	in	granular	media	is	known	to	be	challenging1,6.	In	

standard	continuum	mechanics,	stress	tensors	are	generally	symmetric9.	Averaging	the	

stress	tensors	over	the	volume	of	the	granular	particles	should	not	change	this	fact1.	Yet,	

there	are	various	formulations	for	the	averaged	stress	tensor1,5,7,	and	while	“the	global	

result	must	be	perfectly	symmetrical”1,	this	is	far	from	guaranteed	in	practice.	

	

When	a	non-symmetrical	stress	tensor	is	obtained	in	simulation,	this	casts	serious	doubt	

on	the	validity	of	the	result	as	this	should	not	happen	on	theoretical	grounds1,9.	As	non-

symmetry	has	been	putatively	linked	to	inertial	effects1,6,	our	intended	large	amplitude	

simulations	should	be	particularly	vulnerable	to	possible	deviations.	It	was	therefore	

our	aim	to	rigorously	test	all	used	equations	to	ensure	the	demanded	symmetric	

evaluation	of	the	stress	tensors1,6.		

	

All	in	all,	by	careful	checking,	and	correction	where	appropriate,	of	assumptions	and	

calculations,	we	do	obtain	symmetrical	stress	tensors	(to	within	relative	error	levels	

associated	with	numerical	calculation,	on	the	order	of	10-14	to	10-17).	The	details	are	
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given	in	Section	7.	This	achievement	provides	a	high	level	of	confidence	even	in	the	case	

of	large-amplitude	simulations.	

4. Detailed description of the physical framework 
	

4.1. Simulation layout 

	

	

	
Figure	S1-1:	Design	of	the	simulation.	a)	shows	a	screenshot	of	a	simulation.	Spheres	

(circles	in	2D)	are	arranged	on	a	canvas	area.	Geometrically	touching	spheres	from	

transitory	interfaces	(red	for	locked,	green	for	slipping);	in	addition,	we	implemented	the	

possibility	to	specify	permanent	bonds	(in	blue	with	orange	interface).	b)	interaction	

parameters	for	geometrically	touching	spheres.	Otsuki	et	al.7	specify	linear	viscoelastic	

interactions	characterized	by	a	central	spring	constant	k	and	viscosity	nu,	as	well	as	a	

tangential	spring	constant	kT	and	nuT.	Together	with	the	friction	coefficient	mu,	the	central	

force	Fcentral	sets	an	upper	bound	to	the	tangential	force.	Indeed,	if	the	viscoelastic	

tangential	force	FT	calculated	by	the	magnitude	and	rate	of	departure	from	the	original	

contact	point	exceeds	mu*Fcentral	in	absolute	value,	the	interface	is	considered	slipping	and	

transmits	a	maximum	force	of	mu*Fcentral	(equations	4-6	of	Otsuki	et	al.7).	Also,	Fcentral	is	

considered	0	if	geometric	contact	is	lost.	c)	In	permanent	interfaces,	the	viscoelastic	forces	

calculated	in	central	(with	k,	nu)	and	tangential	direction	(kT,	nuT)	are	not	bounded.	As	a	

consequence,	Fcentral	can	have	a	large	attractive	component	when	the	spheres	are	sufficient	

elongated,	and	there	is	no	applicable	friction	coefficient	for	Ftangential.	

	

Fig.	S1-1	shows	the	basic	layout	and	principal	parameters	of	the	numerical	simulation.	

To	enable	direct	comparison,	we	choose	to	base	our	simulation	as	far	as	possible	on	the	

one	by	Otsuki	et	al.7	for	spherical	microgel	suspensions.	We	do	however	find	a	need	to	

review	some	of	the	assumptions	in	7,	as	well	as	to	use	a	different	framework	for	stress	

tensor	evaluation1,	as	detailed	in	the	sections	below.				

	

We	restrict	ourselves	to	the	2D	case,	implying	that	the	“spheres”	are	seen	as	2D	circles,	

and	in	reality	correspond	to	infinitely	high	cylinders	with	given	circular	cross-sections.	

In	reference	to	physical	experiments	typically	performed	on	spherical	microgel	

suspensions10,11,	we	and	others7	use	the	term	“sphere”	also	in	context	of	2D	simulation.	

It	is	however	understood	that	in	this	case,	geometrically,	“sphere”	means	a	2D	circle	

equivalent	to	an	infinitely	high	3D	cylinder.	Through	adaption	of	the	force	contact	law	to	
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better	reflect	the	3D	case12,	we	however	approach	the	simulation	closer	to	the	one	of	

true	3D	spheres.		

	

We	implemented	the	simulation	in	a	custom	Python13,14	package,	to	be	able	to	extend	it	

to	permanently	crosslinked	particles.		

	

Fig.	S1-1a	shows	a	screenshot	of	a	typical	simulation	including	permanent	crosslinks.	

The	spheres	are	in	geometric	contact	and	interact	through	central	and	tangential	

(frictional)	forces5,7.	As	illustrated	in	Fig.	S1-1b,	the	central	force	is	characterized	by	an	

elastic	component,	described	by	a	spring	constant	k,	and	a	viscous	component,	described	

by	an	interaction	viscosity	η,	and	similar	transversal	constants	kT	and	ηT.	The	reader	is	

referred	to	Otsuki	et	al.7	for	the	basic	contact	and	Newtonian	kinematic	framework,	

which	we	implement	here	with	corrective	changes	(details	in	section	5).		

	

To	add	permanent	bonds	to	the	simulation,	we	implement	two	changes	as	compared	to	

the	geometric	contacts7.	First,	the	bonds	are	implemented	to	be	permanent	and	thus	do	

not	rupture	regardless	of	the	distance	between	the	spheres.	As	consequence,	large	

attractive	forces	can	be	produced	by	continued	action	of	the	spring	constant	k	at	larger	

separation.	Second,	there	is	no	upper	bound	on	the	tangential	force.	As	the	permanent	

interfaces	cannot	slip,	we	integrate	the	departure	from	the	tangential	equilibrium	over	

all	time	points	rather	than	distinguishing	sticking	from	slipping	states.	

	

To	avoid	crystallization	we	used	a	bimodal	distribution	with	a	factor	of	1.4x	between	the	

smaller	and	the	larger	radii7.		We	further	use	shear-periodic	Lees-Edwards	boundary	

conditions7,15.	

			

4.2. Adaptions to large shear amplitude 

	

In	order	to	obtain	meaningful	simulations	at	large	shear	amplitudes	(up	to	200%	

deformation),	we	implemented	specific	important	changes.	This	is	independent	of	the	

permanent	crosslinking,	and	concerns	two	main	adjustments:	

1. The	torque	compensation	specified	by	Otsuki	et	al.	7	(eq.	8	in	ref.	7)	provides	only	

approximate	conservation	of	angular	momentum.	We	had	to	improve	the	

conservation	of	angular	momentum	to	obtain	stable	results	at	larger	amplitudes	

and	higher	packing	density.	

2. Otsuki	et	al.	7	use	a	linear	force	law	for	compressive	contact	(spring	constant	k,	

see	Fig.	S1-1b).	At	high	compression	and	shear,	this	leads	to	spheres	“crossing”	

each	other	as	the	repulsion	force	does	not	rise	high	enough	to	prevent	unphysical	

complete	interpenetration.	We	added	a	non-linear	term	rapidly	increasing	at	

very	small	inter-center	distances	to	prevent	this	and	obtain	stable	results	at	high	

shear.	We	thus	amended	the	contact	law	with	the	following	requirements	in	

mind:	A)	At	very	low	deformation,	the	law	should	match	the	linear	law	proposed	

by	Otsuki	et	al.	7.	B)	At	very	high	compression,	the	force	should	diverge	to	infinity	

to	prevent	complete	merging	of	spheres.		C)	At	intermediate	deformations,	the	

contact	law	should	approach	the	known	non-linear	rising	Hertzian	contact	law	of	

3D	spherical	objects12.		

	

The	solution	to	these	requirements	are	detailed	in	the	next	sections.	
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4.3. Conservation of angular momentum during frictional contact 

	

In	isolated	systems	without	application	of	external	forces,	angular	momentum	is	one	of	

the	major	conserved	properties.	It	is	clear	that	a	shear	simulation	as	the	one	

implemented	here,	but	also	the	one	by	Otsuki	et	al.7,	does	not	correspond	to	such	an	

isolated	system.	We	do	indeed	apply	and	measure	external	forces.	Nevertheless,	the	

internal	interactions	should	not	generate	angular	momentum	so	that	angular	

momentum	change	is	strictly	defined	by	the	externally	applied	torques4.	Otherwise,	the	

system	generates	spurious	torque	on	the	shear	plates,	which	will	be	interpreted	as	

incorrect	shear	properties	and	thus	G’	and	G’’	values.	

	

Specifically,	the	frictional	interaction	between	two	spheres	in	the	interior	of	the	

simulation	should	not	generate	net	angular	momentum.	We	shall	therefore	analyze	the	

conservation	of	angular	momentum	during	a	frictional	interaction	of	two	spheres.	

	

			
				Figure	S1-2.	Conservation	of	angular	momentum	in	pairwise	frictional	interaction.	a)	

The	tangential	forces	of	magnitude	FT	in	the	illustrated	frictional	interaction	arise	at	the	

common	interface.	The	torque	of	a	force	couple	is	given	by	force	times	separation	distance,	

but	here	the	separation	distance	is	zero,	so	there	is	no	net	torque	associated	with	this	

interaction.	b)	In	the	model,	however,	the	tangential	forces	are	reported	to	the	spheres	

themselves,	and	thus	modeled	as	acting	on	the	centers.	This	leads	to	a	net	torque	of	

T=FT*Δy.	c)	In	order	to	correctly	conserve	angular	momentum,	a	net	torque	of	zero	is	

needed.	To	achieve	this,	torques	T1	and	T2	are	applied	on	the	spheres,	and	the	angular	

momentum	conservation	imposes	T1+T2=-	FT*Δy.			

	

Fig.	S1-2a	shows	two	frictionally	interacting	spheres	(in	the	actual	2D	simulation,	

circles).	There	are	many	different	configurations	of	linear	speed	and	rotation	that	could	

give	rise	to	the	force	couple	shown	in	Fig.	S1-2a;	an	example	would	be	if	sphere	2	in	Fig.	

S1-2a	were	at	rest	and	Sphere	1	spinning	clockwise.		

	

The	frictional	force	couple	acts	tangentially	and	in	opposite	directions	on	sphere	1	and	

sphere	2	and	thus	naturally	conserves	linear	momentum.	Despite	being	a	force	couple,	

the	tangential	forces	also	conserve	angular	momentum	since	they	arise	at	the	common	

interface,	without	spatial	separation.	However,	in	the	simulation,	we	need	to	calculate	

No net torque:

T=FT*0=0

Tangential forces on common 

interface

a

Net torque:

T=FT* y

Linear force on the spheres

b

Net torque 0:

T=FT* y+T1+T2=0

Linear force and torque on the 

spheres

c
Sphere 1

Sphere 2

y y

T1

T2
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the	linear	accelerations	of	the	spheres.	If	no	special	precautions	are	taken,	this	is	

equivalent	to	the	situation	shown	in	Fig.	S1-2b,	resulting	in	a	net	torque	of	FT*Δy	and	

thus	loss	of	conservation	of	angular	momentum.		

	

Compensatory	torques	T1	to	sphere	1	and	T2	to	sphere	2	are	applied	in	granular	media	

simulations	to	correct	for	this5.	These	additional	torques	are	schematically	shown	in	Fig.	

S1-2c.	In	the	scenario	where	sphere	1	is	rotating	clockwise,	while	in	frictional	contact	

with	the	stationnary	sphere	2,	the	forces	and	torques	shown	in	Fig.	S1-2c	have	an	

intuitive	meaning	:	Upon	touching	sphere	2,	the	rotation	of	sphere	1	starts	to	slow	down,	

while	sphere	2	starts	spinning	in	the	opposite	direction.	In	addition,	sphere	1	starts	to	

gain	linear	momentum	by	rolling	on	top	of	sphere	2,	which	is	ejected	behind.		

	

The	expression	given	by	eq.	8	in	Otsuki	et	al.7	for	the	compensatory	torques	T1	and	T2	is	

only	approximate	with	regard	to	conservation	of	angular	momentum.	Indeed,	the	

requirement	of	conservation	of	angular	momentum	imposes	:	

	

T1+T2=-	FT*Δy	 eq.	S1-1	

	

Where	the	torques	T1	and	T2,	the	tangential	force	FT	and	the	relevant	inter-center	

distance	Δy	are	all	illustrated	in	Fig.	S1-2.	Using	the	expression	given	in	eq.	8	of	Otsuki	et	

al.	7,	one	instead	finds	:	

	

T1+T2=-	FT*(d1+d2)/2	 eq.	S1-2	

	

where	d1	and	d2	are	the	diameters	of	sphere	1	and	sphere	2	respectively.	Eq.	S1-1	and	

eq.	S1-2	are	equivalent	if	and	only	if	Δy=(d1+d2)/2,	that	is,	if	the	spheres	are	just	

touching	without	being	compressed.	This	is	nearly	the	case	in	the	low	packing	densities	

simulated	by	Otsuki	et	al.7,	justifying	the	hard	sphere	approximation5	in	their	case.		

	

However,	the	error	increases	with	increasing	sphere	compression	and	thus	increasing	

packing	density,	and	also	transient	compression	in	large-amplitude	shear	experiments.	

Hence,	we	needed	a	soft5,	rather	than	hard	sphere5	approximation.	

	

The	difficulty	of	the	problem	lies	in	knowing	how	the	total	torque	of	-	FT*Δy	in	eq.	S1-1	

should	be	distributed	to	T1	and	T2.	This	in	turn	depends	on	the	exact	position	of	the	

interface,	since	mechanistically,	these	torques	are	due	to	the	non-central	action	of	the	

frictional	force	with	regard	to	the	centers	of	the	spheres.	If	the	spheres	have	identical	

Young	moduli	and	comparable	diameters,	it	is	reasonable	to	assume	that	they	are	

compressed	by	the	same	relative	extent.	In	that	case,	T1	and	T2	should	be	distributed	

according	to	the	relative	diameters	of	the	involved	spheres.	In	the	general	notation	with	

indexed	spheres7	(sphere	i	in	contact	with	sphere	j,	distance	between	the	centers	rij),	we	

therefore	have:	

	

Ti	=	-	FT,ij*rij*di/(di+dj)=Ti(Otsuki)*2*	rij/(di+dj)	 eq.	S1-3	

	

	Eq.	S1-3	shows	explicitly	the	difference	with	eq.	8	in	Otsuki7	:	When	the	spheres	are	

exactly	touching,	but	not	compressed,	2*	rij/(di+dj)=1	and	eq.	S1-3	converges	to	eq.	8	in	

Otsuki7.	With	increasing	compression,	rij	decreases	and	smaller	torques	need	to	be	

applied	to	compensate	for	the	smaller	separation	between	the	centers	of	the	two	
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spheres.	In	the	case	of	permanent	crosslinks,	tangential	forces	are	present	also	when	rij>	

(di+dj)/2,	and	in	this	case,	larger	torques	result.	At	very	large	shear	amplitudes,	rij	can	be	

several	times	larger	than	(di+dj)/2	for	the	permanent	links,	making	the	correction	

quantitatively	important.	

		

4.4. Non-linear central repulsion 

					

A	second	adaptation	to	large	shear	and	compression	is	the	adoption	of	a	non-linear	

repulsion	contact	law12,16.	While	we	find	the	approach	of	a	linear	repulsion	law7	to	be	

satisfactory	at	low	shear	amplitudes,	problems	arise	at	larger	shear	amplitudes	and	also	

at	higher	packing	densities.	The	linear	contact	law	foresees	a	finite	maximum	repulsion	

force	of		

	

|Fmax,linear|	=	k*(di+dj)/2	 eq.	S1-4	

	

which	is	reached	when	two	spheres	completely	merge	to	have	identical	center	

coordinates.	A	finite	repulsion	force	at	complete	compression	is	unphysical,	since	we	do	

not	expect	the	spheres	to	be	able	to	merge	completely	without	a	major	rise	in	force	(and,	

in	reality,	destruction	of	the	spheres).	Also,	contact	laws	between	curved	surfaces,	

including	cylindrical	surfaces,	are	fundamentally	non-linear	at	all	but	very	small	

indentations17.	

	

A	steep	rise	in	force	at	very	large	compression	is	particularly	important	in	the	case	of	

crosslinked	particles.	Indeed,	in	the	presence	of	permanent	bonds,	“crossing”	of	the	

spheres	through	each	other	leads	to	irreversible	entanglement.	Empirically,	this	is	not	

generally	observed	in	suspensions	made	from	distinct,	crosslinked	hydrogel	particles.	

	

Our	aim	was	then	to	provide	a	contact	law	that	is	linear	at	small	compression	to	comply	

as	much	as	possible	with	the	simulation	set	forth	by	Otsuki	et	al.7	at	low	shear,	but	

nevertheless	avoids	sphere	merging	and	entanglement	at	high	shear	by	an	additional	

non-linear	component.	

	

Otsuki	et	al.7	use	a	simple	linear	Hookean	contact	law18:	

	

Felastic	=	-k	*	Δx	 eq.	S1-5a	

	

To	obtain	arbitrarily	large	forces	to	prevent	merging,	we	added	a	divergent	term	to	this	

linear	contact	law,	as	follows:	

	

Felastic	=	-k	*	Δx	*(1-2*Δx/(di+dj))-1	 eq.	S1-5b	

	

For	small	compressions,	characterized	by	Δx<<(di+dj)/2,	the	additional	term	approaches	

1,	and	we	recover	the	linear	expression	given	in	eq.	S1-5a.	For	compression	nearing	

completeness,	Δx	approaches	(di+dj)/2,	and	(1-2*Δx/(di+dj))-1	diverges	to	positive	

infinity.	In	practice,	to	avoid	numerical	errors	when	Δx	=(di+dj)/2,	and	also	to	limit	

artefacts	due	to	very	large	forces	that	would	require	excessively	short	integration	time	

steps,	we	impose	an	upper	limit	on	Felastic,	typically		
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|	Felastic	|<=	|Fmax,linear|*1000=	-k	*(di+dj)/2*1000	 eq.	S1-6	

	

We	use	the	expression	for	the	elastic	force	in	eq.	S1-5b	in	compression	(Δx>=0).	For	the	

non-permanent	links,	no	attractive	forces	are	present	when	the	spheres	are	beyond	

touching	distance,	and	so	Felastic=0	for	Δx<0.	For	permanently	linked	spheres,	we	use	eq.	

S1-5b	in	compression	(Δx>=0),	but	the	original	linear	expression	(eq.	S1-5a)	by	Otsuki	et	

al.	7	in	stretch	(Δx<0).					

	

5. Model constants from physical properties 
	

5.1. Linear approximation 

	

The	aim	of	this	section	is	to	link	simulation	constants	k,	kT,	η,	and	ηT	to	the	physical	

properties	of	the	spheres,	particularly	their	Young	modulus	E.	

	

The	2D	simulation	of	the	spheres	corresponds	to	a	contact	geometry	of	3D	cylinders	

with	parallel	alignment.	For	this	geometry,	the	linearized	contact	law	for	small	

deformations	is12	(eq.	5.34	in	12):	

	
!
" = #$

%('()!) ∙ Δ𝑥	 eq.	S1-7	

	

where	E	is	the	Young	modulus	of	the	cylinder	material,	ν	the	Poisson	ratio,	and	L	the	

height	of	the	cylinders.	In	a	2D	simulation,	the	height	of	the	cylinders	is	not	specified	and	

should	be	irrelevant	for	the	intrinsic	assembly	properties	such	as	the	shear	moduli,	so	

for	numerical	purposes,	we	assume	the	extensive	properties	such	as	the	force	F	to	be	

given	per	m	of	depth.	With	this	convention,	the	spring	constant	is	(in	units	N/m	per	m	of	

depth=Nm-2):	

	𝑘 = &!"' /Δ𝑥= #$
%('()!) ≈ #$

% 	 eq.	S1-8	

	

	where	even	for	the	worst	and	unlikely	case	of	ν=0.5,	there	would	be	an	error	of	no	more	

than	25%	for	the	approximation.	With	eq.	S1-8,	we	can	relate	the	spring	constant	k	to	

the	Young	modulus	of	the	constituent	spheres.	Eq.	S1-8	is	approximative	for	a	number	of	

reasons	(2D	geometry,	small	deformation	limit,	simplification	of	the	Poisson	ratio),	but	it	

nevertheless	allows	a	realistic	order-of-	magnitude	estimate	of	the	spring	constants	to	

be	used	in	the	simulation.	For	the	remaining	constants	(,	we	follow	essentially	the	

approach	by	Otsuki	et	al.7	:	kT	=	k7,	as	they	describe	the	same	material.	Second,	we	obtain	

the	viscosities	η=	ηT	from	scaling	considerations7,	with	the	difference	that	we	use	a	

lower	value	than	Otsuki	et	al.7	to	better	reflect	the	strongly	elastic	materials	under	

study.	We	use	η=	ηT=k*τ*0.1,	rather	than	η=	ηT=k*τ	as	in	7,	with	the	characteristic	time	

constant	being	related	to	both	the	spring	constant	and	average	particle	mass	:	𝜏 =+𝑚/𝑘7	:	
	

	𝜂 = 𝜂+ = 0.1 ∙ √𝑚𝑘	 eq.	S1-9	
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5.2. Comparison with Hertzian contact law 

	

In	3D,	the	contact	law	would	be	different.	For	simplicity,	assuming	identical	radii	of	the	

spheres,	the	Hertzian	contact	law	for	a	single	contact	is12:	

	𝐹,-./0 = √2∙$
4('(5!) ∙ 𝑅' 2⁄ ∙ Δ𝑥4 2⁄ 		 eq.	S1-10	

	

To	obtain	an	estimate	of	the	average	contact	law	in	3D,	the	particularities	of	spherical	

packings	in	3D	have	to	be	considered.	The	coordination	numbers	Z	for	soft	particles	in	

3D	vary	with	packing	density,	from	a	minimum	of	6	ensuring	minimal	stability19	to	a	

maximum	of	12	for	spheres	of	identical	size	at	close-packing20.	At	a	packing	density	of	𝜃	
=1	in	3D,	one	calculates	a	coordination	number	of	about19	:	

	𝑍 = 2 ∙ 𝐷 + 7.9 ∙ (𝜃 − 0.64)'2 ≈ 10.7	
	 eq.	S1-11	

	

where	D	is	the	dimensionality	(3	in	3D),	and	𝜃	the	nominal	phase	volume	indicating	
packing	density10.	

