
Package ‘particleShearEvaluation’
March 10, 2021

Type Package

Title Import and analysis of output files from the python simulation particleShear

Version 1.0

Date 2018-10-17

Author Thomas Braschler

Maintainer Thomas Braschler <thomas.braschler@gmail.com>

Description This R package allows reading and analyzing data files produced by the parti-
cleShearSimulation Python library.

License GPL-3 + file LICENSE

Depends rsq, R (¿= 3.5.0), methods, MASS

LazyLoad yes

R topics documented:

particleShearEvaluation-package . 2
evaluate stress curve . 2
file information table from folder . 3
file information table from folders . 3
find infos from file . 4
find info from file . 5
find info from text . 5
general linear regression p bootstrap . 6
get yield point . 13
G from demodulation . 14
headerSearchPatterns . 15
linear regression p bootstrap . 16
measurement periods . 23
read first lines . 24
read general data from file . 24
read stress curve from file . 25
read stress curve from rda file . 26
read stress tensor data from file . 27
read stress tensor data from rda file . 29
split tensor and overview data . 30
stress data start line . 31

Index 32

1

2 evaluate stress curve

particleShearEvaluation-package

plot.counts

Description

Utility functions to read text output files from the simulation library particleShearEvalua-
tion (Python)

Details

Package: particleShearEvaluation
Type: Package
Version: 1.0
Date: 2018-10-17
License: What license is it under?
LazyLoad: yes

Author(s)

Thomas Braschler

Maintainer: thomas.braschler@gmail.com

evaluate stress curve evaluate stress curve

Description

Evaluate oscillatory sweep curve (G’ and G” as a function of amplitude), looking for a low
strain plateau, a first softening transition, a soft plateau, and a yield transition

Usage

evaluate_stress_curve(strain,Gprime,Gprimeprime,guess_softening_strain=0.01,guess_soft_plateau_strain=0.1)

Arguments

strain Strain, should be vector in ascending strain order

Gprime Gprime values, same length as strain

Gprimeprime G” values, should be the same length as previous arguments

guess softening strain

Initial guess for the softening strain, typically the same as the friction
coefficient

guess soft plateau strain

Guess of the strain on the soft plateau, typically 0.1

file information table from folder 3

Value

A matrix of 3 rows and 4 columns. First row is strain, second row is G’, third row is G”.
The columns are the low strain plateau, the softening transition, the soft plateau, and the
yield transition

Author(s)

Thomas Braschler

file information table from folder

Search a folder for text files to retrieve the standard header in-
formation from the particleShearSimulation output text files

Description

Finds text files of at least min file size bytes in size, reads the first 100 lines (or all
available lines if the file is shortr) for the header information, and looks for the standard
information by means of regular expression patterns given by headerSearchPatterns

Usage

file_information_table_from_folder(path,min_file_size=1e5)

Arguments

path Folder path

min file size Minimal size for a file to be taken into account in the listing

Value

A data frame, one line per conforming file, columns for each information element

Author(s)

Thomas Braschler

file information table from folders

Search several folders for text files to retrieve the standard header
information from the particleShearSimulation output text files

Description

Finds text files of size of at least min file size bytes, reads the first 100 lines for the header
information (or the entire file if less than 100 lines are found), and looks for the standard
information by means of regular expression patterns given by headerSearchPatterns

4 find infos from file

Usage

file_information_table_from_folders(paths,min_file_size=1e5)

Arguments

paths Vector of folder paths

min file size Minimal size for a file to be taken into account in the listing

Details

For each element in paths, this function invokes file information table from folders, and
then concatenates the results

Value

A data frame, one line per conforming file, columns for each information element

Author(s)

Thomas Braschler

find infos from file find infos from file

Description

Searches a text file for the information elements specified by a vector of specific regular
expression patterns

Usage

find_infos_from_file(path,patterns)

Arguments

path Path to the text file

patterns Patterns allowing to retrieve the desired bits of information in the text file.
The patterns needs are a vector, each element must have a named captur-
ing parenthesis. An example would be c("Damping factor = (?<capture>[0-9]*\.?[0-9]*)","cut lines=(?<capture>[0-9]*)"),
where the capturing name <capture> is mandatory.

Author(s)

Thomas Braschler

find info from file 5

find info from file find info from file

Description

Find a particular information from a text file

Usage

find_info_from_file(path,pattern,n=100)

Arguments

path Text in which to search for the regular expression pattern

pattern Pattern allowing to retrieve a particular information in the text. The pat-
tern needs to have a named capturing parenthesis. An example would be
"Damping factor = (?<capture>[0-9]*\.?[0-9]*)", where the capturing
name <capture> is mandatory.

n Number of lines to read while searching for the information. Provide n=-1
for reading the entire file

Author(s)

Thomas Braschler

find info from text find info from text

Description

Find particular information from the file header text by using a supplied regular expression
pattern

Usage

find_info_from_text(txt,pattern)

Arguments

txt Text in which to search for the regular expression pattern

pattern Pattern allowing to retrieve a particular information in the text. The pat-
tern needs to have a named capturing parenthesis. An example would be
"Damping factor = (?<capture>[0-9]*\.?[0-9]*)", where the capturing
name <capture> is mandatory.

Author(s)

Thomas Braschler

6 general linear regression p bootstrap

general linear regression p bootstrap

general linear regression p bootstrap

Description

Evaluation of a bootstrapped (resampled) dataset with a glm model to obtain a p-value.

Usage

general_linear_regression_p_bootstrap(x,y,n_agg=5,family=gaussian(link="identity"),na.rm=FALSE,...)

Arguments

x Vector with numerical values associated with experimental conditions (re-
gressor), these are the x-values for the glm model

y Matrix obtained by the resampling procedure. y must have as many rows
as there are values in x; each column corresponds to a redrawn sample.
Sequential blocks of n agg columns will be evaluated together in a glm,
so ideally, the number of columns in y is a multiple of n agg. Otherwise
only the complete blocks in y are taken into account.

n agg Length of the resampling blocks for accross the columns of y, the will be
dim(y)[2]/n agg evaluations of the glm.

family Family argument for the glm model, see also family

na.rm In random resampling, it may happen that non-evaluatable samples are
generated (all values identical, for example). Although generally rare, in
large bootstrapping studies, it may be advantages to pass na.rm=TRUE so
that these rare samples are not taken into account.

... Additional parameters to be passed to glm

Details

Generally, this function is useful in a limited scenario where one has a procedure that best
estimates parameters from average curves, but by doing so looses information on variability.
If there are many x values, then this is less of problem, the issue is more if there are only
a few x-values because then despite an originally potentially very large dataet, only a few
x-y pairs result. The result is then that despite a potentially very large dataset used, the
standard linear regression (lm) or even general linear model statistics (glm) have almost no
power to detect even dramatic effects. In that case, subsampling

Value

Numerical p-value for a significant link between y and x. In addition, the following at-
tributes are attached to this p-values p:

attr(p,"F") Average value of the t-statistics squared for the length(y)/n agg evaluations
of glm. The t-statistics are obtained from the coefficients of the summary of the glms
(i.e. from summary.glm. The F-value is the mean of the squared t-values.

general linear regression p bootstrap 7

attr(p,"DF1") Degrees of freedom of the F-statistics. This is 1, since these are obtained
from t-values which only have 1 degree of freedom in the numerator

attr(p,"DF2") Mean degree of freedom for the residual variance for evaluation of the p-
value

attr(p,"adj.r.squared") Adjusted R2 value.

attr(p,"p shapiro") Shapiro Wilks P-value for the residuals

attr(p,"confint") 95% confidence interval for the regression slope coefficient. In lm, this
is really a slope, in glm regression, this depends on the link functions, but still, if
significant, 0 should not be in this interval