	

Considering	Z/2	indidivual	contacts	randomly	distributed	on	the	surface	of	a	half	

sphere,	we	obtain	a	total	normal	force	:	

	𝐹7,/9/ = : 2⁄
;"#" ∫𝐹7d𝐴 = : 2⁄

2#.! ∫ ∫ 𝑟2cos𝛽𝑑𝛼# 2⁄
(# 2⁄ 𝑑𝛽 ∙# 2⁄

(# 2⁄ cos𝛽cos𝛼 ∙ 𝐹,-./0 =		
	

𝐹7,/9/ = 𝑍𝐹,-./04𝜋 K cos2𝛽d𝛽K cos𝛼# 2⁄

(# 2⁄
d𝛼# 2⁄

(# 2⁄
= 𝑍𝐹,-./04𝜋 ∙ 𝜋2 ∙ 2 =	

	𝐹7,/9/ = :
< ∙ 𝐹,-./0	 eq.	S1-12	

	

Reported	to	the	inter-layer	height	of	L = 2𝑅 √3⁄ 	a	hexagonal	close-packing,	this	gives	a	

scaled	force	of	:	

	
!
" = :√4

%= ∙ 𝐹,-./0 = :>2 4⁄
%=

$
('(5!) ∙ 𝑅(' 2⁄ ∙ Δ𝑥4 2⁄ ≈ 1.1𝐸 ∙ 𝑅(' 2⁄ ∙ Δ𝑥4 2⁄ 	 eq.	S1-13	

	

where	the	approximation	was	obtained	by	using	Z=10.7	(eq.	S1-11)	and	again	neglecting	

the	effect	of	the	Poisson	coefficien	term		(1-ν2).	
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Fig.	S1-3	:	Comparison	of	the	different	contact	laws.	The	linear	expression	by	Otsuki	et	al.7	

is	here	evaluated	with	a	spring	constant	as	given	by	eq.	S1-8.	The	Hertzian,	3D	

expression12,	is	evaluated	from	eq.	S1-13,	whereas	here	we	use	a	non-linear,	divergent	

approach	(eq.	S1-5b)	designed	to	avoid	sphere	interpenetration	at	very	strong	

compression.	Calculations	for	spheres	of	a	radius	of	10μm,	a	Young	modulus	of	E=8kPa	;	

force	reported	to	depth	(linear	and	non-linear	divergent)	or	pitch	(Hertzian)	as	explained	

in	the	text.	

	

	

Fig.	S1-3	finally	compares	the	forces	in	the	three	scenarios	considered	here	:	the	linear	

expression	used	by	Otsuki	et	al.7	(eq.	S1-5a,	k	given	by	eq.	S1-8)	;	the	non-linear,	

divergent	expression	used	here	to	avoid	sphere	interpenetration	(eq.	S1-5b,	k	again	

given	by	eq.	S1-8)	and	the	Hertzian	contact	law	as	given	by	eq.	S1-13.	In	all	cases,	we	

used	E=8kPa	and	r=10μm.	Δx	ranged	from	0	(spheres	in	contact,	uncompressed)	to	

2*r=20μm	(total	compression).	The	order	of	magnitude	is	similar	for	the	three	models	at	

relatively	small	compression,	i.e.	when	Δx	is	on	the	scale	of	a	few	microns,	

corresponding	to	10-20%	compression	on	an	available	distance	of	2r=20μm.	The	3D	

Hertzian	model	then	departs	from	linearity,	followed	by	the	non-linear	divergent	law	

used	here.	At	very	high	compressions,	the	non-linear	divergent	law	provides	the	highest	

forces,	as	desired.	

	

5.3. Damping 

	

Given	the	suspension	of	the	particles	in	a	pore	fluid	(typically,	deionized	water	or	

physiological	saline),	we	expect	some	viscous	drag	as	compare	to	a	free	powder.	We	do	

not	simulate	the	precise	mechanics	of	this,	but	do	implement	a	damping	coefficient.	In	

shear,	we	expect	there	to	be	a	gradient	of	flow	speed	in	the	interstitial	fluid,	and	thus	

damping	relative	to	this	flow	speed	rather	than	to	absolute	v=0.	This	means	that	rather	

than	damping	the	general	momentum,	the	peculiar	momentum	relative	to	the	expected	

local	flow	speed	should	be	damped;	this	is	typically	implemented	by	using	Sllod	

equations	of	motion7.	Damping	also	improves	the	stability	of	the	simulation,	by	strongly	
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reducing	inertial	phenomena	such	a	sustained	oscillation	at	particular	resonance	

frequencies	and	propagation	of	compressive	and	shear	sound	waves.	We	typically	adjust	

the	damping	coefficient	such	that	during	a	full	oscillatory	shear	cycle,	a	decay	of	about	

50%	of	the	speed	relative	to	local	shear	flow	would	be	observed.	

	

6. Ensemble constitution and pre-equilibration 
	

Pre-equilibration	of	particle	ensembles	for	oscillatory	shear	rheology	are	a	known	

practical	challenge	due	to	the	dependency	of	material	constants	on	shear	history8.	

Similarly,	in	numerical	simulation,	both	initial	constitution	and	pre-equilibration	can	be	

challenging	in	light	of	obtaining	repeatable	results	with	random	assemblies.	We	have	

combined	here	two	approaches	commonly	employed,	namely	friction-less	assembly19	

followed	by	a	pre-shearing	equilibration21.	

	

We	constitute	our	primary	particle	assembly	by	random	distribution	spheres19	of	the	

desired	size	and	number	on	a	square	2D	simulation	canvas	of	dimensions	LxL.	The	radii	

are	calculated	such	that	the	desired	packing	fraction	is	achieved	with	a	1:1	bimodal	

distribution	with	a	ratio	of	1.4	between	the	smaller	and	larger	radii7:	

	𝑟 = 𝐿Q '
?@#(A.CDA.C/'.<!)	 eq.	S1-14	

	

with	L=500μm	and		N=150	for	a	typical	simulation;	the	smaller	radius	would	be	r/1.4.	

We	typically	using	packing	densities	θ	between	1	and	2.	

	

From	a	uniform	random	distribution,	we	let	the	spheres	equilibrate	under	friction-less	

conditions,	as	this	is	considered	to	yield	fully	equilibrated	assemblies19.	The	

equilibration	times	are	held	long	enough	so	that	there	are	only	minimal	remaining	

oscillations	(<10%	of	the	anticipated	amplitude	during	oscillatory	shear)	during	a	test	

baseline	period	prior	to	application	of	the	actual	shear	protocol.	We	then	set	the	desired	

friction	coefficient,	and	possible	inter-particle	crosslinking	(Fig.	S1-1).	After	an	

additional	equilibration	period	in	this	new	configuration,	we	apply	shear	for	one	

excitation	period,	before	starting	integration	for	the	determination	of	the	storage	and	

loss	moduli	by	demodulation	of	the	force	amplitudes.7		

7. Evaluation of shear stress 
	

In	analogy	to	experimental	oscillatory	shear	experiments,	we	evaluate	the	shear	stress	

as	the	horizontal	force	(x-component)	acting	on	the	horizontal	boundary	elements	(with	

vertical	normal	vector).	For	this,	we	first	evaluate	the	average	stress	tensor1	present	in	

the	material	and	extract	the	relevant	shear	force	from	it.	

		

7.1. Stress tensor 
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Stress	tensors	describes	the	forces	acting	with	in	a	material,	as	a	function	of	the	

orientation	of	an	observation	plane	element.9	While	stress	tensor	evaluation	for	

continuous	media	is	well	established9,	it	is	still	subject	to	some	debate	for	granular,	

discrete	materials1,6.	Mechanical	stress	is	indeed	not	distributed	homogenously	in	such	

assemblies,	and	difficulties	in	averaging,	but	also	in	accounting	for	various	inertial	

effects	lead	to	approximate	stress	tensors.	While	stress	tensors	should	be	strictly	

symmetrical1,	more	or	less	asymmetrical	results	are	obtained	if	the	inertial	effects	are	

not	appropriately	compensated	for1.	

	

	

7.1.1. Formal requirements for stress tensor evaluation 

	

Whatever	the	method	and	formulae	employed	for	stress	tensor	evaluation,	basic	

physical	consideration	impose	some	formal	requirements.	These	formal	requirements	

can	be	assessed	for	the	analytical	equations	developed	here	or	used	from	the	literature.	

In	addition,	they	lend	themselves	for	unit	testing	to	within	the	limits	of	numerical	

precision.	

	

Translational invariance 

	

The	first	such	requirement	is	translational	invariance.	Stress	tensors	describe	a	state	of	

matter	regarding	the	internal	forces	present,	and	this	should	not	depend	on	the	position	

of	an	arbitrary	observer1.	

Invariance with respect to the resting frame (Translation speed invariance) 

	

The	second	requirement	is	at	the	heart	of	Newtonian	(but	not	relativistic)	mechanics:	

forces	are	related	to	acceleration,	not	linear	speed,	on	so	the	linear	speed	of	an	arbitrary	

observer	should	not	change	the	observed	magnitude	of	the	forces,	and	by	extension	the	

stress	tensors.	

	

Symmetry 

	

Stress	tensor	symmetry	in	the	continuous	limit	arises	from	a	scaling	argument	ensuring	

finite	rotational	acceleration	in	the	limit	of	vanishingly	small	mass	elements9.	This	

argument	is	of	course	limited	by	the	existence	of	discrete	molecules,	atoms	or	

elementary	particles	and	thus	the	requirement	for	stress	tensor	symmetry	is	not	as	

fundamental	as	the	invariance	requirements	above.	Nevertheless,	given	the	enormous	

size	scale	difference	between	elementary	particles	and	a	typical	rheometer,	it	seems	

reasonable	to	impose	stress	tensor	symmetry	in	stress	tensor	evaluation.	

	

7.1.2. Fundamental approaches to stress tensor evaluation in granular media 

	

In	stress	tensor	evaluation	of	granular	media,	there	is	a	consensus	that	forces	acting	

internally	between	particles	need	to	be	accounted	for.	This	has	given	rise	to	the	Love-

Weber	stress	tensor	〈𝜎"F〉22,23:	
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	〈𝜎"F〉 = '
G∑ 𝐹⃗H7/ ∙ 𝑙H7/+ 	 Love-Weber22,23	

	

where	𝐹⃗H7/	is	the	internal	contact	arising	for	a	given	particle-particle	contact	and	𝑙H7/	the	
separation	vector	of	the	centers	of	gravity	of	the	involved	particles	and	V	the	simulation	

volume.1	Of	note,	using	standard	matrix	multiplication	rules,	the	product	of	a	column	

vector	such	as	𝐹⃗H7/	with	a	row	vector	such	as	𝑙H7/+ 	(the	T	denotes	the	transpose)	gives	rise	

to	dyadic	tensor	matrix.	The	Love-Weber	stress	tensor	matrix	quantitatively	describes	

the	concept	that	the	stress	tensor	reflects	internal	particle	interactions;	it	is	

translationally	invariant	and	invariant	with	respect	to	the	choice	of	the	resting	frame	as	

desired.	

	

Unfortunately,	the	Love-Weber	tensor	is	not	strictly	symmetrical	in	the	presence	of	

tangential	forces.1	This	has	been	attributed	to	imperfect	accounting	of	inertial	effects1,6,	

and	we	are	aware	of	two	main	approaches	of	incorporating	additional	inertial	effects	in	

simulations	of	granular	media.	

	

	

Kinetic gas theory approach 

		

The	first	approach,	referred	to	as	“dynamic	stress”5	is	inspired	by	kinetic	gas	theory5.	

Momentum	is	indeed	transported	by	moving	particles,	and	just	like	for	an	ideal	gas,	one	

can	associate	this	momentum	with	a	pressure	or	more	generally	stress	tensor5,24:	

	〈𝜎dynamic〉 = '
G∑𝑚P 𝑣⃗ ∙ 𝑣⃗+ 		 Dynamic	stress5,24

	 	

where	summation	is	over	the	constituent	particles,	with	𝑚P	being	the	particle	mass	and	𝑣⃗	the	displacement	speed	of	each	individual	particles.		
	

While	such	a	definition	of	dynamic	stress	elegantly	allows	to	address	momentum	

transport24,	to	us,	it	is	rather	problematic	from	a	fundamental	point	of	view.	

	

By	far	the	most	important	problem	is	that	this	definition	of	〈𝜎dynamic〉	violates	the	
principle	of	invariance	with	regard	to	the	choice	of	the	resting	frame.	It	is	indeed	trivial	

to	see	that	for	a	simplistic	system	consisting	of	a	single	particle,	any	desired	value	of	𝑣⃗	
can	be	reached	by	merely	changing	the	linear	speed	of	the	frame	of	observation.	

Therefore,	every	possible	dyadic	product	𝑣⃗ ∙ 𝑣⃗+ 	can	be	obtained,	allowing	to	produce	at	
will	every	possible	value	〈𝜎dynamic〉	to	within	the	limits	of	the	symmetric	dyadic	product	𝑣⃗ ∙ 𝑣⃗+ .	This	is	in	direct	contradiction	with	the	principle	of	independence	from	the	free	
choice	of	the	resting	frame.	

	

In	their	simulation,	Otsuki	et	al.7	use	〈𝜎dynamic〉	to	correct	the	Love-Weber	tensor	for	
inertial	effects	(eq.	15	in	7).	They	partially	address	the	problem	of	the	resting	frame	by	

the	introduction	of	a	peculiar	momentum:	the	momenta	and	therefore	speeds	are	

expressed	relative	to	the	expected	local	speed	in	shear	flow7.	With	this	relative	

definition,	changing	the	resting	frame	does	not	change	〈𝜎dynamic〉	anymore.	The	solution	
remains	nevertheless	partial:	how	should	the	expected	local	speed	be	defined?	
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Concretely,	in	a	rheological	shear	cell,	should	the	resting	plane	be	the	top	plate,	the	

lower	plate,	or	maybe	the	middle	plane?	Less	practically	minded,	what	if	the	rheometer	

is	moving?		

Even	more	fundamentally,	while	invariance	with	respect	to	the	choice	of	resting	frame	is	

achieved	by	the	use	of	peculiar	speeds	and	momenta7,	this	necessitates	the	definition	of	

an	arbitrary	zero	speed	and	therefore	merely	shifts	the	problem	from	dependence	on	

the	resting	frame	to	dependence	on	an	arbitrarily	chosen	zero-speed.	In	an	isolated	

system,	the	constant	speed	of	the	center	of	gravity	might	constitute	a	suitable	zero-

reference,	but	in	our	case	where	particles	can	leave	and	enter	the	simulation	area,	while	

external	forces	are	applied,	the	choice	of	the	zero-speed	is	indeed	a	difficult	one.	

	

In	our	setting	of	unit	testing	(SI	4),	this	difficulty	is	also	revealed	directly	by	the	fact	that	𝑚P𝑣⃗ ∙ 𝑣⃗+ 	is	non-zero	for	a	freely	moving	particle	without	applied	external	forces,	where	
on	reasonable	physical	grounds,	one	would	expect	〈𝜎〉 = 0.	
	

A	final	practical	issue	is	that	〈𝜎dynamic〉	is	by	definition	symmetric,	and	thus	naturally	
unsuitable	to	correct	asymmetry	in	the	Love-Weber	stress	tensor.	

	

Given	our	difficulties	in	unit	testing,	the	inability	of	〈𝜎dynamic〉	to	correct	stress	tensor	
asymmetry,	and	the	undesirable	dependence	on	an	arbitrary	zero-speed,	we	decided	not	

to	make	use	of	the	dynamic	stress	tensor.			

	

Explicit correction for rotational movement and acceleration 

		

A	second	approach	consists	in	explicit	removal	of	inertial	forces	linked	to	internal	

particle	movement.	This	approach	is	thoroughly	developed	for	rigid-body	particles	by	

Nicot	et	al.1,	and	is	found	to	result	in	correction	terms	arising	from	angular	velocity	and	

acceleration.1	

	

We	tested	the	solution	proposed	by	Nicot	et	al.1,	but	still	found	asymmetric	stress	

tensors.	In	order	to	evaluate	whether	there	were	still	fundamental	terms	lacking,	or	

whether	there	was	some	error	either	in	our	implementation	or	the	underlying	

framework,	we	developed	inertial	correction	terms.	In	order	not	to	directly	replicate	

possible	mistakes	by	Nicot	et	al.1,	we	kept	the	derivation	technique	as	independent	as	

possible	from	the	one	by	Nicot	et	al.	1	We	further	limited	the	calculations	to	the	2D	

circular	particles	at	hand	in	order	to	avoid	the	difficulties	of	generality.	

7.1.3. Stress tensor from external force 

	

As	a	starting	point,	we	use	eq.	6	of	1,	neglecting	gravity:	

	〈𝜎〉 = − '
G∑ 𝐹⃗-Q/𝑟+ + '

G∑ ∫ 𝜌𝑎⃗𝑟+	
PS./HTU-PS./HTU-V 		 eq.	S1-15	

	

where	𝐹⃗-Q/designates	the	forces	acting	across	ensemble	boundaries,	𝑟	their	point	of	
action	(approximated	by	the	center	of	the	particles	concerned1),	V	the	overall	simulation	

volume	(i.e.	L2	in	2D),	𝜌	the	density,	𝑎⃗	and	the	local	acceleration	at	points	within	the	
particles.		
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With	the	choice	of	signs	given	in	eq.	S1-15,	we	follow	the	soil	mechanics	convention	that	

associates	compression	rather	than	traction	with	positive	normal	stresses6.			

	

xT	denotes	the	transpose	of	x,	and	we	use	the	product	between	a	column	vector	and	a	

row	vector	following	usual	matrix	multiplication	rules	to	denote	the	dyadic	tensors	as	

before.	

	

The	first	term	in	eq.	S1-15	is	related	only	to	the	external	forces:		

	〈𝜎-Q/-.7SU	W9.T-〉 = − '
G∑ 𝐹⃗-Q/𝑟+ 	 eq.	S1-16	

	

The	acceleration	
'
G∑ ∫ 𝜌𝑎⃗𝑟+	

PS./HTU-PS./HTU-V 	term	in	eq.	S1-15	can	be	decomposed	into	a	

linear	acceleration	part	〈𝜎UH7-S.	STT-U-.S/H97〉	reflecting	the	linear	acceleration	of	the	
particle	centers,	and	a	spin	part	〈𝜎VPH7〉	reflecting	the	influence	of	local	rotation	on	the	
stress	tensor1:	

	
'
G∑ ∫ 𝜌𝑎⃗𝑟+	

PS./HTU-PS./HTU-V = 〈𝜎UH7-S.	STT-U-.S/H97〉 + 〈𝜎VPH7〉	with	〈𝜎UH7-S.	STT-U-.S/H97〉 = '
G∑ 𝑚𝑎⃗X𝑟X+PS./HTU-V 	 eq.	S1-17	

	

where	the	index	g	denotes	the	center	of	gravity	for	each	particle.	

7.1.4. Internal forces: Stress tensor from internal forces  

	

We	agree	with	Nicot	et	al.1	that	indeed	eq.	S1-15	can	be	rewritten	by	the	use	of	the	Love-

Weber	stress	tensor22,23	(eq.	28	of	.1):	

	〈𝜎〉 = 〈𝜎"F〉 + 〈𝜎VPH7〉 = '
G∑ 𝐹⃗H7/ 𝑙H7/+ + 〈𝜎VPH7〉	 eq.	S1-18	

		

where	summation	is	over	the	internal	contacts,	counting	each	contact	exactly	once.	If	

particles	A	and	B	are	involved	in	the	contact	at	hand,	𝐹⃗H7/would	designate	the	force	
excerted	by	particle	A	on	particle	B,	and	the	contact	vector	would	relate	A	to	B.	These	

definitions	are	again	chosen	to	comply	with	the	soil	mechanics	convention6.	The	term	
'
G∑ 𝐹⃗H7/ 𝑙H7/+ 	is	the	well-known	Love-Weber22,23	expression	for	stress	tensor	evaluation:	

	〈𝜎"F〉 = '
G∑ 𝐹⃗H7/ 𝑙H7/+ ≈ 〈𝜎-Q/-.7SU	W9.T-〉 + 〈𝜎UH7-S.	STT-U-.S/H97〉	 eq.	S1-19	

	

For	purely	central	forces,	the	𝐹⃗H7/	and	𝑙H7/	vectors	are	collinear	for	each	interaction	and	
thus	give	rise	to	strictly	symmetric	dyadic	products.	The	problem	of	stress	tensor	

asymmetry	can	therefore	indeed	be	pinned	down	not	to	inertial	forces	in	general,	but	

more	specifically	to	tangential	force	vectors	arising	for	instance	by	friction,	where	

collinearity	between	𝐹⃗H7/	and	𝑙H7/		is	lost	and	〈𝜎"F〉	becomes	asymmetric1.	
	

7.1.5. Spin inertia terms 
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We	therefore	need	to	examine	in	detail	the	spin	inertia	terms.	The	spin	acceleration	

term	〈𝜎VPH7〉		is	due	to	tensile	stresses	generated	by	the	centrifugal	forces	on	the	one	
hand,	and	unbalanced	torque	leading	to	tangential	rotational	acceleration	within	the	

particles1:	

	

	〈𝜎VPH7〉 =< 𝜎centrifgual > +< 𝜎tangential >	 eq.	S1-20	

	

Centrifugal component 

	

Assuming	rigid	body	motion,	the	centrifugal	forces	give	rise	to	a	diagonal,	isotropic	

stress	tensor	contribution1.	For	the	2D	geometry	(cuts	of	long	cylinders)	chosen	here,	

the	centrifugal	force	for	an	infinitesimal	volume	element	is	given	by:		

	 d𝐹centrifugal = d𝑉𝜌 ∙ 𝜔2𝑟	
	

where	𝜌	is	the	mass	density	and	𝜔	the	angular	rotation	rate.	In	steady	state,	the	
centrifugal	force	must	be	compensated	by	a	corresponding	stress	tensor	gradient.	Due	

to	the	isotropic,	diagonal	form	of	the	stress	tensor	in	steady	rotational	motion1,	this	is	

the	equivalent	of	a	shear-free,	hydrostatic	pressure	gradient:		

	 d𝐹centrifugald𝑉 = 𝜌 ∙ 𝜔2𝑟 = d𝑃centrifugald𝑟 	

	

and	thus,	by	integration:	

	 𝑃centrifugal(𝑟) = K 𝜌 ∙ 𝜔2𝑥.

=$
d𝑥 = 𝜌𝜔22 (𝑟2 − 𝑅2)	

where	the	centrifugal	pressure	contribution	was	assumed	to	be	zero	at	the	particle	

surface	(Pcentrifugal=0	for	r=R).	

	

Averaging	over	the	cylinder	cross	section	leads	to:	

	 <𝑃centrifugal >= 1𝜋𝑅2K 𝜌𝜔22 (𝑟2 − 𝑅2)2𝜋𝑟𝑑𝑟=

A
= −𝜌𝜔2𝑅24 	

	

The	stress	tensor	contribution	is	reported	to	relative	to	the	overall	simulation	volume,	

and	we	obtain:	

	 < 𝜎centrifgual >= −𝑉P𝑉 𝜌𝜔2𝑅24 `1 00 1a = − 𝜋𝑆2 𝜌𝜔2𝑅<4 	

	

where	S	is	the	width	and	height	of	our	square	simulation	area,	whereas	𝑉P = 𝜋𝑅2𝐿	and		𝑉 = 𝑆2𝐿	are	respectively	the	particle	and	total	simulation	volumes	of	height	L.	
	

The	moment	of	inertia	of	a	solid	cylinder	around	its	main	axis	is	given	by25:	
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𝐼 = 𝑚𝑅22 = 𝜋𝐿𝜌𝑅<2 	

	

The	associated	spin	kinetic	energy	is	given	by26:	

	 𝐾 = 𝐼 ∙ 𝜔22 = 𝜋𝐿𝜌𝜔2𝑅<4 	

	

so	that	by	analogy	with	the	spherical	case1,	we	can	write	concisely:	

	< 𝜎centrifgual >= − `
G `1 00 1a	 eq.	S1-21	

	

the	simulation	volume	V	being	again	given	by	V=S2L.	One	notices	that	the	centrifugal	

stress	tensor	is	symmetric,	and	is	therefore	unable	to	correct	stress	tensor	asymmetry.	

We	agree	on	this	point	with	Nicot	et	al.1	Eq.	S1-21	however	differs	from	the	

corresponding	term	in	Nicot	et	al.1	by	a	factor	of	1.5	(see	the	coefficient	
2
4G		in	front	of	the	𝐾VP𝛿ij	term	in	eq.	34	of	1,	as	compared	to	the		'G		coefficient	in	eq.	S1-21;	the	sign	is	

different	due	to	the	use	of	the	soil	mechanics	convention6	here	and	can	be	ignored).	

	

For	now,	we	find	ourselves	with	a	first	difference	compared	to	the	development	by	Nicot	

et	al.	1,	albeit	still	without	an	explanation	for	our	remaining	asymmetric	stress	tensor	

terms.	

	

Torque component 

	

Last,	but	not	least,	we	shall	examine	the	rotational	acceleration	component	of	the	stress	

tensor.	A	net	remaining	torque	T	on	a	given	particle	leads	to	rotational	acceleration:	

	 d𝜔d𝑡 = 𝑇𝐼 	
	

where	I	is	again	the	rotational	moment	of	inertia	around	the	appropriate	axis.		

	

This	in	turn	leads	to	tangential	acceleration	of	the	mass	elements:	

	 d𝐹tangential = d𝑉𝜌 ∙ 𝜔̇𝑟 = d𝑉𝜌 ∙ 𝑇𝐼 𝑟	
	

Explicit	averaging	of	the	fundamental	stress	tensor	expression	(dyadic	product	of	force	

and	point	of	attack	vector	relative	to	measurement	volume1)	for	this	case	leads	to:	

	 < 𝜎tangential >= 1𝑉Kd𝐹⃗tangential 𝑟⃗+ = 1𝑉Kd𝑉𝜌 ∙ 𝜔̇ &−𝑟sin𝛼𝑟cos𝛼 ' (𝑟cos𝛼 𝑟sin𝛼)	
< 𝜎tangential >= 𝜌 ∙ 𝜔̇𝑉 K K 2𝜋𝐿𝑟d𝑟∙𝑟2 &−sin𝛼cos𝛼 −sin2𝛼cos2𝛼 sin𝛼cos𝛼' 𝑑𝛼bc2#

bcA

=

.cA
=	
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< 𝜎tangential >= 𝜌 ∙ 𝜔̇𝑉 k 0 −1 2⁄1 2⁄ 0 lK 2𝜋𝐿d𝑟∙𝑟4=

.cA
=	

< 𝜎tangential >= 𝜌 ∙ 𝜋𝜔̇𝐿𝑅<4𝑉 &0 −11 0 '	
	

with	the	definition	of	the	moment	of	inertia	(𝐼 = #"d=%
2 )	as	before25,	we	obtain:	

	< 𝜎tangential >= +
2G &0 −11 0 '	 eq.	S1-22	

	

As	for	the	spherical	case1,	the	net	torque	is	equivalent	to	an	anti-symmetric	stress	tensor	

component.	The	overall	stress	tensor	can	now	be	evaluated	(eq.	S1-18	to	S1-22):	

	〈𝜎〉 = '
G∑ 𝐹⃗H7/ 𝑙H7/+ + '

G∑k−𝐾 −𝑇 2⁄𝑇/2 −𝐾 l	 eq.	S1-23	

	

where	T	designates	the	total	net	torque	acting	on	each	particle,	while	K	designates	the	

spin	kinetic	energy	of	each	particle1.	By	comparison	to	eq.	34	of	1,	we	again	find	a	factor	

of	1.5.	

7.2. Symmetry of the stress tensor 

	

Eq.	S1-23	differs	from	the	one	reported	by	Nicot	et	al.(eq.	34	of	1)	by	a	factor	of	1.5	for	

the	second	right	hand	term.	This	difference	has	the	potential	to	address	the	asymmetry	

of	the	stress	tensor	evaluation,	since	it	also	affects	asymmetric	off-diagonal	terms.	

	

First,	we	however	have	to	address	a	question	of	interpretation	arising	from	the	form	of	

eq.	S1-23.	The	spin	kinetic	energy	K	is	an	internal	property	of	each	particle,	but	how	

should	the	torques	be	calculated?	Should	it	be	only	internal	torques,	in	analogy	to	the	

internal	forces	giving	rise	to	the	Love-Weber	stress	tensor?	Or	should	it	be	total	net	

torques	acting	on	each	particle,	including	torques	transmitted	across	the	system	

boundary	(as	one	may	implicitly	assume	from	eq.	S1-23)?		

	

7.2.1. Model system of two frictional particles 

	

Hence,	we	further	check	the	general	development	leading	to	eq.	S1-23	in	a	simple	

configuration:	two	particles	interacting	by	friction.	This	allows	to	validate	eq.	S1-23	with	

respect	to	the	factor	1.5	difference	regarding	the	homologous	expression	in	the	

literature	.(eq.	34	of	1)	and	possibly	also	to	answer	the	question	whether	strictly	internal	

or	total	torques	should	be	taken	into	account.	

	

In	our	system	of	two	identical	particles	interacting	by	frictional	forces,	let	us	assume	

that	the	first	particle	is	located	on	the	origin,	and	the	second	particle	at	an	arbitrary	

position:		

	 𝑟' = &00' , 𝑟⃗2 = &𝑟Q𝑟e'	
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Due	to	the	translational	invariance	that	stress	tensor	must	display,	this	particular	choice	

of	the	origin	does	not	affect	generality.	Friction	leads	to	a	tangential	couple	with	

magnitude	FT	perpendicular	to	the	direction	𝑟2	(counterclockwise	rotation,	so	positive	
FT	pointing	along	the	direction	&−𝑟e𝑟Q '.)	In	the	simulation,	the	tangential	forces	would	be	
reported	to	the	centers	of	the	spheres	(see	Fig.	S1-2),	to	that	this	would	give	rise	to	an	

asymmetric	Love-Weber	tensor	(eq.	S1-19):	

	

	〈𝜎"F〉 = '
Gn𝐹+ ∙ &−

.&
|.⃗!|'𝐹+ ∙ & .'|.⃗!|' o (𝑟Q 𝑟e) = !(

G n−
.'.&
|.⃗!| − .&!

|.⃗!|
.'!
|.⃗!|

.'.&
|.⃗!|

o	
The	only	condition	where	〈𝜎"F〉	is	symmetrical	is	if	rx	and	ry	are	both	equal	to	0.	This	
however	leads	to	undefined	fractions	and	is	in	any	case	physically	impossible	as	it	

means	that	the	two	spheres	occupy	a	single	position	in	space.	This	confirms	the	well-

known	asymmetry	of	〈𝜎"F〉	1.	
	

Can	the	asymmetry	of	〈𝜎"F〉	be	corrected	by	the	inertial	term	proposed	by	eq.	S1-22?	
The	answer	should	be	yes1.	Conservation	of	angular	moment	implies	that	we	have	a	total	

compensatory	torque	𝑇 = −𝐹+|𝑟2|;	the	exact	distribution	of	the	total	torque	onto	the	
two	interacting	particles	is	not	important	in	this	context.	Disregarding	〈𝜎centrifugal〉	,	
which	does	not	contribute	to	correction	of	stress	tensor	asymmetry,	the	overall	stress	

tensor	reads:	

	

〈𝜎〉 = 〈𝜎"F〉 + 〈𝜎tangential〉 = 𝐹+𝑉 ⎝
⎜⎛−

𝑟Q𝑟e|𝑟⃗2| − 𝑟e2|𝑟2|𝑟Q2|𝑟2| 𝑟Q𝑟e|𝑟2| ⎠
⎟⎞ − 𝐹+|𝑟2|2𝑉 & 0 1−1 0' =	

〈𝜎〉 = 〈𝜎"F〉 + 〈𝜎tangential〉 = 𝐹+|𝑟2|𝑉 ⎝
⎜⎛ − 𝑟Q𝑟e|𝑟2|2 − 𝑟e2|𝑟2|2 + 12𝑟Q2|𝑟2|2 − 12 𝑟Q𝑟e|𝑟⃗2|2 ⎠

⎟⎞	
	

Since	
.&!
|.⃗!|! + .'!

|.⃗!|! = 1,	we	can	further	write:	
	

〈𝜎〉 = 𝐹+|𝑟2|𝑉 ⎝
⎜⎛ − 𝑟Q𝑟e|𝑟2|2 −w1 − 𝑟Q2|𝑟⃗2|2x + 12𝑟Q2|𝑟⃗2|2 − 12 𝑟Q𝑟e|𝑟2|2 ⎠

⎟⎞ = 𝐹+|𝑟2|𝑉 ⎝
⎜⎛ − 𝑟Q𝑟e|𝑟⃗2|2 𝑟Q2|𝑟2|2 − 12𝑟Q2|𝑟2|2 − 12 𝑟Q𝑟e|𝑟2|2 ⎠

⎟⎞	
	

	indicating	successful	recovery	of	a	symmetrical	stress	tensor	as	it	ought	to	be.	This	

development	is	not	dependent	on	the	exact	particle	geometry,	suggesting	that	eq.	S1-22	

should	be	valid	regardless	of	exact	particle	geometry.	

	

For	the	simulation,	many	particle	interactions	take	place.	However,	since	the	sum	of	

symmetrical	tensors	remains	symmetric,	we	can	conclude	that	for	as	long	as	we	include	

only	the	internally	generated	moments	and	forces	into	the	calculation	of	the	overall	
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stress	tensor	as	defined	by	eq.	S1-23,	the	result	should	be	symmetrical.	The	Love-Weber	

expression	takes	explicit	care	not	to	include	externally	applied	forces;	the	development	

here	implies	that	the	same	should	be	done	regarding	the	torques,	only	torques	

exchanged	by	the	particles,	but	not	torques	delivered	externally	should	be	taken	into	

account:	

	〈𝜎〉 = '
G∑ 𝐹⃗H7/ 𝑙H7/+ + '

G∑k −𝐾 −𝑇H7/ 2⁄𝑇H7//2 −𝐾 l	 eq.	S1-24	

	

Taking	this	precaution,	together	with	distribution	of	internal	torques	that	strictly	

conserve	angular	momentum	(eq.	S1-3)	should	allow	to	retrieve	a	symmetric	stress	

tensor	via	eq.	S1-24.	

	

7.2.2. Comparison to Nicot et al.1 

	

The	analysis	of	the	two-particle	system	given	above	suggests	that	eq.	S1-24,	and	not	its	

reported	variant	in	the	literature	(eq.	34	of	1)	should	be	correct.	The	question	is	then	

why	there	should	be	such	a	difference.	Our	development	suggest	that	eq.	S1-24	is	

independent	of	particle	geometry,	but	precaution	still	indicates	that	we	should	examine	

the	proper	spherical	3D	case	at	the	heart	of	the	developments	by	Nicot	et	al.1	

	

So,	we	re-evaluated	the	entire	calculation	by	Nicot	et	al.	1	to	identify	a	probable	cause	for	

the	difference	in	the	final	result.	While	the	general	developments	in	1	seem	correct	to	

within	the	limits	of	their	various	underlying	conditions,	we	eventually	found	a	probable	

integration	mistake.	Indeed,	Nicot	et	al.	1	define	a	particle	inertia	matrix	by	(text	

between	eq.	25	and	eq.	26	in	1):	

	𝜒HhP = ∫ 𝜌𝑟H𝑟hd𝑉G) 				

	

For	reasons	of	symmetry,	𝜒HhP 	is	diagonal	with	identical	elements	for	a	spherical	particle1.	
Using	the	notation	in	1	(indexation	by	i	and	j	for	the	3	cartesian	coordinate	elements	x,	y,	

z	in	3D;	𝛿	being	the	3x3	identity	matrix;	and	rp	the	particle	radius),	the	integration	
leading	to	eq.	29	should	be:	

	

𝜒HhP = 𝛿Hh ∙ 𝜌 K 𝑥2d𝑥d𝑦d𝑧
G)

= 𝛿Hh ∙ 𝜌K K K 𝑥2d𝑥d𝑦d𝑧Qci.)!(e!(0!

Qc(i.)!(e!(0!
eci.)!(0!

ec(i.)!(0!
0c.)
0c(.)

	

= 2 ∙ 𝜌3 𝛿HhK K |𝑟P2 − 𝑦2 − 𝑧2}4 2⁄ d𝑦d𝑧eci.)!(0!

ec(i.)!(0!
0c.)
0c(.)

	

with:	 𝑎 = Q𝑟P2 − 𝑧2	
we	have:	

	 = 2 ∙ 𝜌3 𝛿HhK K (𝑎2 − 𝑦2)4 2⁄ d𝑦d𝑧ecS

ec(S

0c.)
0c(.)
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= 2 ∙ 𝜌3 𝛿Hh ∙ 38K 𝑎< ∙ |sin('(1) − sin('(−1)}d𝑧 =0c.)
0c(.)

	

= 𝜋 ∙ 𝜌4 𝛿HhK |𝑟P2 − 𝑧2}2d𝑧 =0c.)
0c(.)

	

= 𝜋 ∙ 𝜌4 𝛿Hh w2𝑟PC − 4𝑟PC3 + 2𝑟PC5 x = 4𝜋 ∙ 𝜌 ∙ 𝑟PC15 𝛿Hh 	
	

	

Since	the	particle	mass	for	a	sphere	is	given	by:	

	

𝑚P = 4𝜋 ∙ 𝜌 ∙ 𝑟P43 	

we	finally	have:	

	

𝜒HhP = 𝑚P ∙ 𝑟P25 𝛿Hh 	
	

Compared	to	eq.	29	in	Nicot	et	al.1,	there	is	indeed	a	factor	of	1.5	of	difference,	since	

Nicot	et	al.1	indicate	𝜒Hh,jklmnP = 2o)∙.)!
'C 𝛿Hh 	.	

	

We	are	thus	lead	to	think	that	in	the	report	by	Nicot	et	al.	1,	an	integration	error	

happened	when	evaluating	the	inertia	matrix	𝜒HhP 	for	spherical	particles;	this	introduced	
the	discrepancy	between	eq.	S1-23	and	its	homolog	reported	by	Nicot	et	al.(eq.	34	of	1).	

While	this	does	not	affect	the	overall	development	and	conclusions	in	Nicot	et	al.1,	it	

causes	an	error	for	the	important	case	of	spherical	microgel	suspensions.		

	

In	our	simulations,	once	we	implemented	eq.	S1-24	instead	of	eq.	34	of	1,	the	asymmetry	

errors	dramatically	dropped	to	relative	levels	on	the	order	of	10-14	to	10-17,	compatible	

with	residual	imprecision	due	to	representation	of	numbers	by	a	finite	amount	of	digital	

memory.	

	

	

7.3. Shear stress 

	

Once	the	stress	tensor	calculated,	the	relevant	shear	stress	is	evaluated	easily.	It	is	the	𝜎Qe	component	of	the	stress	tensor.	In	analogy	to	rheometry,	we	measure	the	external	
applied	force,	so	that	the	relevant	shear	tension	is:	

	𝜏Qe(𝑡) = −𝜎Qe(𝑡)			 eq.	S1-25	

	

As	outlined	in	7,	the	storage	G’	and	loss	moduli	G’’	can	be	obtained	by	demodulation	of	

the	time-dependent	shear	stress	𝜏(𝑡).	
	

We	evaluate	𝜏Qe(𝑡)	using	both	the	〈𝜎〉	and	〈𝜎-Q/-.7SU	W9.T-〉	expressions	(eq.	S1-24,	eq.	S1-
16).	〈𝜎-Q/-.7SU	W9.T-〉	represents	external	measurement	possibilities,	while	〈𝜎〉		is	fully	
compensated	for	internal	inertial	effects	and	thus	expected	to	be	perfectly	symmetric	as	
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it	ought	to	be	for	a	stress	tensor1.	We	used	the	two	expressions	to	qualitatively	assess	

whether	the	simulation	was	run	at	sufficiently	low	oscillatory	frequency	for	the	desired	

amplitudes.	In	general,	we	aimed	at	a	difference	between	the	associated	𝐺 = +𝐺p2 + 𝐺′′2	
values	of	no	more	than	30%;	at	low	and	moderate	deformations,	we	more	typically	

achieve	differences	below	10%.	
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3. Software installation 
 

3.1. Overview 

 

We implemented the numerical simulation in Python1,2. We organized the code as installable 

package Python “particleShear”. This package contains a set of Python classes allowing to 

model various particles and particle assemblies. The package also provides preconfigured 

simulations with shear experiments. This section describes installation of the software 

package.  
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3.2. Installation 

 

3.2.1. Python 

 

The package particleShear was tested with Python 3.5.0 and Python 3.7.0 and should run 

with these versions or above. It uses the graphical interface Tkinter, and care should be taken 

to install a distribution of Python that includes Tkinter.  

 

3.2.2. Pre-requirements 

 

The package particleShear uses the libraries math, random, io and pathlib, which are all part 

of the standard distribution of Python. The unit tests also require unittest, which is also part 

Python’s standard distribution. 