Author(s)

Thomas Braschler

Examples

Example 1: usage
x=c(0,1,2,3)

With a known effect
y=matrix(nrow=length(x),ncol=500,data=x)
y=y+matrix(nrow=dim(y)[1], ncol=dim(y)[2], data=rnorm(dim(y)[1]*dim(y)[2]))
general_linear_regression_p_bootstrap(x,y,n_agg=5)

Random effect only
y=matrix(nrow=dim(y)[1], ncol=dim(y)[2], data=rnorm(dim(y)[1]*dim(y)[2]))
general_linear_regression_p_bootstrap(x,y,n_agg=5)

Example 2:
===

Use of a more reality-inspired scenario: The problem of evaluation of outcomes from an averaged curve.
This is inspired from an Arrhenius-type equation, we use here the temperature at half-maximal reaction rate for
assessing catalyst activity (assuming Arrhenius-type saturation at higher temperature).

T is the known temperature, in Kelvin; T0 the activation energy in temperature equivalents
Let's assume T0 depends on the addition of some catalyst, this is our x. Let's have the dependency quite extreme
x=c(0,3,6) # Concentrations catalyst
T0=exp(x) # Let's say, this is an exponential dependency
T=c(1,3,10,30,100,300,1000) # Known temperatures
N_per_condition=15
Theoretical values
theory_reaction_rate = matrix(nrow=length(x),ncol=length(T))
In reality, we would dispose of measured values with variability rather than theoretical values. Let's say we dispose of 15 values for theoretical value
measured=data.frame(T=vector(mode="numeric",length=0),x=vector(mode="numeric",length=0),measured_reaction_rate=vector(mode="numeric",length=0))
for(ind_x in 1:length(x))
{
for(ind_T in 1:length(T))
{
theory_reaction_rate[ind_x,ind_T]=50*exp(-T0[ind_x]/T[ind_T])
Let's say we have normal distribution at log scale
Generate a random sample with 15 values

8 general linear regression p bootstrap

measurements_random =exp(log(theory_reaction_rate[ind_x,ind_T])+rnorm(N_per_condition))
measured=rbind(measured,data.frame(T=T[ind_T],x=x[ind_x],measured_reaction_rate=measurements_random))

}
}
plot(measured_reaction_rate ˜ T, measured[measured$x==x[1],],pch=21,col="black",bg="black",ylim=c(-10,150))
for(ind_x in 2:length(x))
{
lines(measured_reaction_rate ˜ T, measured[measured$x==x[ind_x],],pch=21,col=palette()[ind_x],bg=palette()[ind_x],type="p")

}

For the evaluation, let's first evaluate things globally. Let's say we are interested in knowing for each catalyst concentration x the temperature where the reaction rate is half-maximal. We estimate the maximum reaction rate at the highest temperature:

v_max = aggregate (measured_reaction_rate ˜ x, measured[measured$T==max(measured$T),],FUN=median,na.rm=TRUE)
General aggregation per x and T
v = aggregate(measured_reaction_rate ˜ x+T,measured,FUN=median,na.rm=TRUE)
for(ind_x in 1:length(x))
{
lines(measured_reaction_rate ˜ T, v[v$x==x[ind_x],],col=palette()[ind_x],type="l")
}

For convenience, define here a function that estimates the temperatures for half-maximal reaction rate

estimate_half_temperature_at_half_maximal_rate<-function(v)
{
x=sort(unique(v$x))
v_max=v[v$T==max(v$T),]