 

The package particleShear needs the PIL module for image handling. This module is available 

by installing the Pillow package. The particleShear package states this dependency in its setup 

file, and therefore, installation of the particleShear package should normally trigger the 

installation of Pillow. If not, it can be installed separately (see below).  

 

For file-saving as jpg images, the Ghostscript application (executable independent of Python) 

may also need to be installed and configured on the search PATH of the operating system. 

 

The Pillow package is freely available for download, and is typically installed by an 

automatic installer such as pip. An example command on MacOSX to install Pillow would be: 

 
python –m pip install Pillow 

 

Alternatively, if using an integrated development environment such as Pycharm, packages 

such as Pillow will need to be installed specifically in these environments. 

 

3.2.3. Package installation 

 

The package particleShear can be installed using Python’s default installer “pip”. With the 

advent of Python3, the file name of the actual executables has become a bit variable, such that 

the installation commands also vary a bit depending on the installation. Typically, they can 

be: 

 
pip3 install particleShear 

 

or  

 
pip install particleShear 

 

or 

 
python3 -m pip install particleShear 

 

or 
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python -m pip install particleShear 

  

In our experience, the python -m pip or python3 -m pip commands are safer 

because especially in systems that have seen multiple python updates, the pip or pip3 

executables install the packages to places that cannot always be found by the python or 

python3 executables… 

 

The install commands above look for the most recent suitable version on the python package 

index server pypi (https://pypi.org/search/?q=particleShear). This means that by using the 

above commands, you will install the most recent version of particleShear. 

 

For reproducibility purposes, it may be interesting to install the particleShear package version 

used for this CodeOcean capsule. It is available on Zenodo 

(https://doi.org/10.5281/zenodo.4589212 ). To install this reference version, download the zip 

(“particleShear-v1.0.2.zip”) from Zenodo, and unzip it. An example command on MacOSX to 

install the package particleShear would be: 

 
python –m pip install /path/to/unzippedfilecontents/ tbgitoo-
particleShear-0bb216a 

 

with /path/to/unzippedfilecontents path part to be replaced by its actual value, 

which depends on where you downloaded the file and the operating system. 

 

Again, other standard python package installation mechanisms are also suitable, as for any 

other Python package. 

 

4. Package usage 
 

4.1. Basic usage 
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Fig. S2-1: Screenshot from a running simulation. The simulation was launched from a python 

interpreter running in a MacosX terminal; the text output is seen in the background. Two 

graphical windows are shown by default: a first window displaying the particles and 

interfaces being simulated (top window), and a second window displaying strain excitation 

and stress measurement during rheology. 

 

The package can either be used as a high-level interface to the simulation, or as an API to 

program specific derived simulations, additions or corrections. 

 

The most basic usage consists in explicitly invoking high-level functions of the package in a 

Python shell. For this, a python interpreter is launched, for instance via the command: 

 
python 
 

or 
 
python3 

 

depending on your installation. In the Python shell line environment, the particleShear 

package needs to be imported via: 

 
from particleShear import * 
 

Having imported the package, a simulation with default parameters can be launched via: 

 
doParticleShearSimulation() 
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This launches a simulation with graphical display (Fig. S2-1), so the particle ensemble should 

be shown rapidly on a graphical popup window. Once pre-equilibration of the particle 

ensemble is completed, a second graphical display should pop up, displaying the rheology 

measurement. Green is excitation amplitude, blue is shear stress (eq. S1-25 from) as measured 

by external force (eq. S1-16) and red is shear stress (eq. S1-25) as measured by overall stress 

tensor tensor (eq. S1-24). The shear measurements consists in a baseline period to validate 

ensemble equilibration without deformation, followed by 3 cycles of sinusoidal excitation, 

followed by a second baseline period to follow re-equilibration. At the end of the simulation, 

G’ and G’’ values are determined by demodulation3 using the shear stresses from both tensors 

and displayed in the Python command line environment. By default, the simulation and 

rheological evaluation are displayed graphically, but no data is saved. To save data, or 

images, as well as to change the parameters of the simulation, specific options need to be 

passed to the function doParticleShearSimulation (see Simulation options below). 

 

Alternatively, rather than running the commands directly from the command line, python 

scripts (text files with the extension .py) are more typically used. Such a .py file needs to 

contain at least the import statement to make the package functionality available, and a 

function call to make the simulation run. 

 

4.2. Simulation options 

 

In high-level usage, the options of the simulation are passed to 

doParticleShearSimulation in the form of named parameters. For instance, to run 

the simulation with general default options, but a particle Young modulus of 20kPa instead of 

the default 8kPa, one would invoke doParticleShearSimulation via the Python 

commands: 

 
from particleShear import *   
doParticleShearSimulation(Young_modulus_spheres=20000) 
 

The full list of parameters, along with their description and default value is given in Table S2-

1. Here, we investigated the effects of only a subset of these parameters, this is documented in 

the “Varied here?” column in Table S2-1.  

 

Parameter Defaul

t  

Varied 

here? 

Description 

root_folder "" Yes (to 

save data 

locally) 

Folder location for storing output 

data. Needs to be provided only 

if saveOutputImages or saveData 

are set to True  

theAmplitude 0.2 Yes 

(various 

values) 

Strain amplitude for the 

oscillatory excitation. Provided 

in absolute value, not percent, so 

for instance 0.5 = 50% 

theMu 0.01 Yes 

(various 

values) 

Friction coefficient μ for the 

geometrical contacts between the 

spheres 

do_permanent_links True Yes 

(compariso

Indicates whether there should 

be permanent links between 
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n between 

crosslinked 

and non-

crosslinked

) 

neighboring particles. Providing 

False runs a simulation with 

spherical particles only as in 

Otsuki et al.3 

cut_lines 5 Yes (0 for 

bulk 

scaffold) 

Main parameter for particle 

generation by placing cuts 

through the permanently 

crosslinked network. Use 

depends on the value of 

doCutByTriangulation: If 

doCutByTriangulation is True, 

this indicates the number of 

triangulation points used to 

generate the particles; if 

doCutByTriangulation = False, 

indicates the number of straight 

cutting lines used for particle 

generation  

Young_modulus_spheres 8000 Yes (for 

comparison

) 

Young modulus of the 

constituent spheres, in Pa 

N 150 No The number of spheres to be 

placed in the simulation area 

packing_fraction 1.5 Yes 

(between 1 

and 2, for 

comparison

) 

The relative density of spheres, 

used in the calculation of their 

radius via eq. 14 

density 1000 No Density of the spheres, in kgm-3 

(approximately the density of 

water) 

bimodal_factor 1.4 No Ratio between the large spheres 

and the small spheres, we used 

the factor of 1.4 proposed by 

Otsuki et al.3 

relative_viscosity 0.1 No Viscosity constant relative to the 

one defined by Ostuki et al., 

which is	√𝑚𝑘 3. In other words, 

allows to set an arbitrary value 

for the coefficient in eq. 9 

relative_transversal_link_strength 1 No This is the ratio between the 

central spring constant k and the 

transversal spring constant kT. 

Otsuki et al.3 used k=kT, and so 

did we by using the default value 

of 1. 

relative_frequency 0.025 No Frequency for the oscillatory 

shear excitation, expressed 

relative to the characteristic 
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frequency 	𝑓 = !

"
= '𝑘/𝑚   

avoid_horizontal_angle_degree 15 No, but has 

no effect 

here 

Applicable only if 

doCutByTriangulation = False, 

allowing to avoid cuts too near 

to horizontal, which would 

create preferential shear planes  

interface_reenforcement_central 1 No Allows to adjust the relative k 

values of geometric vs. 

permanent interfaces 

interface_reenforcement_tangentia

l 

1 No Allows to adjust the relative kT 

values of geometric vs. 

permanent interfaces 

central_repulsion_coefficient 1 No Allows to adjust the strength of 

non-linear central repulsion. 1 

corresponds to the force law 

given by eq. 5b, 0 to the linear 

law given by eq. 5a and used in 

the simulation by Otsuki et al.3 

keep_viscosity_coefficients_const

ant 

False No, but has 

no effect 

here 

If 

interface_reenforcement_central 

or 

interface_reenforcement_tangent

ial are different from 1, should 

the η and ηT values be changed 

along with the k and kT values ? 

avoid_height_spanning_particles True No Only has an effect when 

do_permanent_links is True and 

cut_lines >= 1: When 

crosslinking the assembly into 

individual crosslinked particles, 

should we avoid particles 

spanning the entire height?  

cut_top_bottom False No Should we artificially place 

horizontal cuts near the top and 

bottom shear plates (to mimick 

wall slip)? 

saveOutputImages False Yes (to 

make 

illustrations

) 

Should snapshots of the 

simulation canvas be taken and 

stored on disk? 

imageFileType “jpg” Yes If saveOutputImages is True, 

should we save bitmap (jpeg, 

encoded by “jpg”) or vector 

(postscript, encoded by “ps”) 

images?  

remove_link_fraction 0 Yes (to 

emulate 

weaker 

internal 

After creation of crosslinked 

particles, should we remove a 

fraction of the crosslinks 

(removal of “non-essential” 
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crosslinkin

g by 

porosity) 

crosslinks only to keep identity 

of particles)? If yes, a value > 0 

provides the target fraction that 

should be randomly removed 

edge_fuzziness 0 No Possiblity to make the particle 

edges less straight 

doCutByTriangulation True No Particles are produced by first 

fully crosslinking the 

neighboring spheres, followed 

by “cutting” into individual 

particles. Two methods are 

available: cutting by straight 

lines, or by triangulation 

between randomly assigned 

particle centers (this option is 

chosen by 

doCutByTriangulation=True) 

doDrawing True Yes (to run 

on cluster 

where 

graphical 

display 

causes the 

scripts to 

crash) 

Possibility to switch on or off 

graphical display of the spheres 

and interfaces during simulation 

saveData False Yes (to 

store 

output 

data) 

Save simulation description and 

output data in text file 

saveStressTensorData True Yes (to 

store stress 

tensor 

output or 

not) 

Only has an effect if 

saveData=True. Indicates 

whether detailed stress tensor 

data should be saved in addition 

to summary output data 

plotStress True Yes (to run 

on cluster 

where 

graphical 

display 

causes the 

scripts to 

crash) 

Should strain excitation 

amplitude and shear force 

response be displayed 

graphically? 

relative_y_scale_force 1e-4 No To adjust the y-scaling of the 

shear force to match the 

graphical display 

pre_periods 2 No How long (relative to one 

excitation period = 1/f) should 

baseline be recorded before 

starting to apply shear? 

periods 3 No How many shear periods should 
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be recorded? 

post_periods 1 No How long (relative to one 

excitation period = 1/f) should 

baseline be recorded after the  

shear excitation experiment? 

cool_factor 0.5 No Dissipation of speed relative to 

interstitial fluid: Decay factor 

per excitation period of linear 

speed in excess to anticipated 

local flow rate (see section 

Damping) 

 

Table S2-1. Simulation parameters. These parameters are the named parameters of the 

function doParticleShearSimulation. The simulation area is currently fixed to a default 

of 500x500 micrometers = 500x500 in the high-level function 

doParticleShearSimulation, although it can be changed in the actual particle ensembly 

classes (see Part 3).  

 

4.3. Custom contact laws 

 

4.3.1. Built-in contact laws 

 

Adjustment of the contact force law (see Part 1, Fig. S1-3) between the spheres is possible via 

the argument central_repulsion_coefficient passed to 

doParticleShearSimulation. This allows to adjust the strength of the additional central 

repulsion relative to the simple linear law (see Table S2-1). The contact force law concerns 

only the elastic, not the viscous part of the sphere-sphere interactions. 

 

4.3.2. Arbitrary contact laws 

 

Beyond the built-in default contact law described above, it is also possible to provide custom 

contact laws via a function callback mechanism. 

 

For this, it is necessary to set necessary to set the static class field 

CircleBasicElasticity.call_back_elastic_force_law. This field should 

be set to a function providing the force between pairs of spheres during the simulations. 

Indeed, this function will be called for each relevant pair of spheres with four arguments, in 

order: 

1) The	actual	distance	between	the	centers	of	two	spheres	(d)	

2) The	equilibrium	distance	between	the	two	spheres	(d0)	

3) The	spring	constant	k	for	contact	link	between	the	two	spheres	(k)	

4) The	central	repulsion	coefficient	for	contact	link	between	the	two	particles	

(central_repulsion_coefficient)	

The callback function is expected to return the numerical value of the force between the 

particles, positive values indicating attraction, negative values indicating repulsion. 
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By default, CircleBasicElasticity.call_back_elastic_force_law is set to 

the function elastic_force_law. This function is defined in 

particleShearBase/CircleBasicElasticity.py (accessible at 

https://github.com/tbgitoo/particleShear) and can serve as an example to implement new 

custom contact law functions. 

 

4.3.3. Predefined non-standard contact laws 

 

For the purpose of simulation of highly compressible, sponge-like particles with a plateau 

force law (see /code/Documentation/CodeOceanOnlyResults/CodeOceanOnlyResults.pdf, 

section 7), we implemented a convenience function that can be used instead of the default. 

This function is elastic_force_law_plateau, it is defined in 

particleShearBase/CircleBasicElasticity.py (see https://github.com/tbgitoo/particleShear). 

 

To use this alternate force law, set the callback function prior to running the simulation: 

 
CircleBasicElasticity.call_back_elastic_force_law=elastic_forc
e_law_plateau 

 

As the callback function is limited to four arguments at usage, we also provide a configuration 

class for fine-tuning the plateau law. This class is PlateauConfiguration , it is also 

defined in particleShearBase/CircleBasicElasticity.py. This class has three static members (it 

is not meant to be instantiated as an object), namely relative_plateau_begin, 

relative_plateau_end and relative_plateau_slope. Collectively, these three 

members set the plateau behaviour to be employed: the first two parameters set the beginning 

and end of slope (0=full compression, 1=particles just in contact, generally with 

0<relative_plateau_begin<=relative_plateau_end<1. The parameter 

relative_plateau_slope describes the decrease of the slope on the plateau relative to 

a simple linear law, 0 indicating a completely horizontal plateau, 1 being no change (that is, 

with relative_plateau_slope=1,  elastic_force_law_plateau becomes 

equivalent to the default function elastic_force_law. Note that  

elastic_force_law_plateau incorporates enhanced central repulsion, just like 

elastic_force_law does. 

 

4.4. Display during simulation 

 

The simulation can be configured to produce different kinds of output depending on the 

options passed to doParticleShearSimulation (see Table S2-1).  

 

By default, the simulation displays the particle ensemble during simulation and plots the 

strain and stress (options doDrawing=True and plotStress=True). If necessary, this 

graphical display can be switched off by passing False for the two options. 

 

4.5. Image saving  

 

By default, the simulation does not write image files to disk. Image saving can however be 

enabled by passing saveOutputImages=True to doParticleShearSimulation. For 
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this to work, the root_folder argument must be set to some existing folder where the 

images can be stored on disk. The simulation will then create a sub-folder for the images in 

the folder designated by root_folder, and save a series of snapshots taken at 200 

regularly spaced time-points during the simulation. Snapshots are only taken during the actual 

rheological shear protocol: baseline as determined by the pre_periods option, oscillatory 

excitation as determined by the periods option,  and post-excitation recovery as determined 

by the post_periods option, according to Table S2-1. No snapshots are taken during 

ensemble constitution and pre-equilibration before the baseline period. Since the images 

saved are actual snapshots of the graphical display, graphical display must be enabled for 

image saving (option doDrawing=True). 

 

4.6. Saving output as text 

 

 
Fig. S2-2. General structure of text output files generated by the simulation. Only the first few 

lines of the stress tensor output are shown. 

 

Besides images, the simulation can also be configured to store the main parameter and output 

information in an ASCII text file (Fig. S2-2). To do so, the saveData option should be 

passed as saveData=True to doParticleShearSimulation. As for image saving, the 

root_path argument should be set to a folder where the text file can be stored. 

 

If saveData=True and root_path points to a folder where the simulation can store 

files, it will create a text file and store both the simulation description and output data. The 

further behavior depends on the value of saveStressTensorData. If 

saveStressTensorData=False, the simulation will only save the simulation 

parameters and the primary output values, producing a relatively short file, whereas if 

saveStressTensorData=True, various stress tensor values will be saved at all the 

simulation time-point, leading generally to file sizes in the lower Megabyte range (Optional 

stress tensor output, Fig. S2-2). The input values given to doParticleShearSimulation 
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(Table S2-1) are recapitulated in the ensemble summary, function call and ensemble modeling 

section. The ensemble modeling section also contains model-derived simulation parameters 

such as the spring and viscosity constants used to model the particle interactions (see Fig. S1-

1 and Part 1 in general). 

 

The primary output values are described in more detail in Table S2-2. 

 

Designation in text 

file 

Description Units 

In phase stress Shear stress 𝜏#$ (eq. S1-25), evaluated from 

symmetrical overall stress tensor (eq. S1-24); 

demodulated by excitation amplitude (in-phase part) 

Pa (indicated 

in text file) 

Out of phase stress Shear stress 𝜏#$ (eq. S1-25), evaluated from 

symmetrical overall stress tensor (eq. S1-24); 

demodulated by excitation amplitude (out-of-phase 

part) 

Stress Total stress from the in- and out-of-phase 

componentas: '(in	phase)% + (out	of	phase)% 

G’ G’ as in-phase value by demodulation from 𝜏#$ (eq. 

S1-25), evaluated from symmetrical overall stress 

tensor (eq. S1-24); see eq. 15 of Otsuki et al.3 for the 

demodulation  

G’’ G’’ as out-of-phase value by demodulation from 𝜏#$ 

(eq. S1-25), evaluated from symmetrical overall stress 

tensor (eq. S1-24); see eq. A1 of Otsuki et al.3 for the 

demodulation 

G’(by surface 

force) 
G’ as in-phase value by demodulation from 𝜏#$ (eq. 

S1-25), evaluated from the external force stress tensor 

(eq. S1-16); see eq. 15 of Otsuki et al.3 for the 

demodulation 

G’’(by surface 

force) 
G’’ as out-of-phase value by demodulation from 𝜏#$ 

(eq. S1-25), evaluated from the external force stress 

tensor (eq. S1-16); see eq. A1 of Otsuki et al.3 for the 

demodulation 

  

Table S2-2. Primary simulation output values in the output text files. If saveData=True is 

passed to doParticleShearSimulation, a text output file will be saved to disk in the 

folder designated by the root_path argument. The global structure of the text file is shown 

in Fig. S2-2. This tables contains the primary output fields (see Fig. S2-2 for the localization 

of the primary output section in the text file).  

 

If saveStressTensorData=True is passed, both the simulation overview and the 

detailed stress tensor values as a function of time are saved. 

 

Table S2-3 contains a detailed description of the stress tensor fields stored in the text file if 

saveStressTensorData=True. 

  

Designation in text 

file 

Description Units 
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index Index starting at 0 at the outset of the oscillatory shear 

experiment (that is, after ensemble pre-equilibration, for 

which no values are stored) 

- 

t Time from the outset of the oscillatory shear experiment s 

strain Applied strain. No strain is applied during baseline acquisition 

(see argument pre_periods in Table S2-1), followed by a 

oscillatory shear period (see argument periods in Table S2-1), 

followed again by a period with out applied shear movement 

(see argument post_periods in Table S2-1). Strain is given as 

absolute values, (so, not in percent). 

- 

strain_rate Momentaneous rate of change of the strain (d(strain)/dt)  s-1 

stress_measured_at_

surface 
Instantaneous shear stress value 𝜏#$ (eq. S1-25), evaluated 

from the external force stress tensor (eq. S1-16) 

Pa 

shear_stress_internal

_stress-tensor 
Instantaneous shear stress value 𝜏#$ (eq. S1-25), evaluated 

from symmetrical overall stress tensor (eq. S1-24) 

Pa 

stress_tensor_Love_

Weber_00 to 

stress_tensor_Love_

Weber_11 

4 columns for the Love-Weber4,5 stress tensor (eq. S1-19)  Pa 

stress_tensor_peculi

ar_acceleration_otsu

ki_00 to 

stress_tensor_peculi

ar_acceleration_otsu

ki_11 

4 columns for the inertial compensation stress tensor proposed 

by Otsuki et al. (last right-hand term in eq. 15 of ref. 3) 

Pa 

stress_tensor_from_

external_forces_00 

to 

stress_tensor_from_

external_forces_11 

4 columns for the stress tensor as evaluated from external 

forces (eq. S1-16) 

Pa 

stress_tensor_linear

_acceleration_00 to 

stress_tensor_linear

_acceleration_11 

4 columns for the linear acceleration stress tensor (eq. S1-17) Pa 

stress_tensor_unbala

nced_linear_forces_

00 to 

stress_tensor_unbala

nced_linear_forces_

11 

4 columns for the unbalanced linear force stress tensor; we do 

not consider gravity, so this should be equal to the linear 

acceleration stress tensor (eq. S1-17) 

Pa 

stress_tensor_tangen

tial_torque_00 to 

stress_tensor_tangen

tial_torque_11 

4 columns for the unbalanced torque stress tensor, taking into 

account internal and external torques (last right-hand term for 

eq. S1-23, for K=0 for all particles) 

Pa 

stress_tensor_intern

al_tangential_torque

_00 to 

stress_tensor_intern

al_tangential_torque

4 columns for the internal unbalanced torque stress tensor, 

taking into account only internal torques (last right-hand term 

for eq. S1-24, for K=0 for all particles) 
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_00   

stress_tensor_centrif

ugal_00 to 

stress_tensor_centrif

ugal_11 

4 columns for the centrifugal acceleration stress tensor (last 

right-hand term for eq. S1-24, for Tint=0 for all particles) 

Pa 

stress_tensor_overal

l_00 to 

stress_tensor_overal

l_11 

4 columns for the overall symmetric internal stress tensor (eq. 

S1-24). The second and third column should be identical. 

Pa 

  Table S2-3. Stress tensor output values in the output text files This tables contains the 

primary stress tensor output fields (see Fig. S2-2 for the localization of the stress tensor 

output section in the text file). The stress tensor output fields are only saved if 

saveStressTensorData=True is passed to doParticleShearSimulation.  

 

5.  Replication instructions 
 

For the purpose of verification, but also potential future developments by others, we give the 

full replication instructions for our simulations here (Table S2-4 below). At present (2021) 

this requires the use of a cluster (total ca. 30’000 CPU hours). These simulations were run at a 

historical development stage with manual install of both Python and R evaluation libraries. 

We highly recommend the use of the present, automated distribution but provide this 

information for the purpose of reproducibility. The necessary historical files can be found at 

https://doi.org/10.5281/zenodo.2653804.   

 

If you are looking to run a few simulations locally for demo purposes or to start your own 

developments, please refer to the Quick Install Guide on the CodeOcean capsule (at 

/code/Documentation/Simulation particleShear/Quick install.pdf), the use of cluster is only 

necessary to replicate the large number of simulations run for the manuscript “An injectable 

meta-biomaterial”. If you’re interested in looking at the visual output, standard scenarios are 

provided as Supplementaries to “An injectable meta-biomaterial” but also in the results 

section showing the results of reproducible runs of this capsule (see /results/Simulation 

demo/), since each reproducible run actually runs the a few simulations. 

 

Ideally, running the complete set of simulation takes little human effort, but there are a 

number of requirements that will most certainly call for some time investment when 

transferring our simulations from the Baobab cluster (University of Geneva) to different 

cluster or even to a different account on the Baobab cluster. First, the Baobab cluster at the 

University of Geneva runs via the slurm workload manager6, if another job distribution utility 

is used or if this is done manually, then full reconfiguration is required. The mode of 

installation of Python and Python modules can be another source of cumbersome problems if 

not offered by default by the cluster. Finally local file paths need to be adapted in numerous 

files (this might be itself best be done with scripts on the full scale). 

  

So while very little human effort is required to run simulations once everything is configured, 

the configuration of the cluster environment itself, and adaptation of paths in various files 

may take a few days.  
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Step Computati

on / 

human 

effort 

Details Paths, files, comments 

 

1) Copy files 

to cluster 

environment 

10 

minutes  

Transfer of the 

Python module 

particleShear and 

the custom 

python scripts to 

run the 

simulations 

The steps to transfer the required files 

from the CodeOcean capsule to the cluster 

are described in 

/data/Raw/Simulation/cluster_setup/01_up

load_files.txt in this capsule 

 

Access to a linux cluster via ssh and file-

upload via scp is required. Other access 

modes are possible but the commands 

obviously will need to be adapted. 

2) Python 

simulation 

10 min 

launch per 

round, ca. 

30’000 

CPU-

hours in 

total 

Running of 

particleShear 

simulation 

defined by a set 

of scripts 

The steps to setup up the simulation 

environment and launch simulations are 

described in  

/data/Raw/Simulation/cluster_setup/02_set

up_and_run.txt 

 

The simulation setup requires access to a 

linux cluster via ssh. It is mandatory that 

Python is installed or can be installed 

during simulation setup, and that custom 

Python modules as well as publicly 

accessible modules can be installed. It will 

most certainly be necessary to adapt the 

corresponding commands in 

/data/Raw/Simulation/cluster_setup/02_set

up_and_run.txt for this.  

 

Running the simulations is at present done 

using the sbatch and srun utilities, which 

are part of the slurm workload manager 

system6 used. The exact configuration of 

the cluster job environment (partitions, 

time limits, …) will also need to be 

adapted (see and adapt 

/data/Raw/Simulation/cluster_setup/slurm

_job.sh) 

3) Recovery of 

output files 

Via 

wireless, 

ca. 24h 

Download ASCII 

output files 

generated by the 

simulations 

We use rsync commands for the download 

(provided here, see 

/data/Raw/Simulation/cluster_setup/03_do

wnload_results.txt) 

 

We ran the simulations block-wise 

(avoiding storage in the same primary 

output folders, see  

/data/Raw/Simulation/cluster_setup/02_set

up_and_run.txt) and recovered the 
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different blocks in different folders for 

manageability, but this is not strictly 

necessary for replication 

4) Installation 

of custom R 

libraries 

1h on 

laptop 

Installation of 

custom R libraries 

needed for 

analysis of the 

output files 

downloaded in 

step 3 

We use 4 historical R libraries for the 

analysis : plot.counts, probabilityUtils, 

textureAnalyzerGels, 

particleShearSimulation. Historical 

versions, at 

https://doi.org/10.5281/zenodo.2653804, 

“10 R libraries.zip” 

5) Splitting of 

output files 

Overnight 

on laptop 

Splitting of 

ASCII files into 

small header 

ASCII and stress 

tensor data in 

large R-Data files 

For the sake of storage space, we did not 

keep the full text output files from the 

simulation (about 500GB), but split the 

simulations into a small text header file 

and a compressed rda file each, allowing 

to store the full data in 120GB. 

 

A complete workflow from primary 

simulation output to graphing is provided 

in this capsule at /code/Simulation 

demo/demo_evaluation, and it is probably 

easiest to adapt this workflow to new 

simulations. 

 

For documentation purposes, the splitting 

scripts (with local paths) are however 

available. The ones for the main 

simulation at our 2019 Zenodo repository: 

https://doi.org/10.5281/zenodo.2653804 

,“11 R Raw data reading.zip”, scripts in 

folders 

“Simulation/01_read_overview_do_not_ru

n”, then 

“Simulation/02_split_text_and_rda_do_no

t_run” 

For, these scripts need to be adapted 

regarding local file paths.  

 

Aside from the main simulations, for Fig. 

5e, we ran a second set of simulations with 

a plateau contact law to emulate higher 

porosity. These simulations were done in 

2020, and the splitting scripts are stored 

for reference in the capsule (at 

/data/Raw/Simulation/nonlinear_force_la

w/splitting_scripts, 

01_R_script_read_overview.R and 

02_R_script_split_text_and_R.R). As 

before, these scripts can only be run 

directly on the full text output of 
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simulations, and are provided for 

reference. 

6) Primary 

data reading 

Covered 

by 

reproducib

le run on 

CodeOcea

n. A few 

hours. 

Same if 

run locally 

on PC. 

Gathering 

overview files 

from the 

simulation output 

(split), and 

correction for 

“jumps” 

generated by 

spheres leaving 

and entering the 

simulation area in 

the Python 

simulations 

 Done during reproducible CodeOcean  

runs (R-scripts at /code/Data analysis/Data 

import/Simulation, for plateau law in 

/code/Data analysis/Data 

import/Simulation/nonlinear_force_law) 

7) Resampling 

for boot-

strapping 

analysis 

  

Covered 

by 

reproducib

le run on 

CodeOcea

n. A few 

minutes  

Resample for 

bootstrapping 

analysis of overall 

features of the 

stress-strain 

curves (Fig. 2f, 

Fig. 2g in the 

main text, online 

methods) 

Specifically, R-Script /code/Data 

analysis/Data 

import/Simulation/05_R_script_bootstrap.

R, applies only to main simulation. 

8) Figure 

plotting and 

statistical 

analysis 

Covered 

by 

reproducib

le run on 

CodeOcea

n. At most 

a few 

minutes 

per 

subfigure 

Replicate 

simulation figures 

and statistical 

analysis for the 

main text and 

supplementaries 

Scripts under /code/Data analysis  

Table S2-4. Replication instructions 

 

We provide replication instructions for various levels of replication, from full re-running of 

the simulations to replotting of the main results. The CodeOcean part (steps 6-8) is run 

automatically at each CodeOcean capsule “Reproducible Run”, ensuring reproducibility by 

desing. It can of course also be replicated and adapated locally after download of the contents 

of the CodeOcean capsule. However, unless directly downloaded to the system root in 

MacOSX or Linux (“/”), all the paths need to be adapted. 

 

5.1. Replication of the Python simulation 

 

The most complete, but most demanding approach regarding computing ressources is to re-

run the historical Python simulations to generate a new dataset. This is described in steps 1 to 

3 of Table S2-4 above. 
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5.2. Replication of raw data reading 

 

Replication of the full simulation is demanding in terms of computing power (ca. 30’000 CPU 

hours), and also generates a very large data volume (about 500GB). For this reason, the data 

was compressed prior to upload to the CodeOcean capsule (to about 120GB). This 

compression is achieved by transforming the large primary text output files to corresponding 

small header files and R-Data files (Steps 4-5 in Table S2-4). 

5.3. Replication of data analysis and Figure plotting 

 

Data analysis is carried out reproducibly within this CodeOcean capsule (Steps 6-8 in Table 

S2-4). This can be replicated locally after download of the CodeOcean capsule contents and 

adaptation of the file paths if desired. 
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Part	3:	Implementation	of	the	numerical	simulation	

1. Aim of Part 3 
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3. Overview 
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Figure	S3-1:	Design	of	the	simulation.	a)	shows	a	screenshot	of	a	simulation	with	“spheres”	

(circles)	arranged	on	a	canvas,	and	with	permanent	(blue)	and	non-permanent	(red	or	

green	according	to	slipping)	interaces.	b)	interaction	parameters	for	geometrically	

touching	spheres.	See	SI-1.	c)	Interaction	in	permanent	interfaces.	See	SI-1.	

	

Fig.	S3-1,	replicated	here	for	convenience	from	Part	1	shows	the	basic	layout	and	

principal	parameters	of	the	numerical	simulation.	We	implemented	this	simulation	in	a	

custom	Python	package,	to	be	able	to	extend	it	to	permanently	crosslinked	particles.	The	

simulation	combines	the	physical	framework	from	Otsuki	et	al.	1,	corrected	for	

conservation	of	angular	momentum,	with	the	stress	tensor	evaluation	framework	by	

Nicot	et	al.2,	with	additional	corrections	(Part	1).	

	

	

Knowledge	of	the	detailed	implementation	is	not	necessary	for	basic	usage	of	the	

package,	as	described	in	Part	2.	It	however	should	facilitate	both	checking	and	extension	

of	the	package	by	using	it	as	an	application	programming	interface.	

4. Package structure 
	

	
	

Figure	S3-2:	Structuring	of	the	particleShear	package.	a)	Hierarchy	of	the	modules	

contained	in	the	particle	shear	package.	Otsuki	et	al.	designates	reference	1.	b)	Associated	

folder	structure.		The	folders	corresponding	to	the	five	modules	listed	in	Fig.	S3-2a	contain	

python	source	code	files	defining	the	classes	of	each	module.	Here,	this	is	highlighted	for	

the	example	of	the	“OscillatoryShearExperiment”	class	in	the	module	

“particleShearSimulation”.	In	addition	to	the	actual	source	code	files,	there	are	also	some	

elements	required	for	installable	Python	packages.	First,	each	module	folder	contains	an	

__init__.py	file	necessary	specifying	the	publicly	accessible	elements.	The	folder	

Module particleShearObjects:

Non crosslinked ensembles, physical model

Module particleShearLinkableObjects:

Permanent crosslinking

Module particleShearSimulation:

Oscillatory shear

Module particleShearBase:

Definitions according to Otsuki et al.

Module particleShearRunSimulation:

High level interface

a) Modules b) Folder structure
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“particleShear”	contains	only	the	__init__.py	file.	Second,	there	is	a	setup.py	file	at	the	root	

of	the	package,	also	required	for	installable	Python	packages.	

	

The	python	scripts	in	the	particleShear	package	are	structured	into	5	modules,	as	shown	

in	Figure	S3-2a.	Each	module	provides	a	set	of	classes	and	sometimes	functions,	which	

can	be	imported	by	corresponding	import	statements.	For	instance,	the	high-level	

functions	are	located	in	the	particleShearRunSimulation	module,	so	it	is	also	possible	to	

launch	the	simulation	with	default	settings	by:	

	
from particleShearRunSimulation import * 
doParticleShearSimulation() 

 

At	the	folder	level	(Fig.	S3-2b),	each	of	the	modules	corresponds	to	its	own	subfolder	in	

the	package	directory,	and	has	its	own	source	code	files	(.py)	declaring	the	functions	and	

classes	associated	with	the	specific	module.	In	each	subfolder,	there	is	also	an	__init__.py	

file	declaring	the	functions	and	classes	available	through	the	import	statements.	The	

subfolder	«	particleShear	»	contains	an	__init__.py	file,	but	no	other	.py	files;	its	goal	is	to	

enable	the	global	import	statement	:	

	
from particleShear import * 

	

importing	the	public	classes	from	all	five	modules.	

	

The	module	hierarchy	shown	in	Fig.	S3-2	is	reflected	in	the	dependencies	:	a	module	

depends	on	the	modules	below	it,	but	not	the	ones	above.	For	instance,	the	classes	in	

particleShearLinkableObjects	inherit	directly	or	indirectly	from	classes	in	

particleShearObjects	and	particleShearBase.	On	the	other	hand,	they	do	not	depend	on	

elements	in	particleShearSimulation	or	particleShearRunSimulation.		
 

5. Class hierarchy 
	

We	next	describe	the	class	hierarchy	underpinning	the	Python	implementation	of	the	

particle	simulations	provided	here.	Each	class	is	physically	located	in	a	Python	file	

(extension	.py).	The	file	name	is	identical	to	the	class	name,	and	the	folder	where	it	is	

stored	within	the	package	is	given	by	the	module	name	(Fig.	S3-2b).	

5.1. Spheres 
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Fig.	S3-3.	Class	hierarchy	for	the	particle-objects.	Arrows	indicate	class	heritage,	the	colors	

code	for	the	modules	as	defined	in	Fig.	S3-2	and	indicated	in	the	legend.	

	

The	particleShear	package	contains	a	number	of	classes	modeling	the	interacting	

particle	objects	(“spheres”;	to	be	strict,	in	a	2D	simulation,	these	correspond	to	infinite	

cylinders,	shown	as	circles	in	horizontal	cross	section).	The	class	hierarchy	of	these	

particle	classes	is	shown	in	Fig.	S3-3.	The	particle	classes	describe	the	properties	of	the	

interacting	elementary	spherical	particles,	the	specificity	and	complexity	increasing	

through	the	class	heritage	diagram.	They	are	distributed	among	the	modules	

particleShearBase,	particleShearObjects,	and	particleShearLinkableObjects,	as	shown	in	

Fig.	S3-3.		

	

The	particle	classes	contained	in	particleShearBase	and	particleShearObjects	implement	

the	simulation	by	Otsuki	et	al.1,	with	improved	conservation	of	angular	momentum	(eq.	

S1-3	in	Part	1)	and	the	possibility	to	use	a	non-linear	enhancement	of	the	repulsion	at	

large	compression	(eq.	S1-5b).	The	particle	classes	in	particleShearLinkableObjects	

allow	the	addition	of	permanent	bonds	between	neighboring	particles.	

	

The	classes	named	“Circle…”	inherit	from	PointLeesEdwards.	These	classes	are	

therefore	all	capable	of	handling	the	shear-periodic	Lees-Edwards	boundary	conditions.	

They	are	however	also	able	to	handle	ordinary,	non-periodic	boundary	conditions,	the	

behavior	depending	on	the	setting	of	the	instance	variables.	On	the	contrary,	the	

particles	named	“Sphere…”	in	modules	particleShearObjects	and	

particleShearLinkableObjects	provide	fixed	behavior	with	regards	to	boundary	

conditions:	Sphere	and	SphereFriction	should	be	used	with	regular,	non-periodic	

boundary	conditions,	whereas	SphereLeesEdwards,	

SphereFrictionLeesEdwards,	SphereLinkable	and	

SphereLinkableAdjustableInterfaceStrength	should	be	used	with	Lees-

Point: coordinates, speed

PointLeesEdwards: configurable for 

  shear periodicity (Lees-Edwards)

Circle: with radius and drawing capacity

CircleMass: mass, force, acceleration

CircleMassNeighbors: handles neighbors

CircleBasicElasticity: Central forces

CircleFrictionElasticity: Tangential forces

  Sphere: Central forces, regular boundary

SphereFriction:  Friction, regular boundary

SphereLeesEdwards: Central forces, 

Lees-Edwards boundaries

SphereFrictionLeesEdwards:  Friction, 

Lees-Edwards boundaries

SphereLinkable: Permanent bonds

SphereLinkableAdjustableInterfaceStrength: 

Separate adjustment of permanent bonds

particleShearBase particleShearObjects particleShearLinkableObjects



	 Python	package	particleShear:	High-level	documentation,	part	3.	Implementation	 47	

Edwards	boundary	conditions.	Regardless	of	their	name,	“Circle…”	and	“Sphere…”	

classes	both	describe	2D	objects.	

	

The	default	simulations	launched	by	doParticleShearSimulation exclusively	use	

the	class	SphereLinkableAdjustableInterfaceStrength.	For	generality,	this	

class	implements	the	possibility	to	have	different	spring	and	viscosity	constants	for	

permanent	and	transient	interactions.	In	agreement	with	Otsuki	et	al.1,	this	possibility	

was	not	used	here	(with	the	exception	of	some	unit	tests,	see	SI	4).			

	

5.2. Assemblies 

	

	
	

Fig.	S3-4.	Class	hierarchy	for	the	assembly	objects.	Arrows	indicate	class	heritage,	the	

colors	code	for	the	modules	as	defined	in	Fig.	S3-2	and	indicated	in	the	legend.	

	

The	“Spheres”	are	assembled	into	particle	assemblies.	To	handle	the	various	particle	

types	defined	in	the	section	above,	we	implement	a	similar	hierarchy	of	assembly	classes	

(Fig.	S3-4).	The	common	feature	of	all	these	assembly	classes	is	that	they	hold	a	list	of	

sphere	objects,	which	are	instances	of	one	of	the	classes	shown	in	Fig.	S3-3.	The	

“CanvasPoints…”	classes	are	containers	and	do	not	by	default	contain	any	actual	

instances	of	particle	classes.	This	role	is	reserved	to	the	“Ensemble…”	series,	defined	in	

modules	particleShearObjects	and	particleShearLinkableObjects.	

	

The	simulations	encoded	in	doParticleShearSimulation exclusively	use	the	class	

EnsembleCompactParticlesAdjustableInterfaceStrength.	However,	by	

default,	the	spring	and	viscosity	constants	for	permanent	and	transient	interface	are	

identical.		

 CanvasPoints: assembly of Points

CanvasPointsMass: assembly of objects

with mass (type CircleMass)

CanvasPointsNeighbors: With neighbor 

relations (objects type CircleMassNeighbors)

 Ensemble: Central forces, regular boundary

 EnsembleFriction: Friction

EnsembleLeesEdwards: with Lees-Edwards 

boundaries.

  EnsembleFrictionLeesEdwards:  with

Lees-Edwards boundaries

EnsembleLinkable: Permanent bonds

EnsembleCompactParticles: Linking groups

of neighboring spheres into particles

particleShearBase particleShearObjects particleShearLinkableObjects

CanvasPointsShear: Optionally with 

Lees-Edwards boundary conditions

CanvasPointsBasicElasticity: Central forces

(objects of type CircleBasicElasticity or derived)

CanvasPointsBasicElasticityLeesEdwards: 

with additional Lees-Edwards methods

CanvasPointsFrictionElasticityLeesEdwards: 

with tangential (frictional) forces

CanvasPointsLinkable: Permanent bonds

EnsembleCompactParticlesAdjustableIntefaceStrength: 

Separate adjustment of permanent bonds
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5.3. Neighbor relations 

	

	
	

Fig.	S3-5.	Class	hierarchy	for	the	neighbor	relation	objects.	Arrows	indicate	class	heritage,	

the	colors	code	for	the	modules	as	defined	in	Fig.	S3-2	and	indicated	in	the	legend.	

	

	

Within	the	assemblies,	the	particles	have	defined	neighbors,	be	it	by	transient	geometric	

contact	or	permanent	bonds.	The	neighbor	relations	are	known	to	the	spheres,	encoded	

by	list	of	instances	of	the	neighbor	relation	classes	(Fig.	S3-5).	

	

5.3.1. Particle model 

	

	
	

Fig.	S3-6.	Class	hierarchy	for	the	particle	model	classes.	In	the	current	version	of	the	

package,	only	one	particle	model	class	is	implemented:	particle_shear_model_parameters	

in	module	particleShearObjects.	

	

To	facilitate	estimation	of	the	local	model	properties	of	the	particles	(spring	constants,	

mass,	radius)	from	more	physical	properties	(Young	modulus,	density,	number	of	

spheres,	size	of	the	simulation	area),	we	defined	a	helper	class	

particle_shear_model_parameters in	pacakage	particleShearObjects,	as	shown	

in	Fig.	S3-6.		

			

5.4. Stress tensor evaluation 

	

	
	

Fig.	S3-7.	Classes	for	stress	tensor	evaluation.	Arrows	indicate	class	heritage,	the	colors	

code	for	the	modules	as	defined	in	Fig.	S3-2	and	indicated	in	the	legend.	