For each concentration, to find the temperature where the rate is half-maximal, we go through the temperatures and interpolate between the point just below have maximum and above
half_temperature = vector(mode="numeric",length=length(x))
names(half_temperature)=x

for(ind_x in 1:length(x))
{
vx = v[v$x==x[ind_x],]
first_point_above = min(which(vx$measured_reaction_rate>v_max$measured_reaction_rate[v_max$x==x[ind_x]]/2))
if(is.infinite(first_point_above))
{
half_temperature[as.character(x[ind_x])]=max(vx$T)
} else {
if(first_point_above==1)
{
half_temperature[as.character(x[ind_x])]=min(vx$T)
} else {
half_temperature[as.character(x[ind_x])]=approx(vx$measured_reaction_rate[c(first_point_above-1,first_point_above)],
vx$T[c(first_point_above-1,first_point_above)],xout=v_max$measured_reaction_rate[v_max$x==x[ind_x]]/2)$y
}
}

}

overall_summary = data.frame(x=x, half_temperature=half_temperature)

return(overall_summary)

general linear regression p bootstrap 9

}

overall_summary=estimate_half_temperature_at_half_maximal_rate(v)

dev.new()

As one can see, it is quite difficult to infer much from this data. Even though the difference in half-maximal temperature are enormous, the fact that we only have
three experimental points does not allow to conclude much
plot(half_temperature˜x, overall_summary)
The linear model is hardly ever significant
summary(lm(half_temperature˜x, overall_summary))
If you run this a couple of times, you will see that the glm with the anticipated variance does better, but still, often misses the dramatic effect
summary(glm(half_temperature˜x, overall_summary,family=quasi(link = "log", variance = "mu")))

That's where bootstrapping can offer a reasonable alternative
n_agg = 3 # Let's generate three subsampling plots
N_total = n_agg*100 # 100 blocks
n_to_sample = round(N_per_condition/n_agg) # Nominal coverage of 1

y=matrix(nrow=length(x),ncol=N_total)

for(ind_bootstrap in 1:N_total)
{

measured_subsampled=measured[FALSE,]

for(ind_x in 1:length(x))
{
for(ind_T in 1:length(T))
{
to_subsample = measured[measured$T==T[ind_T] & measured$x==x[ind_x],]
measured_subsampled=rbind(measured_subsampled,to_subsample[sample(dim(to_subsample)[1], n_to_sample),])

}
}

v_subsampled=aggregate(measured_reaction_rate ˜ x+T,measured_subsampled,FUN=median)

half_temperature_estimate=estimate_half_temperature_at_half_maximal_rate(v_subsampled)

y[match(half_temperature_estimate$x,x),ind_bootstrap]=half_temperature_estimate$half_temperature

}

x is now the regressor values (catalyst concentrations) as wanted

general_linear_regression_p_bootstrap(x,y,n_agg=n_agg,family=quasi(link = "log", variance = "mu"))

10 general linear regression p bootstrap

Example 3: Power (1-beta) and false-positives (alpha) analysis in the setting of example 1
==
Basic settings as in example 1
as before, to get the temperature estimates at half-maximum rate empirically

This example takes a very long time to execute (15'), typical results are:
False positive rates (alpha) under the hypothesis of random fluctations only:
=> a few percent (generally compatible with alpha <= 0.05) for all three evaluation methods (simple linear model, simple glm model, and glm bootstrapping via
general_linear_regression_p_bootstrap
=> Power (true positives, under the hypothetical true effect detailed in the example: Very low for simple linear regression (typically, a few percent); moderately low for
a simple glm (on the order of 0.3-0.4); and moderately high (0.85-0.95) for the bootstrapping approach
For the particular case in this example, we therefore conclude that the bootstrapping approach is the most powerful by a substantial margin, without undue inflation of
type I (false negatives) errors

Not run:

estimate_half_temperature_at_half_maximal_rate<-function(v)
{
x=sort(unique(v$x))
v_max=v[v$T==max(v$T),]