	

 neighbor_relation: Link between spheres

neighbor_relation_linkable: with optional 

permanent links

particleShearBase particleShearLinkableObjects

 particle_shear_model_parameters: Simulation

constants from particle properties

particleShearObjects

 Force_register: Central storage of  the forces 

acting between particles

StressTensorEvaluation: Evaluation of 

average stress tensors

 EvaluationHandler: Stress tensor evaluation and storage 

over all relevant time-points

EvaluationHandlerPlotter: with possibility to plot strain and

shear stress

particleShearBase particleShearSimulation
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The	classes	participating	in	the	evaluation	of	the	stress	tensors	are	shown	in	Fig.	S3-7.	

The	average	stress	tensor	characterizes	mechanical	state	of	the	particle	ensemble	under	

simulation.	We	implement	two	main	stress	tensor	evaluation	methods:	From	the	

external	applied	forces	(eq.	S1-16),	and	the	overall	stress	tensor	from	the	internal	force	

and	rotational	interactions	(eq.	S1-24).	Stress	tensor	evaluation	at	a	given	time-point	is	

handled	by	specific	a	specific	class:	StressTensorEvaluation,	which	evaluates	both	

equations.	To	perform	stress	tensor	evaluation,	a	StressTensorEvaluation	object 

evaluates	the	forces	stored	during	the	simulation	in	a	force	register	object	

(Force_register).		

	

The	class	EvaluationHandler	and	its	derivatives	make	use	of	a	

StressTensorEvaluation	object	to	evaluate	the	stress	tensors	and	other	

aggregated	properties.	The	EvaluationHandler objects	store	the	results	of	the	

evaluation	over	all	the	measurement	time	points	of	the	simulation.	The	

EvaluationHandlerPlotter class	additionally	permits	to	plot	the	shear	stress	

during	the	simulation,	using	eq.	S1-25	to	evaluate	the	relevant	shear	stress	from	the	

stored	tensors.				

	

5.5. Experiments 

	

	
	

Fig.	S3-8.	Characterization	experiments.	Currently,	OscillatoryShearExperiment	is	the	only	

class	implementing	a	mechanical	characterization	experiment.	

	

Experiments	are	classes	that	allow	to	perform	a	pre-defined	experimental	protocol	on	a	

given	particle	assembly.	Current,	only	one	type	of	experiment	is	defined:	rheological	

characterization	by	oscillatory	shear,	in	class	OscillatoryShearExperiment.	

	

At	instanciation,	an	OscillatoryShearExperiment	object	is	provided	with	a	

particle	assembly	on	which	to	perform	the	oscillatory	shear	experiment.	After	optional	

pre-equilibration,	the	OscillatoryShearExperiment	object	will	apply	a	pre-

defined	shear	protocol	on	the	particle	assembly,	evaluating	and	registering	the	stress	

tensors	at	each	time	step	by	making	use	of	an	internal	StressTensorEvaluation	

object.	At	the	end	of	the	experiment,	elastic	storage	and	viscous	loss	moduli	are	

evaluated	by	demodulation	of	the	shear	stress	(eq.	S1-25,	from	stress	tensors	by	eq.	S1-

16	and	eq.	S1-24)	with	the	sinusoidal	oscillatory	strain	excitation	function	(equations	14	

and	A1	of	Otsuki	et	al.1).	Optionally,	the	simulation	parameters,	the	moduli,	as	well	as	

the	detailed	shear	stress	and	stress	tensor	values	can	be	stored	in	an	ASCII	text	file.	

	

5.6. Simulations 

	

 OscillatoryShearExperiment: Applies oscillatory shear

protocol on particle assembly, and orchestrates evaluation

particleShearSimulation
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		Fig.	S3-9.	Classes	for	particle	shear	simulations.	Arrows	indicate	class	heritage,	the	colors	

code	for	the	modules	as	defined	in	Fig.	S3-2	and	indicated	in	the	legend.	

	

The	simulation	classes	encode	assembly	of	particle	ensembles,	along	with	their	defined	

analysis	by	means	of	a	virtual	oscillatory	shear	experiment	(as	defined	by	the	class	
OscillatoryShearExperiment). 

 

The	two	base	classes	OscillatorySimulation	and	

OscillatorySimulationFragmentation	provide	methods	and	instance	variable	

definitions	of	general	use,	but	are	not	intended	to	be	used	directly.	Rather,	the	two	

derived	classes	Simulation_dermal_filler_rheology	and	

Simulation_interlocking_rheology	should	be	used	as	they	define	suitable	

particle	ensembles.	

	

The	default	simulations	launched	by	the	high-level	function	

doParticleShearSimulation exclusively	uses	the	class	

Simulation_interlocking_rheology.	

	

5.7. Graphical output configuration 

	

The	class	Graphical_output_configuration	in	module	particleShearBase	is	used	

by	the	spheres	and	neighboring	relation	to	adjust	their	graphical	display.	

	

6. Procedural elements 
	

	

	

 OscillatorySimulation: Common methods

and instance variables

OscillatorySimulationFragmentation:  

Crosslinking and fragmentation

 Simulation_dermal_filler_rheology: Simulation of 

 irregular, fully crosslinked particles vs. uncrosslinked contro

Simulation_interlocking_rheology: with optional 

removal of non-essential crosslinks

particleShearSimulation

EnsembleCompactParticlesFromModelParameters: 

crosslinked assembly of spheres from 

physical particle parameters

particleShearLinkableObjects

EnsembleCompactParticlesAdjustableInterfaceStrengt

hFromModelParameters:

crosslinked assembly with optional differential

adjustment of permanent and 

transient links 

particleShearRunSimulation

doParticleShearSimulation: 

high-level interface to run a simulation

doParticleShearSimulationSeries: 

high-level interface to run a set of simulatoins
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Fig.	S3-10.	Main	procedural	elements.	The	functions	

EnsembleCompactParticlesFromModelParameters	and	
EnsembleCompactParticlesAdjustableInterfaceFromModelParameters	

streamline	the	instanciation	of	the	corresponding	EnsembleCompactParticles	and	

EnsembleCompactParticlesAdjustableInterface objects	(see	Fig.	S3-4)	

using	a	model	(class	particle_shear_model_parameters,	see	Fig.	S3-6).	The	

doParticleShearSimulation	function	is	the	main	high-level	entry	point;	

doParticleShearSimulationSeries allows	to	run	a	predefined	series	of	

simulation	with	different	parameters.	

	

	

The	main	procedural	elements	are	outlined	in	Fig.	S3-10.	The	

EnsembleCompactParticlesFromModelParameters	and	
EnsembleCompactParticlesAdjustableInterfaceFromModelParameters 

functions	are	helper	functions	to	facilitate	generation	of	

EnsembleCompactParticles	respectively 

EnsembleCompactParticlesAdjustableInterface	objects	from	macroscopic	

physical	properties.	The	doParticleShearSimulation	provides	the	high-level	

entry	point	to	be	used	for	launching	parametrized	default	simulations	(Table	S1-1),	

wheres	doParticleShearSimulationSeries	launches	a	series	of	simulations	

from	arrays	of	parameters.		 		

	

	

7. Object relations 
	

	
Fig.	S3-11.	Relation	between	the	main	objects.	The	primary	entry	point	in	basic	usage	is	

invocation	of	the	high-level	function	doParticleSimulation	by	the	user	or	a	script.	

The	central	object	created	is	the	simulation	object	(of	class	

Simulation_interlocking_rheology).	This	object	orchestrates	the	creation	of	all	

the	other	objects:	The	various	objects	related	to	simulation	and	evaluation	(“Simulation”	in	

the	figure),	the	particle	assembly	(“Particle	assembly”	in	the	figure)	and	the	particles	and	

neighbor	relations	(“Particles”	in	the	figure).	

	

The simulation object

Simulation_interlocking_rheology

theEnsemble

The ensemble object

EnsembleCompactParticlesAdjustableInterfaceStrength

force_register1

1

model

The model object

particle_shear_model_parameters1

1

The force register object

Force_register

1

1

sphereList <array>

Sphere objects

SphereLinkableAdjustableInterfaceStrength

neighbors <array>
1

n

neighbor relation objects

neighbor_relation_linkable

1

nThe experiment object

OscillatoryShearExperiment

theEvaluator

theExperiment

plotter

1

1

The plotter object

EvaluationHandlerPlotter1

1

The evaluator object

StressTensorEvaluation1

1

doParticleSimulation

Simulation Particle assembly Particles

particleShearSimulation

particleShearBase particleShearObjects particleShearLinkableObjects

particleShearRunSimulation
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Fig.	S3-11	shows	the	main	objects	created	during	a	simulation	as	triggered	by	a	call	to	

doParticleSimulation.  
 

Various	classes	handle	aspects	of	the	simulation	per	se:	a	

Simulation_interlocking_rheology	object	is	created	as	the	master	object	and	

directly	or	indirectly	handles	creation	and	interaction	of	all	the	other	objects.	An	

OscillatoryShearExperiment	object	handles	the	defined	application	of	shear,	as	

well	as	stress	tensor	evaluation	via	a	StressTensorEvaluation	object.	The	stress	

tensor	matrices	generated	at	different	time-points	throughout	the	simulation	are	stored,	

and	optionally	displayed	graphically,	by	an	EvaluationHandlerPlotter	object.		

	

The	simulation	is	run	on	a	particle	assembly	object	of	class	

EnsembleCompactParticlesAdjustableInterfaceStrength;	for	the	creation	

of	this	object,	a	model	is	instantiated	from	the	class	

particle_shear_model_parameters,	used	to	estimate	the	simulation	constants	

from	physical	ensemble	parameters.	During	the	simulation,	the	forces	are	stored	in	a	

force	register,	instantiated	from	Force_register.	

	

The	particle	assembly	object	holds	the	constituent	spheres	in	its	attribute	sphereList.	

At	each	instant	of	the	simulation,	each	sphere	knows	its	neighbors,	by	listing	attributes	

of	the	relation	to	them	in	a	neighbors	array,	which	contains	objects	of	the	type	

neighbor_relation_linkable.	While	the	number	of	spheres	and	permanent	

neighbor	relations	is	constant	during	a	given	simulation,	the	non-permanent	neighbor	

relations	change	both	in	number	and	identity	as	the	spheres	move.	

	

With	respect	to	the	class	hierarchy	(Fig.	S3-3	to	S3-9),	only	a	restricted	set	of	the	classes	

is	used	directly	in	the	simulation	(Fig.	S3-11).	The	classes	used	are	the	classes	at	the	end	

of	the	class	heritage	chains,	as	they	contain	the	most	specialized	functionality.	

	

Finally,	some	objects	are	referenced	from	multiple	other	objects.	For	example,	the	force	

register	object	is	shown	to	be	associated	with	the	ensemble	object	in	Fig.	S3-11.	It	is	

however	necessary	for	each	sphere	to	signal	the	forces	acting	on	it	to	the	force	register,	

so	the	force	register	object	is	also	known	to	each	sphere.	Such	secondary	references	are	

a	convenience	of	programming	and	are	not	shown	in	Fig.	S3-11	as	it	would	make	the	

diagram	unnecessarily	difficult	to	read.		

	

8. Callback functions 
	

To	set	custom	contact	force-distance	laws	between	the	interacting	particles,	the	

compressive,	elastic	part	can	be	set	arbitrarily	with	a	callback	function.	For	this,	the	

static	class	variable	

	
CircleBasicElasticity.call_back_elastic_force_law 
 

has	to	be	set	appropriately.	See	section	4.3	of	part	2	of	this	manual	for	further	details.	
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9. Simulation process flow 
	

	
Fig.	S3-12.	Pseudo	code	for	a	particle	shear	simulation.	Indentation	indicates	that	the	calls	

occur	within	blocks.	The	diagram	is	simplified	as	there	are	both	many	more	levels	and	

many	more	function	calls;	it	outlines	the	most	important	steps,	objects	and	methods.	

	

	

Fig.	S3-12	shows	a	simplified	process	flow	(pseudocode)	of	a	simulation	as	invoked	by	

doParticleShearSimulation.	The	figure	shows	the	most	important	function	calls,	

object	instanciations,	and	method	calls.	

	

Fig.	S3-12	illustrates	that	the	process	flow	can	be	grossly	divided	into	three	phases:	first,	

the	main	objects	shown	in	Fig.	S3-11	are	progressively	initiated;	once	all	the	objects	

available,	the	actual	oscillatory	shear	experiment	is	run.	The	summary	and	detailed	

stress	tensor	data	can	then	optionally	be	recorded	in	a	ASCII	text	file.		

	

During	the	simulation,	care	needs	to	be	taken	about	the	evaluation	order.	The	various	

tensors	should	be	calculated	with	particle	coordinates	and	forces	valid	for	the	same	time	

call to function                                       (start particle with specific model)

EnsembleCompactParticlesAdjustableInterfaceStrengthFromModelParameters

function doParticleShearSimulation is invoked (Starting point for user invocation)

instanciation of the simulation as a Simulation_interlocking_rheology object

call to runSimulation method of the simulation (to launch simulation process)

call to initEnsemble method of the simulation (start particle assembly)

instanciation of the model as a

particle_shear_model_parameters object (this defines the physical model)

instanciation of the ensemble as a                  (ensembly with known model)

EnsembleCompactParticlesAdjustableInterfaceStrength object

instanciation of the spheres as                       (constitute the actual spheres)

SphereLinkableAdjustableInterfaceStrength objects

During equilibration: instanciation of the neighbor relations as

neighbor_relation_linkable objects  (this defines transient and permanent neighbors)

instanciation of the experiment as a OscillatoryShearExperiment object

(experiment: periodic ensemble shearing) 

instanciation of the stress tensor evaluator as a StressTensorEvaluation object

(object needed to evaluate the stress tensor from the forces) 

instanciation of the evaluation handler and plotter as a 

EvaluationHandlerPlotter object (this object coordinates stress tensor evaluation) 

Oscillatory shear experiment. For each time step:

  - set shear rate (method setShearRate of the ensemble)

  - Calculate forces 

    (method mechanical_simulaton_step_calculate_forces of the ensemble)

  - Evaluate stress tensor (method evaluate_stress_tensors of the evaluator)

  - Record stress tensor (method record of the plotter)

  - Calculate acceleration and displacements

    (methods mechanical_simulaton_step_calculate_acceleration,

     mechanical_simulaton_step_calculate_movement of the ensemble)

  run the oscillatory shear experiment (method oscillatory_shear_experiment)

Recording of primary output data (method  write_output_information_to_file

of the experiment)

Evaluate storage and loss moduli (method evaluateStressAndG of the experiment)

particleShearSimulation

particleShearBase particleShearObjects particleShearLinkableObjects

particleShearRunSimulation

instanciation of the force register as a           (this will store the forces)

Force_register object

Object

Instanciation

Run

Simulation

Record
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point.	Thus,	the	order	of	execution	should	be	as	noted	in	Fig.	S3-12	(phase	“Run	

Simulation”):	calculation	of	forces,	evaluation	of	stress	tensors,	and	only	then	updating	

of	the	particle	positions.		

	

10. Implementation of specific mathematical elements 
	

To	fully	specify	a	software,	it	is	not	enough	to	indicate	the	algorithm	in	the	form	of	

mathematical	equations.	There	are	details	of	the	implementation	not	evident	from	the	

concise	notation,	or	implementation	details	influencing	numerical	precision,	that	are	

clear	only	from	the	source	code	itself.	For	this	reason,	Table	S3-1	indicates	the	location	

of	the	implementation	of	some	critical	mathematical	elements	in	the	code.	

	
What	 Eq.	 Module	 Class	 Method	

Torque	

distribu

tion	

Eq.	S1-3	 particleShea

rBase	

CircleFrictionEl

asticity	

distribute_tangential_couple	

Central	

force	

Eq.		

S1-5a,		

S1-5b	

particleShea

rBase	

CircleBasicElast

icity	

get_elastic_force	

Spring	
constant	

k	

Eq.	S1-8	 particleShea
rObjects	

particle_shear_p
arameters	

__init__	(constructor)	

Time	

constant	

τ	

Eq.	1	in	1	 particleShea

rObjects	

particle_shear_p

arameters	

__init__	(constructor)	

Transve

rse	
Spring	

constant	

kT	

Here,	

equal	to	
k1	

particleShea

rLinkableOb
jects	

-	 EnsembleCompactParticlesAdjustableInterfaceSt

rengthFromModelParameters	in	
EnsembleCompactParticlesAdjustableInterfaceSt

rength.py	

(possibility	to	configure	differently	from	k)	

Viscosit

y	

constant	

η	

Eq.	S1-9	 particleShea

rLinkableOb

jects	

-	 EnsembleCompactParticlesAdjustableInterfaceSt

rengthFromModelParameters	in	

EnsembleCompactParticlesAdjustableInterfaceSt

rength.py	(η=k*	τ,	k	and	τ	from	above)	

Transve
rse	

Spring	

constant	

ηT	

Here,	
equal	to	

η	

particleShea
rLinkableOb

jects	

-	 EnsembleCompactParticlesAdjustableInterfaceSt
rengthFromModelParameters	in	

EnsembleCompactParticlesAdjustableInterfaceSt

rength.py	

(possibility	to	configure	differently	from	η)	
Dampin

g	

-	 particleShea

rBase	

CircleFrictionEl

asticity	

cool	

(application	of	the	damping	for	a	time	step)	

particleShea

rSimulaton	
	

OscillatorySimul

ation	

runSimulation	

(estimation	of	damping	coefficient	per	dt	from	
damping	per	period)	

Radius	r	 Eq.	S1-

14	

particleShea

rObjects	

-	 r_estimate	in	Ensemble.py	

Mass	m	

(per	L)	

m	

=πρr2	

ref.	1	

particleShea

rObjects	
particle_shear_p

arameters	
__init__		

(average	mass)	
particleShea

rObjects	
-	 adjust_m	in	Ensemble.py	

(scale	to	actual	radius)	
σ	
(externa

l	force)	

Eq.	S1-
16	

particleShea
rBase	

StressTensorEv
aluation	

evaluate_force_stress_tensors	
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σLW		

	
Eq.	S1-

19	

particleShea

rBase	

StressTensorEv

aluation	

evaluate_force_stress_tensors	

σ		

	

Eq.	S1-

24	

particleShea

rBase	

StressTensorEv

aluation	

evaluate_stress_tensors	

τxy	 Eq.	S1-

25	

particleShea

rBase	

StressTensorEv

aluation	

evaluate_externally_applied_shear_stress	

(stress	tensor	external	force)	

particleShea

rBase	
StressTensorEv

aluation	
evaluate_quasistatic_shear_stress	

(stress	tensor	Love-Weber3)	
G’	 Eq.	14	in	

1	

particleShea

rSimulaton	

OscillatoryShear

Experiment	

demodulation	

G’’	 Eq.	A1	in	
1	

particleShea
rSimulaton	

OscillatoryShear
Experiment	

demodulation	

Lees-

Edward

s	

boundar

ies1	

-	 particleShea

rBase	

PointLeesEdwar

ds	

d	(modified	distance)	

n	(modified	relative	vector)	

relative_speed	(modified	relative	speed)	

boundary_conditions	(shear	periodicity)	

Sllod	
stabiliza

tion1	

-	 particleShea
rBase	

PointLeesEdwar
ds	

cool	
(damping	of	speed	relative	to	anticipated	local	

speed	due	to	shear)	
particleShea

rBase	

CanvasPointsBa

sicElasticityLees

Edwards	

adjust_sphere_speed_to_shear_rate_change	

(adjust	speed	to	anticipate	change	when	

changing	shear	rate)	

	

Table	S3-1.	Implementation	of	specific	mathematical	elements.	The	table	indicates	where	

some	central	mathematical	elements	of	the	simulation	are	implemented	in	the	code.	For	

class	methods,	the	module,	class	and	method	name	jointly	identify	the	location	in	the	code.	

The	classes	are	indeed	defined	in	Python	(.py)	files	named	after	the	class	name,	and	method	

names	are	unique	within	a	given	class.	For	procedural	elements,	there	is	no	class	(-	sign	in	

the	table),	but	the	relevant	Python	file	is	indicated	along	the	method	name	to	facilitate	

localization.	Equations	denoted	with	Eq.	S1-XX	are	equations	from	Part	1.	

	

	

11. Full documentation of the Application Programming Interface 

API 
	

We	generated	a	full	API	documentation	by	using	pdoc,	using	the	following	commands	

(terminal,	MacOSX):	

	

cd	<folder	where	the	documentation	should	go>	

	

pdoc	--html	--overwrite	particleShear	

	

The	resulting	HTML	document	is	also	available	for	Download	(same	folder	as	this	

document).	pdoc	and	documentation	in	Python	in	general	is	particular	because	it	uses	

introspection:	the	object’s	knowledge	about	itself.	As	a	result,	inherited	methods	are	

displayed	as	if	they	were	implemented	directly	in	the	class	at	hand.		
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Part	4:	Test	cases	for	the	numerical	simulation	

1. Aim of Part 4 
	

Part	4	provides	the	test	descriptions	and	results	for	key	test	scenarios	for	the	particle	

ensemble	simulation	(used	for	Fig.	2	in	the	main	text).	
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3. Introduction 

3.1. Unit tests 
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In	simple	cases,	it	is	possible	to	estimate	the	stress	tensors	analytically.	This	allows	

testing	of	the	simulation	and	the	algorithms	for	evaluation	of	the	stress	tensors.	

Implementing	the	test	scenario	as	unit	tests	also	allows	automated	testing	procedures,	

ensuring	accurateness	of	the	software	throughout	development.		

	

Beyond	these	practical	considerations,	the	availability	of	simple	unit	tests	with	a	priori	
defined	expected	results	also	helped	improving	aspects	of	the	simulation	and	stress	

tensor	evaluation	beyond	published	state	of	the	art1,2.		

	

3.2. Improvements achieved with unit testing  

	

3.2.1. Conservation of angular momentum 

	

The	unit	tests	indeed	revealed	residual	non-conservation	of	angular	momentum	in	the	

framework	given	by	Otsuki	et	al.2	and	prompted	the	development	of	a	more	accurate	

expression	for	the	distribution	of	the	frictional	torque	(eq.	S1-5b	in	Part	1).	The	error	is	

small	in	the	configuration	described	by	Otsuki	et	al.2,	but	can	become	limiting	in	the	case	

of	very	large	amplitude	simulations,	at	the	heart	of	our	material	development.	

	

3.2.2. Inertial stress tensor correction  

	

We	initially	based	our	simulations	on	the	published	algorithm	by	Otsuki	et	al.2	Unit	

testing	however	revealed	that	the	inertial	correction	term	used	(eq.	15	in	ref.	2),	not	only	

fails	to	correct	the	asymmetry	of	the	Love-Weber	stress	tensor1,3,4,	but	introduces	

artifacts	in	simple	cases	where	it	should	be	identically	zero.	The	inertial	correction	term	

used	by	Otsuki	et	al.	2	historically	stems	dynamic	pressure	of	ideal	gases	in	containers	at	

rest	or	nearly	so,5	where	conceivably	low	mass	flow	speed	and	therefore	approximate	

isotropy	of	the	force	network	orientation	will	average	out	asymmetric	contributions6.		In	

a	simulated	linear	shear	cell	with	highly	organized	movement	of	particles	this	is	not	

appropriate.	A	more	general	development	is	presented	by	Nicot	et	al.1,	serving	as	a	

starting	point	to	develop	inertial	correction	terms	for	the	simulation	at	hand.	

	

In	the	unit	tests,	the	rotational	inertia	terms	for	spherical	particles	indicated	by	Nicot	et	

al.	(i.e.	eq.	33	in	ref.	1)	performed	well	in	simple	test	cases.	However,	in	the	presence	of	

friction,	it	also	failed	to	provide	symmetric	overall	stress	tensors.	In	search	for	possible	

errors,	we	carried	out	a	simplified	mathematical	development	(eq.	S1-20	to	eq.	S1-23,	

and	the	analytical	verification	leading	to	eq.	S1-24	in	Part	1).	We	found	an	expression	for	

the	rotational	acceleration	tensor	𝜎spin	very	similar,	but	not	identical	to	eq.	33	by	Nicot	
et	al.	1.	We	indeed	found	the	same	general	terms	and	form,	but	a	difference	of	a	factor	of	

3/2	for	the	leading	coefficient.	With	the	corrected	coefficient	(eq.	S1-24),	we	finally	

obtained	symmetric	stress	tensors	in	the	unit	tests,	to	within	numerical	precision	of	the	

simulation	(relative	errors	below	10-15).	Going	back	to	the	development	by	Nicot	et	al.1,	

we	identified	a	minor	integration	error	in	their	calculation	of	the	inertia	matrix	(eq.	29	

in	1;	see	Part	1)	as	the	likely	cause.	Fixing	this	issue,	we	finally	obtained	overall	stress	

tensors	symmetric	to	within	numerical	precision.	Hence,	we	can	now	state	that	not	only,	

“the	global	result	must	be	perfectly	symmetrical”1;	it	actually	is.	Performing	the	unit	
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tests	enabled	challenging	the	otherwise	overly	complex	frameworks	with	simple,	

intuitive	cases	with	at	least	qualitatively	known	expected	behaviours.		

4. Test variables 
	

We	test	the	set	of	variables	defined	in	Table	S4-1.	

	
Symbol	 Evaluation	measure	

𝜎%& 	 Love-Weber	stress	tensor	
StressTensorEvaluation.stress_tensor_LW 

eq.	S1-19	

𝜎	 Overall	internal	stress	tensor	
StressTensorEvaluation.overall_stress_tensor 

eq.	S1-24	

𝜎'()*+,	+..*'*,+/(0)	 Stress	tensor	due	to	unbalanced	linear	forces	
StressTensorEvaluation.stress_tensor_unbalanced_forces 

Eq.	S1-17		

𝜎external	force	 Stress	tensor	estimated	from	external	forces	
StressTensorEvaluation.stress_tensor_with_external_forces 

(eq.	S1-16)	

𝜎Otsuki	 Inertial	term	in	Otsuki	et	al.2		
StressTensorEvaluation. 

stress_tensor_linear_acceleration_otsuki 

(second	right-hand	term	of	eq.	15	in	2)	

!d𝑚 ∙ 𝑟 × 𝑣⃗	 Conservation	of	angular	momentum	
EvaluationHandler.angular_momentum_around_origin 

	

!d𝑚 ∙ 𝑣⃗	 Conservation	of	linear	momentum	
EvaluationHandler.total_mass*EvaluationHandler.v_mean 

	

Table	S4-1.	Test	variables	for	unit	tests.	The	table	indicates	the	mathematical	symbol	in	

the	first	column.	A	short	description	as	well	as	the	implementation	variable	are	given	in	

the	second	column.	The	implementation	is	indicated	as	Classname.Field_name;  
the	classes	of	the	implementation	are	listed	in	Part	3.	

	

5. Implementation and usage  
		

The	test	cases	are	implemented	in	a	separate	sub-package,	particleShearTest,	that	is	not	

accessible	directly	via	the	general	import.	Should	direct	use	be	required,	it	can	be	

imported	via:	

	
from particleShearTest import * 

	

Generally,	the	main	use	of	the	unit	test	is	to	run	all	of	them	sequentially.	After	

installation	of	the	package	particleShear	and	its	dependencies	(see	Part	2),	the	tests	can	

for	instance	be	run	via	the	following	command:		

	
python -m unittest particleShearTest 
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This	should	automatically	run	all	the	tests	in	the	particleShearTest	folder.	Alternatively,	

each	script	in	the	particleShearTest	can	also	be	run	manually.	

	

Currently,	53	out	of	55	unit	tests	pass,	2	fail.	The	reason	for	the	two	failures	is	that	for	

reasons	of	comparison,	the	simulations	optionally	implement	the	inertial	correction	for	

the	stress	tensor	given	by	Otsuki	et	al.	2	(eq.	15	in	2).	At	least	in	our	interpretation,	this	

correction	gives	erroneous	non-zero	stress	tensors	in	some	cases	where	there	should	be	

no	forces	at	all	(see	Table	S4-2	and	Table	S4-4	below).	

6. Test systems without boundary interaction 
	

A	first	series	of	test	cases	consists	of	isolated	systems	without	boundary	interaction	or	

boundary	particles.	Under	these	conditions,	angular	and	linear	momentum	needs	to	be	

conserved,	and	given	the	absence	of	external	force,	𝜎external	force		should	remain	zero..	
	

6.1. Single Sphere 

A	first	elementary	ensemble	consists	single	sphere,	moving	freely	without	any	external	

applied	force.	We	consider	two	different	cases:	a	single	sphere	in	purely	linear	

movement,	and	a	single	sphere	spinning	but	not	moving	linearly.	

6.1.1. Linearly moving single sphere 

The	test	case	of	a	single,	linearly	moving	sphere	is	depicted	in	Fig.	S4-1.	

	

	

	

	
Fig.	S4-1.	Test	case	of	a	single,	freely	moving	sphere.	No	force	is	applied,	and	the	sphere	
proceeds	by	linear,	constant	movement	along	its	speed	vector	𝑣⃗.	For	this	test	case,	all	stress	
tensor	components	should	be	identically	0,	and	linear	and	angular	momentum	conserved.	
	

For	a	freely	moving	sphere	(Fig.	S4-1),	all	the	stress	tensor	expressions	need	to	be	

identically	zero	for	all	elements.	In	order	to	avoid	particular	cases	with	movement	along	

the	axes,	we	set	both	the	x-	and	y-	speed	non-zero,	and	different	from	each	other.	

	

We	evaluate	the	various	stress	tensor	components	after	20	steps	of	movement	of	the	

sphere	and	assess	whether	they	remain	zero.	After	a	further	20	steps	of	simulation,	we	

also	evaluate	whether	the	overall	angular	and	linear	momentum	have	changed.	The	

results	are	given	in	Table	S4-1.	All	tests	pass,	with	the	exception	of	the	inertial	

correction	term	proposed	by	Otsuki	et	al.	2,	which	gives	a	finite,	non-zero	stress	tensor	

value	in	a	situation	where	all	the	terms	should	be	identically	equal	to	zero.	It	is	not	clear	

here	whether	this	is	an	implementation	or	interpretation	error	or	whether	there	is	a	

problem	with	the	actual	term	proposed	by	Otsuki	et	al.	2.	Given	the	satisfactory	

v
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performance	in	the	unit	test,	we	therefore	rather	rely	on	the	inertial	tensor	expressions	

adapted	from	Nicot	et	al.1	(eq.	S1-24).		

	

Of	note,	for	angular	momentum	conservation,	we	only	evaluate	a	short	time	period	

before	shear	periodicity	(Lees-Edwards	periodic	boundary	conditions)	causes	sudden	

apparent	displacements	of	the	sphere	incompatible	with	a	naïve	implementation	of	

angular	momentum	conservation.	

	
Scenario	 Test	 Expected	 Actual	 Pass	

Translating	

single	

sphere	

	

𝜎%& 	 )0 0
0 0+	 )0 0

0 0+	 Yes	

𝜎	 )0 0
0 0+	 )0 0

0 0+	 Yes	

𝜎'()*+,	+..*'*,+/(0)	 )0 0
0 0+	 )0 0

0 0+	 Yes	

𝜎external	force	 )0 0
0 0+	 )0 0

0 0+	 Yes	

𝜎Otsuki	 )0 0
0 0+	 Non-zero,	with	positive	

and	negative	diagonal	

elements,	symmetric	

No	

!d𝑚 ∙ 𝑟 × 𝑣⃗	 constant	 Constant	(to	within	

relative	error	of	10-15)	

Yes	

!d𝑚 ∙ 𝑣⃗	 constant	 Constant	(to	within	

relative	error	of	10-15)	

Yes	

Script:	particleShearTest/test_singleSphereLinear.py	

Table	S4-2.	Unit	testing	results	for	the	scenario	of	a	single,	force-free	sphere	where	all	
stress	tensors	should	evaluate	to	zero,	and	where	angular	and	linear	momentum	should	be	
conserved.	The	tests	are	defined	in	Table	S4-1	and	here	symbolized	by	their	mathematical	
symbol	given	in	Table	S4-1.		
	

6.1.2. Freely spinning single sphere 

	

	

	
	

Fig.	S4-2.	Test	case	of	a	single,	freely	rotating	sphere.	No	force	is	applied,	and	the	sphere	
proceeds	by	indefinite	rotation	at	an	angular	rotation	rate	ω.	For	this	test	case,	the	
external	force	and	Love-Weber	stress	tensor	(eq.	S1-16	and	eq.	S1-19)	should	be	zero,	but	
the	total	stress	tensor	(eq.	S1-24)	should	reflect	the	tensile	state	due	to	the	presence	of	the	
centrifugal	forces	(eq.	S1-21).	
	

In	a	freely	spinning	sphere	(Fig.	S4-2),	there	is	an	internal	stress	due	to	the	centrifugal	

force	associated	with	the	rotation.		

	

However,	for	as	long	as	the	rotating	sphere	does	not	touch	the	boundaries,	its	rotation	

energy	will	not	be	transmitted	to	the	outside	world,	and	so	the	stress	tensor	defined	by	

the	external	forces	(eq.	S1-16)	should	not	be	affected	and	all	its	components	should	
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remain	identically	zero,	as	for	the	linearly	moving	sphere.	Likewise,	the	Love-Weber	

stress	tensor	(eq.	S1-19)	is	known	to	reflect	only	interactions	between	particles,	but	not	

internal	acceleration1,	so	it	should	also	remain	identically	at	0.	Only	the	total	stress	

tensor	according	to	eq.	S1-24	should	yield	non-zero	diagonal	elements,	according	to	eq.	

S1-21.	

	

As	shown	in	Table	S4-3,	the	simulation	passes	all	the	unit	tests	for	this	scenario.	

	
Scenario	 Test	 Expected	 Actual	 Pass	

Rotating	single	

sphere	
𝜎%& 	 )0 0

0 0+	 )0 0
0 0+	 Yes	

𝜎	 −𝐾𝑉 )
1 0
0 1+	

eq.	S1-21	

Relative	error	<10-15	 Yes	

𝜎'()*+,	+..*'*,+/(0) )0 0
0 0+	 )0 0

0 0+	 Yes	

𝜎external	force	 )0 0
0 0+	 )0 0

0 0+	 Yes	

𝜎Otsuki	 )0 0
0 0+	 )0 0

0 0+	 Yes	

!d𝑚 ∙ 𝑟 × 𝑣⃗	 constant	 Constant	(to	within	relative	

error	of	10-15)	

Yes	

!d𝑚 ∙ 𝑣	 constant	 Constant	(to	within	relative	

error	of	10-15)	

Yes	

Script:	particleShearTest/test_singleSphereRotation.py	

Table	S4-3.	Unit	testing	results	for	the	scenario	of	a	single,	force-free	rotating	sphere	where	
all	stress	tensors	except	for	the	centrifugal-force	related	part	(eq.	S1-21)	should	be	zero.	
	

6.2. Interaction between two spheres 

	

Next,	we	test	the	interaction	of	two	spheres	and	the	resulting	stress	tensors.	

6.2.1. Central forces: Non-frictional collision between two spheres 

	

	

	
	

Fig.	S4-3.	Test	case	of	a	pair	of	spheres	with	purely	central	interaction.	For	this	test	case,	
there	are	no	external	forces,	so	the	stress	tensor	from	external	forces	should	be	zero	(eq.	
S1-16),	whereas	the	Love-Weber	stress	tensor	should	be	symmetric	(eq.	S1-24)	with	
positive	diagonal	terms.	The	overall	internal	stress	tensor	should	be	equal	to	the	Love-
Weber	stress	tensor	since	there	is	no	rotation	due	to	the	absence	of	tangential	forces.	

Fcentral

Fcentral
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We	first	test	the	central	interaction	in	a	test	case	where	two	spheres	collide	by	linear	

movement.	For	this	test	case	(Fig.	S4-3),	we	can	anticipate	some	characteristics	of	the	

various	stress	tensor	expressions.	For	as	long	as	the	spheres	do	not	touch	the	

boundaries,	the	external	force	tensor	𝜎external	force	should	be	identically	zero	as	there	is	
no	transmission	of	force	to	the	outside	world.	As	there	is	no	friction	in	this	test	scenario,	

the	Love-Weber	stress	tensor	(eq.	S1-19)	should	be	symmetrical;	since	the	interaction	is	

compressive,	its	diagonal	terms	should	be	positive	(Soil	mechanics	sign	convention7).	

Without	tangential	forces,	there	should	be	no	rotation,	so	𝜎=>?@		should	be	zero.	One	then	
concludes	that	𝜎 = 𝜎%& = 𝜎external	force + 𝜎'()*+,	+..*'*,+/(0) = 𝜎'()*+,	+..*'*,+/(0)	and	so	the	
linear	acceleration	stress	tensor	can	be	tested	against	the	numerical	value	of	the	Love-

Weber	stress	tensor	in	this	test	case.	Linear	and	angular	moment	should	still	be	

conserved.	

	

Without	spinning	motion,	the	Love-Weber	stress	tensor	is	complete	and	there	should	be	

no	need	for	additional	inertial	correction1.	This	implies	that	also	the	inertial	correction	

proposed	by	Otsuki	et	al.2	should	be	zero	in	this	test	case.		

	

	
Scenario	 Test	 Expected	 Actual	 Pass	

Collision	
without	

friction	

𝜎%& 	 Strictly	symmetrical	
Positive	diagonal	elements	

Strictly	symmetrical	
Positive	diagonal	elements	

Yes	

𝜎	 Identical	to	Love-Weber	 Relative	error	<10-15	 Yes	

𝜎'()*+,	+..*'*,+/(0)	 Identical	to	Love-Weber	 Relative	error	<10-15	 Yes	

𝜎external	force	 )0 0
0 0+	 )0 0

0 0+	 Yes	

𝜎Otsuki	 )0 0
0 0+	 Non-zero,	with	positive	

and	negative	diagonal	

elements,	symmetric	

	

No	

!d𝑚 ∙ 𝑟 × 𝑣⃗	 constant	 Constant	(to	within	

relative	error	of	10-15)	

Yes	

!d𝑚 ∙ 𝑣⃗	 constant	 Constant	(to	within	
relative	error	of	10-13)	

Yes	

Script:	particleShearTest/test_twoSpheresCentral.py	

	

Table	S4-4.	Unit	testing	results	for	the	scenario	of	a	collision	with	purely	central	forces	
between	two	identical	spheres.	
	

The	unit	tests	shown	in	Table	S4-4	for	the	central	interaction	between	two	colliding	

spheres	are	all	successful,	with	the	exception	of	the	test	for	the	inertial	term	proposed	

by	Otsuki	et	al.2.	This	confirms	the	results	from	the	test	case	with	a	linearly	moving	

sphere	(Table	S4-2).	
	

6.2.2. Tangential force by frictional contact: Frictional pair of spheres without repulsion 
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Fig.	S4-4.	Test	case	of	a	pair	of	spheres	with	purely	tangential	interaction.	For	this	test	
case,	there	are	no	external	forces,	so	the	stress	tensor	from	external	forces	should	be	zero	
(eq.	S1-16).	The	Love-Weber	stress	tensor	is	generally	asymmetric,	whereas	the	overall	
internal	stress	tensor	𝜎	should	by	strictly	symmetrical1.	
	

	
Scenario	 Test	 Expected	 Actual	 Pass	

Purely	

frictional	

interaction	

𝜎%& 	 Asymmetric,	value	
A

B
𝐹⃗CΔ𝑟))))⃗ C 	

Relative	error	<10-15	 Yes	

𝜎	 Symmetrical	

	

Relative	error	<10-15	 Yes	

𝜎'()*+,	+..*'*,+/(0)	 Identical	to	Love-Weber	 Relative	error	<10-15	 Yes	

𝜎external	force	 )0 0
0 0+	 )0 0

0 0+	 Yes	

𝜎Otsuki	 ?	 Non-zero,	with	positive	

and	negative	diagonal	

elements,	symmetric		

N/A	

!d𝑚 ∙ 𝑟 × 𝑣⃗	 constant	 Constant	(to	within	

relative	error	of	10-14)	

Yes	

!d𝑚 ∙ 𝑣⃗	 constant	 Constant	(to	within	

relative	error	of	10-15)	

Yes	

Script:	particleShearTest/test_twoSpheresTangential.py	

Table	S4-5.	Unit	testing	results	for	the	scenario	of	a	collision	with	purely	tangential	forces	
between	two	identical	spheres.	
	

For	the	test	case	of	a	interaction	between	two	identical	spheres	with	purely	tangential	

interaction	(Fig.	S4-4),	we	can	again	anticipate	some	characteristics	of	the	stress	tensor	

expression.	Given	the	single	force	couple	present,	𝜎%&	is	given	by	𝜎%& = A

B
𝐹⃗CΔ𝑟))))⃗ C;	

generally,	this	is	neither	symmetric	nor	antisymmetric.	After	correction	for	the	spin	

terms	(eq.	S1-24),	the	overall	stress	tensor	𝜎	should	be	symmetric;	as	before,	since	there	
is	no	external	force,	𝜎external	force = 0,	and	as	consequence,	𝜎'()*+,	+..*'*,+/(0)=𝜎%& .	Table	
S4-5	shows	the	results	of	the	unit	tests,	they	pass.	

	

Given	the	failures	of	the	Otsuki	inertial	compensation	in	term	in	the	single	sphere	unit	

tests	(Table	S4-2,	Table	S4-4),	we	find	it	difficult	to	anticipate	a	value	for	this	expression,	

so	we	report	it,	but	do	not	test	it	(entry	N/A	in	the	Pass	column	in	Table	S4-5).	

	

Ftangential

Ftangential
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6.2.3.  Collision of two spheres with general interaction 

	

	
	

Fig.	S4-5.	Test	case	of	a	pair	of	spheres	with	general	interaction.	For	this	test	case,	there	
are	no	external	forces,	so	the	stress	tensor	from	external	forces	should	be	zero	(eq.	S1-16).	
The	Love-Weber	stress	tensor	is	generally	asymmetric,	but	should	be	dominated	by	the	
compressive	state	simulated	(positive	diagonal	elements	under	the	soil	mechanics	sign	
convention7).	The	overall	internal	stress	tensor	𝜎	should	by	strictly	symmetrical1.	
	