For each concentration, to find the temperature where the rate is half-maximal, we go through the temperatures and interpolate between the point just below have maximum and above
half_temperature = vector(mode="numeric",length=length(x))
names(half_temperature)=x

for(ind_x in 1:length(x))
{
vx = v[v$x==x[ind_x],]
first_point_above = min(which(vx$measured_reaction_rate>v_max$measured_reaction_rate[v_max$x==x[ind_x]]/2))
if(is.infinite(first_point_above))
{
half_temperature[as.character(x[ind_x])]=max(vx$T)
} else {
if(first_point_above==1)
{
half_temperature[as.character(x[ind_x])]=min(vx$T)
} else {
half_temperature[as.character(x[ind_x])]=approx(vx$measured_reaction_rate[c(first_point_above-1,first_point_above)],
vx$T[c(first_point_above-1,first_point_above)],xout=v_max$measured_reaction_rate[v_max$x==x[ind_x]]/2)$y
}
}

}

overall_summary = data.frame(x=x, half_temperature=half_temperature)

return(overall_summary)

}

get_p_value_estimate<-function(x,T0,T,N_per_condition)
{

general linear regression p bootstrap 11

theory_reaction_rate = matrix(nrow=length(x),ncol=length(T))
In reality, we would dispose of measured values with variability rather than theoretical values. Let's say we dispose of 15 values for theoretical value
measured=data.frame(T=vector(mode="numeric",length=0),x=vector(mode="numeric",length=0),measured_reaction_rate=vector(mode="numeric",length=0))
for(ind_x in 1:length(x))
{
for(ind_T in 1:length(T))
{
theory_reaction_rate[ind_x,ind_T]=50*exp(-T0[ind_x]/T[ind_T])
Let's say we have normal distribution at log scale
Generate a random sample with 15 values
measurements_random =exp(log(theory_reaction_rate[ind_x,ind_T])+rnorm(N_per_condition))
measured=rbind(measured,data.frame(T=T[ind_T],x=x[ind_x],measured_reaction_rate=measurements_random))

}
}

For the evaluation, let's first evaluate things globally. Let's say we are interested in knowing for each catalyst concentration x the temperature where the reaction rate is half-maximal. We estimate the maximum reaction rate at the highest temperature:

v_max = aggregate (measured_reaction_rate ˜ x, measured[measured$T==max(measured$T),],FUN=median,na.rm=TRUE)
General aggregation per x and T
v = aggregate(measured_reaction_rate ˜ x+T,measured,FUN=median,na.rm=TRUE)

overall_summary=estimate_half_temperature_at_half_maximal_rate(v)

pvals=vector(length=3, mode="numeric")

names(pvals)=c("lm simple","glm simple","glm bootstrapping")

pvals["lm simple"]=coefficients(summary(lm(half_temperature˜x, overall_summary)))["x","Pr(>|t|)"]
pvals["glm simple"]=coefficients(summary(glm(half_temperature˜x, overall_summary,family=quasi(link = "log", variance = "mu"))))["x","Pr(>|t|)"]

n_agg = 3 # Let's generate three subsampling plots
N_total = n_agg*100 # 100 blocks
n_to_sample = round(N_per_condition/n_agg) # Nominal coverage of 1

y=matrix(nrow=length(x),ncol=N_total)

for(ind_bootstrap in 1:N_total)
{

measured_subsampled=measured[FALSE,]

for(ind_x in 1:length(x))
{
for(ind_T in 1:length(T))
{
to_subsample = measured[measured$T==T[ind_T] & measured$x==x[ind_x],]
measured_subsampled=rbind(measured_subsampled,to_subsample[sample(dim(to_subsample)[1], n_to_sample),])

}
}

12 general linear regression p bootstrap

v_subsampled=aggregate(measured_reaction_rate ˜ x+T,measured_subsampled,FUN=median,na.rm=TRUE)

half_temperature_estimate=estimate_half_temperature_at_half_maximal_rate(v_subsampled)

y[match(half_temperature_estimate$x,x),ind_bootstrap]=half_temperature_estimate$half_temperature