Scenario	 Test	 Expected	 Actual	 Pass	

Collision	

with	

general	

interaction	

𝜎%& 	 In	the	configuration	

chosen,	compressive	state,	

so	diagonal	values	should	

be	positive	

Asymmetric,	diagonal	

values	positive	

Yes	

𝜎	 Symmetrical	

Diagonal	values	positive	

Relative	error	<10-15	 Yes	

𝜎'()*+,	+..*'*,+/(0)	 Identical	to	Love-Weber	 Relative	error	<10-15	 Yes	

𝜎external	force	 )0 0
0 0+	 )0 0

0 0+	 Yes	

𝜎Otsuki	 ?	 Non-zero,	symmetric		 N/A	

!d𝑚 ∙ 𝑟 × 𝑣⃗	 constant	 Constant	(to	within	
relative	error	of	10-15)	

Yes	

!d𝑚 ∙ 𝑣⃗	 constant	 Constant	(to	within	

relative	error	of	10-14)	

Yes	

Script:	particleShearTest/test_twoSpheresGeneral.py	

Table	S4-6.	Unit	testing	results	for	the	scenario	of	a	collision	of	two	identical	spheres	with		
general	interaction	forces.	
	

Fig.	S4-5	shows	a	collision	between	two	spheres	with	general	interaction	terms.	There	

are	four	types	of	forces	(see	Fig.	S1-1	in	Part	1):	viscous	and	elastic	central	forces,	as	

well	as	viscous	and	elastic	tangential	forces	forces.	The	interaction	set	is	therefore	

complete	as	far	as	the	numerical	simulations	presented	here	are	concerned.	We	do	not	

foresee	any	a	priori	values,	but	can	still	test	the	form	of	the	tensors.		𝜎%&	is	generally	
asymmetric,	but	the	overall	internal	stress	tensor	𝜎	should	be	symmetric.	Since	
𝜎external	force = 0	for	this	isolated	system,	𝜎'()*+,	+..*'*,+/(0) = 𝜎%&	should	hold.	In	addition,	
conservation	of	angular	and	linear	momentum	are	expected.	Further,	we	chose	an	

interaction	configuration	with	significant	compression,	oriented	obliquely	compared	to	

Ftangential

Ftangential

Fcentral

Fcentral

v
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the	coordinate	system,	implying	that	the	diagonal	terms	of		𝜎%& ,	𝜎	and	𝜎'()*+,	+..*'*,+/(0)	
should	all	be	positive	with	the	soil	mechanics	sign	convention7.	

	

The	results	comply	with	the	expectations	set	forth	(Table	S4-6).	Again,	we	are	at	odds	

for	predicting	a	value	for	the	Otsuki	inertial	term,	so	we	do	not	test	it	(entry	N/A	in	the	

Pass	column	in	Table	S4-6).	

7. Boundary interactions 
	

For	bounded	systems,	there	are	generally	trans-border	forces,	and	so	conservation	of	

angular	and	linear	momentum	for	the	internal	system	are	no	more	guaranteed.	We	

therefore	drop	these	tests	from	the	test	panel	for	the	unit	tests	on	bounded	systems.	

Further,	since	in	our	implementation	the	inertial	term	proposed	by	Otsuki	et	al.2	fails	

some	of	the	key	unit	tests	(Table	S4-4,	Table	S4-2),	we	do	not	consider	it	further	here.		

	

We	consider	two	elementary	boundary	interactions:	one	with	a	fixed	sphere	(as	would	

happen	by	interaction	with	particles	immobilized	to	an	external	rheometer	device),	and	

through	the	shear-periodic	Lees-Edwards	boundary	conditions.	

7.1. Single sphere colliding with fixed sphere 

	

	
	

Fig.	S4-6.	Test	case	of	a	mobile	sphere	interacting	with	a	fixed	sphere	on	the	boundary.	For	
this	test	case,	there	are	no	strictly	internal	forces	or	torques,	since	only	the	mobile	sphere	is	
considered	as	being	part	of	the	system	under	study,	whereas	the	fixed	sphere	is	part	of	the	
outside	world.	As	a	result,	the	Love-Weber	stress	tensor	should	be	zero	(eq.	S1-16).	
Likewise,	there	are	no	internal	moments,	so	according	to	eq.	S1-24,	the	overall	internal	
stress	tensor	𝜎	should	be	diagonal	with	negative	contributions	due	to	the	centrifugal	term.	
The	black	area	denotes	an	outside-world	device	holding	the	immobilized	sphere	in	place,	
such	as	the	plate	of	a	rheometer.	
	

	

First,	we	consider	a	mobile	sphere	colliding	with	a	single	sphere	fixed	to	the	boundary.	

The	fixed	sphere	is	considered	as	belonging	to	the	outside	world,	whereas	the	mobile	

sphere	is	the	system	under	study.	This	configuation	is	reminiscent	of	single	kinetic	gas	

particle	system.		

Ftangential

Ftangential

Fcentral

v
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Regarding	the	stress	tensor,	different	approaches	can	be	taken	in	such	a	system:	the	

kinetic	theory	of	gases	ascribes	a	pressure	to	the	kinetic	force	exerted	by	the	gas	

particles	colliding	with	the	walls	and	thus	a	non-zero	stress	tensor	value	for	the	gas.	In	

the	stress	tensor	theory	of	granular	material	on	the	other	hand,	the	average	stress	

tensor	is	obtained	by	subtracting	particle	acceleration	from	the	external	force1.	In	this	

view	purely	kinetic	pressure	arising	from	particle	collisions	with	the	wall	would	be	

considered	an	inertial,	rather	than	proper	elastic	phenomenon;	only	internal	collisions,	

which	are	absent	in	single	mobile	particle	system,	would	give	rise	to	an	internal	stress	

tensor	different	from	zero.	We	follow	this	view	for	the	test	case	at	hand,	and	thus	expect	

an	overall	internal	stress	tensor	of	zero.	

	

A	similar	question	arises	for	the	stress	tensors	arising	from	particle	rotation.	Kinetic	gaz	

theory	does	not	consider	stresses	internal	to	the	gaz	particles	(arising	for	instance	from	

molecular	rotation),	and	thus	would	ignore	the	contribution	of	particle	rotation	to	the	

stress	tensor.	Like	before,	we	follow	here	the	approach	in	granular	material	mechanics1	

and	do	consider	the	tensile	contribution	of	particle	rotation	via	𝜎centrifgual					(eq.	S1-21).	
	

Formally,	as	there	are	no	internal	force	couples,	𝜎%&	should	be	identically	zero.	Further,	
as	all	the	external	force	transmitted	to	the	single	internal	sphere	results	in	acceleration	

of	the	sphere,	we	should	have	𝜎'()*+,	+..*'*,+/(0) = −𝜎external	force.	There	will	also	be	an	
exchange	of	torque,	but	as	no	strictly	internal	torque	arises,	𝜎	should	be	given	by	
𝜎centrifgual	(eq.	24	for	Tint=0).	Hence,	the	overall	stress	tensor	𝜎		should	be	diagonal	with	
negative,	identical	diagonal	elements.	

	

As	shown	in	Table	S4-7,	the	simulation	passes	the	relevant	unit	tests.	

	
Scenario	 Test	 Expected	 Actual	 Pass	

Collision	

with	fixed	

boundary	

sphere	

𝜎%& 	 )0 0
0 0+	 )0 0

0 0+	 Yes	

𝜎	 Diagonal	with	negative	

diagonal	entries	(due	to	

𝜎EF())	

Diagonal	with	negative,	

identical	entries	

Yes	

𝜎'()*+,	+..*'*,+/(0)	 No	a	priori	value	 	 N/A	

𝜎external	force	 −𝜎'()*+,	+..*'*,+/(0)	 relative	error	<	10-15	 Yes	

Script:	particleShearTest/test_oneSphereFreeOneSphereBoundary.py	

	
Table	S4-7.	Unit	testing	results	for	the	scenario	of	a	collision	of	a	single	mobile	sphere	with	
a	fixed	boundary	sphere.	
	

7.2. Pair of spheres interacting through Lees-Edwards periodicity 
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Fig.	S4-7.	Test	case	of	a	pair	of	mobile	spheres	interacting	with	virtual	copies	arising	
through	Lees-Edwards	boundary	periodicity.	For	this	test	case,	there	are	no	strictly	
internal	forces	or	torques,	since	we	consider	interactions	through	the	Lees-Edwards	
boundaries	to	be	approximations	to	interactions	with	a	large,	continuous	medium.	The	
forces	arising	through	the	periodic	interaction	are	therefore	considered	as	external	forces.	
As	a	result,	the	Love-Weber	stress	tensor	should	be	zero	(eq.	S1-16).	Likewise,	there	are	no	
internal	moments,	so	according	to	eq.	S1-24,	the	overall	internal	stress	tensor	𝜎	should	be	
diagonal	with	negative	contributions	due	to	the	centrifugal	term.	
	

By	virtue	of	the	periodicity	of	the	Lees-Edwards	boundary	conditions,	spheres	near	a	

given	boundary	can	interact	with	sphere	located	near	the	opposite	boundary	of	the	

simulation	region	(Fig.	S4-7).	This	emulates	an	infinite	assembly	by	repetition.	We	

consider	the	interactions	across	such	periodic	Lees-Edwards	boundaries	as	external	

interaction,	as	they	represent	an	approximation	to	interactions	to	neighboring	spheres	

outside	the	actual	simulation	region.	

	

In	this	view,	a	pair	of	spheres	interacting	through	a	Lees-Edwards	periodic	boundary	

represents	the	interactions	the	two	spheres	have	with	the	outside	world.	For	this	

reason,	we	count	all	the	forces	in	this	test	case	as	being	externally	applied	forces;	the	

same	holds	for	the	torques.	As	a	consequence,	there	no	strictly	internal	forces	present	in	

the	system	and	the	𝜎%&		should	be	identically	zero.	The	only	non-zero	term	for	the	
overall	stress	tensor	𝜎	arises	from	the	spinning	motion	of	the	spheres,	and	more	
specifically	the	centrifugal	for	term	𝜎centrifugal	,	imparting	negative,	identical	diagonal	
terms	and	zero-value	off-diagonal	terms.	As	before,	𝜎%& = -0 0

0 0.	implies	𝜎external	force =
−𝜎'()*+,	+..*'*,+/(0).	Table	S4-8	shows	the	unit	testing	results	based	on	these	anticipated	
characteristics	of	the	stress	tensors.	The	simulation	passes	the	unit	tests.		

	
Scenario	 Test	 Expected	 Actual	 Pass	

Interaction	

across	

Lees-

Edwards	

boundary	

𝜎%& 	 )0 0
0 0+	 )0 0

0 0+	 Yes	

𝜎	 Diagonal	with	negative	

diagonal	entries	(due	to	

𝜎.*)/,(GHI+')	

Diagonal	with	negative,	

identical	entries	

Yes	

𝜎'()*+,	+..*'*,+/(0)	 No	a	priori	value	 	 N/A	

𝜎external	force	 −𝜎'()*+,	+..*'*,+/(0)	 relative	error	<	10-15	 Yes	

Script:	particleShearTest/test_twoSpheresLeesEdwards.py	
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Table	S4-8.	Unit	testing	results	for	the	scenario	of	general	interaction	of	two	spheres	across	
the	Lees-Edwards	boundaries.	
	
	

8. Assemblies 

8.1. Assembly of spheres 

	

8.1.1. Equilibrated spherical particle assembly without shear 

	

	

	
Fig.	S4-8.	Test	case	of	a	small	particle	ensemble	(N=45)	with	frictional	and	central	
interaction,	after	minimal	pre-equilibration.	The	ensemble	is	under	compression	(packing	
fraction	1.5),	with	Lees-Edwards	boundary	conditions	but	without	externally	applied	shear.	
	

In	this	test	scenario,	we	constitute	a	small	assembly	for	spherical	particles	(N=45),	

under	default	simulation	conditions	(see	Table	Table	S2-1	in	Part	2).	After	a	short	pre-

equilibration	period,	we	assess	the	stress	tensor	values	as	listed	in	Table	S4-9.	We	keep	

the	particle	number	low	and	pre-equilibration	time	short	to	restrict	the	use	of	

computation	ressources;	in	larger	ensembles	with	longer	equilibration	time	as	used	in	

the	actual	simulations,	the	accuracy	would	be	higher,	especially	regarding	the	reduction	

of	𝜎'()*+,	+..*'*,+/(0)	by	pre-equilibration.	
	
Scenario	 Test	 Expected	 Actual	 Pass	

Pre-

equilibrate

d	spherical	
microgel	

assembly	

𝜎%& 	 Positive	diagonal	elements;	

in	standard	simulations	

conditions,	diagonal	
elements	>	0.5	(0.5kPa)	

off-diagonal	elements	

smaller	in	absolute	value:	

0𝜎!"($,&)0 < 0.1𝜎!"($,$)	

and	

0𝜎!"(&,$)0 < 0.1𝜎!"($,$)	

Complies	 Yes	

𝜎	 Symmetrical:	

0𝜎($,&) − 𝜎(&,$)0 <	
Complies	 Yes	
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10(&) ∙ 40𝜎($,$)0 + 0𝜎(&,&)06	
Positive	diagonal	elements;	

in	standard	simulations	

conditions,	diagonal	

elements	>	0.5	(0.5kPa)	

𝜎'()*+,	+..*'*,+/(0)	 Values	of	all	four	entries	

less	than	10%	of	0𝜎($,$)0	
Complies	 Yes	

𝜎external	force	 For	diagonal	elements:	less	
than	10%	difference	from	

corresponding	𝜎	values	

Complies	 Yes	

Script:	particleShearTest/test_simulationFreeSpheres.py	

	
Table	S4-9.	Unit	testing	results	for	the	scenario	of	an	assembly	of	spherical	microgel	
particles.	
	

	

8.1.2. Equilibrated spherical particle assembly during application of shear 

	

	
Fig.	S4-9.	Test	case	of	a	small	particle	ensemble	(N=45)	with	frictional	and	central	
interaction,	after	minimal	pre-equilibration	and	during	application	of	shear.	The	ensemble	
is	under	compression	(packing	fraction	1.5),	with	Lees-Edwards	boundary	conditions.	
	

	

This	scenario	is	identical	to	the	previous	one,	except	for	that	we	initiate	application	of	a	

20%	relative	deformation	oscillatory	shear	cycle	(Fig.	S4-9).	We	interrupt	the	shear	

cycle	after	shortly	after	the	maximum	shear	deformation.	As	the	spherical	suspensions	

cannot	sustain	such	shear	loads	without	yielding,	the	results	should	not	fundamentally	

differ	from	the	previous	scenario.	The	symmetry	constraints	should	be	maintained.	As	

shown	in	Table	S4-10,	the	simulation	passes	these	unit	tests.	

	
Scenario	 Test	 Expected	 Actual	 Pass	

Pre-

equilibrate
d	spherical	

microgel	

assembly	

𝜎%& 	 Positive	diagonal	elements;	

in	standard	simulations	
conditions,	diagonal	

elements	>	0.5	(0.5kPa)	

Complies	 Yes	

𝜎	 Symmetrical:	

0𝜎($,&) − 𝜎(&,$)0 <	
10(&) ∙ 40𝜎($,$)0 + 0𝜎(&,&)06	
Positive	diagonal	elements;	

in	standard	simulations	

Complies	 Yes	
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conditions,	diagonal	

elements	>	0.5	(0.5kPa)	

𝜎'()*+,	+..*'*,+/(0)	 Values	of	all	four	entries	

less	than	10%	of	0𝜎($,$)0	
Complies	 Yes	

𝜎external	force	 For	diagonal	elements:	less	

than	10%	difference	from	

corresponding	𝜎	values	

Complies	 Yes	

Script:	particleShearTest/test_simulationFreeSpheresShear.py	

	
Table	S4-10.	Unit	testing	results	for	the	scenario	of	an	assembly	of	spherical	microgel	
particles	under	a	20%	oscillatory	shear	load.	
	

8.1.3. Equilibrated crosslinked particle assembly during application of shear 

	

	
Fig.	S4-10.	Test	case	of	a	small	crosslinked	particle	ensemble	(N=60)	with	frictional	and	
central	interaction,	after	minimal	pre-equilibration	and	during	application	of	shear.	The	
ensemble	is	under	compression	(packing	fraction	1.5),	with	Lees-Edwards	boundary	
conditions.	
	

In	this	scenario,	we	crosslink	the	spheres	into	distinct	particles.	We	again	initiate	

application	of	a	20%	relative	deformation	oscillatory	shear	cycle,	with	interruption	

shortly	after	the	maximum	shear	deformation.	Due	to	the	presence	of	the	irregular	

particles,	the	suspension	is	capable	of	sustaining	some	elastic	load,	and	we	anticipate	

that	the	off	diagonal	elements	rise.	However,	the	symmetry	constraints	should	be	

maintained.	As	shown	in	Table	S4-11,	the	simulation	passes	these	unit	tests.	

	

	
Scenario	 Test	 Expected	 Actual	 Pass	

Pre-

equilibrate

d	spherical	

microgel	

assembly	

𝜎%& 	 Positive	diagonal	elements;	

in	standard	simulations	

conditions,	diagonal	

elements	>	0.5	(0.5kPa)	

Complies	 Yes	

𝜎	 Symmetrical:	

0𝜎($,&) − 𝜎(&,$)0 <	
10(&) ∙ 40𝜎($,$)0 + 0𝜎(&,&)06	
Positive	diagonal	elements;	

in	standard	simulations	
conditions,	diagonal	

elements	>	500	(i.e.	

0.5kPa)	

Complies	 Yes	

𝜎'()*+,	+..*'*,+/(0)	 Values	of	all	four	entries	

less	than	10%	of	0𝜎($,$)0	
Complies	 Yes	
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𝜎external	force	 For	diagonal	elements:	less	

than	10%	difference	from	

corresponding	𝜎	values	

Complies	 Yes	

Script:	particleShearTest/test_simulationCrosslinkedShear.py	

	
Table	S4-11.	Unit	testing	results	for	the	scenario	of	an	assembly	of	spherical	microgel	
particles	under	a	20%	oscillatory	shear	load.	
	

9. Simulations under actual conditions 
	

The	actual	simulations	are	more	time	consuming,	so	we	do	not	include	them	into	the	

battery	of	unit	tests.	However,	the	scenario	of	crosslinked	particles	described	above	is	

complete,	with	the	exception	of	a	smaller	sphere	number	and	shortened	equilibration	

protocols.	Given	the	compliance	of	the	software	with	the	unit	test	requirements	under	

these	conditions,	we	are	confident	that	the	stress	tensor	values	are	evaluated	correctly	

also	for	larger	particle	numbers	and	longer	equilibration	times,	as	these	parameters	are	

not	per	se	linked	to	the	simulation	and	evaluation	algorithms.	

	

9.1. Stress tensor output in text files 

	

It	is	possible	to	store	the	stress	tensor	values	at	all	time-points	of	the	simulation	in	ASCII	

text	files,	allowing	for	a	posteriori	verification	of	the	various	stress	tensor	expressions	

among	them,	and	for	the	symmetry	of	the	overall	stress	tensor.	

	

The	overall	stress	tensor	components	are	stored	under	the	headings	

“stress_tensor_overall_00”	to	“stress_tensor_overall_11”	(see	Part	2,	Table	S2-3).	The	

symmetry	of	the	overall	stress	tensor	implies	that	the	entries	in	the	columns	

“stress_tensor_overall_01”	and	“stress_tensor_overall_10”	should	be	identical	for	all	time	

points.		

	

9.2. Relations among stored stress tensor values 

	

Beyond	the	symmetry	of	the	overall	stress	tensor,	the	following	relations	can	be	used	to	

check	the	integrity	of	the	evaluated	stress	tensors	a	posteriori:	
	

Rewriting	eq.	S1-24	using	the	column	headers	in	the	output	text	file	(see	Part	2,	Table	

S2-3):	

	
stress_tensor_overall = stress_tensor_Love_Weber + 

stress_tensor_centrifugal + 

stress_tensor_internal_tangential_torque 

	

This	stress	tensor	relation	holds	for	every	component	separately,	so	for	instance	for	the	

11	component,	it	translates	to:	
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stress_tensor_overall_11 = stress_tensor_Love_Weber_11 + 
stress_tensor_centrifugal_11 + 

stress_tensor_internal_tangential_torque_11 

	

Analogous	relations	hold	for	the	00,	the	01	and	the	10	component.	

	

Rewriting	eq.	S1-19,	again	with	the	column	headers	in	the	output	text	files,	we	also	have:	

	
stress_tensor_Love_Weber = stress_tensor_from_external_forces 

+ stress_tensor_linear_acceleration 

	

where,	as	for	eq.	S1-19,	we	neglect	gravity.	The	relation	again	holds	for	each	of	the	four	

components	separately.	

	

Testing	symmetry	of	the	overall	stress	tensor	and	these	relations	on	the	numerical	

output	allows	some	a	posteriori	assessment	of	the	consistency	of	the	values	obtained.	

One	has	to	bear	in	mind	that	due	to	numerical	inaccuracy	inherent	in	digital	

representation	of	numbers,	there	will	be	some	inaccuracy,	and	neither	symmetry	nor	

the	relations	given	by	eq.	S1-19	and	eq.	S1-24	will	be	exact.	The	error	should	however	be	

close	to	numerical	representation	accuracy,	so	that	relative	errors	will	be	very	low	(on	

the	order	of	10-13	or	better	with	current	Python	implementations).	
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