}

x is now the regressor values (catalyst concentrations) as wanted

pvals["glm bootstrapping"]=general_linear_regression_p_bootstrap(x,y,n_agg=n_agg,family=quasi(link = "log", variance = "mu"),na.rm=TRUE)

return(pvals)

}

First, the case with a known effect
x=c(0,2,4) # Concentrations catalyst
T0=exp(x) # Let's say, this is an exponential dependency
T=c(1,3,10,30,100,300,1000) # Known temperatures
N_per_condition=15
N_simulation=100

pfirst=get_p_value_estimate(x,T0,T,N_per_condition)

p_matrix=matrix(ncol=length(pfirst),nrow=N_simulation)

p_matrix[1,]=pfirst

colnames(p_matrix)=names(pfirst)

for(ind in 2:(dim(p_matrix)[1]))
{
p_matrix[ind,]=get_p_value_estimate(x,T0,T,N_per_condition)

cat(paste("Run ", ind, "\n", sep=""))

}

power=pfirst
for(theApproach in names(power))
{
current_data=p_matrix[,theApproach]
current_data=current_data[!is.na(current_data)]
power[theApproach]=sum(current_data<=0.05)/(length(current_data))
}

Second, false positives
T0=exp(0*x) # No effect of the catalyst

pfirst=get_p_value_estimate(x,T0,T,N_per_condition)

get yield point 13

p_matrix_control=matrix(ncol=length(pfirst),nrow=N_simulation)

p_matrix_control[1,]=pfirst

colnames(p_matrix_control)=names(pfirst)

for(ind in 2:(dim(p_matrix_control)[1]))
{
p_matrix_control[ind,]=get_p_value_estimate(x,T0,T,N_per_condition)

cat(paste("Run ", ind, "\n", sep=""))

}

false_positives=pfirst
for(theApproach in names(false_positives))
{
current_data=p_matrix_control[,theApproach]
current_data=current_data[!is.na(current_data)]
false_positives[theApproach]=sum(current_data<=0.05)/(length(current_data))
}

for_barplot=matrix(nrow=2,ncol=length(false_positives),data=c(false_positives, power),byrow=TRUE)

rownames(for_barplot)=c("False positives (alpha)", "True positives (1-beta, power)")
colnames(for_barplot)=names(false_positives)

barplot(for_barplot,beside=TRUE,legend=TRUE)

End(Not run)

get yield point get yield point

Description

Yield point by crossing of G’ and G” curves in a strain vs. G’ and G” oscillatory sweep
diagram

Usage

get_yield_point(strain,Gprime,Gprimeprime)

14 G from demodulation

Arguments

strain Vector with strain values (meant to be imposed in the simulations), should
be unique values

Gprime Vector with G’ values, identical in length to strain

Gprimeprime Vector with G” values, identical in length to strain

Details

This is a relatively elementary function to find the intersection of the G’ and G” curves. It
proceeds as follows: If G” is higher than G’ everywhere, the lowest strain value is reported;
if on the contrary, G’ is higher than G” everywhere, NA is reported. In the nominal case,
the highest strain at which G’ crosses below G” is reported.

Value

Strain at which the G’ and G” curves intersect

Author(s)

Thomas Braschler

See Also

evaluateYield in package rheologyEvaluation (https://github.com/tbgitoo/rheologyEvaluation)
with more flexible options for more complicated cases

Examples

strain=c(0.01,0.03,0.1,0.3,1,3,10)
Gprime=c(1000,950,700,300,100,20,10)
Gprimeprime=c(50,60,80,100,120,110,50)
plot(Gprime ˜ strain,type="b",ylab=c("G' and G''"))
lines(Gprimeprime ˜ strain)
lines(rep(get_yield_point(strain,Gprime,Gprimeprime),2),c(0,max(Gprime)),lty=2)
get_yield_point(strain,Gprime,Gprimeprime)

G from demodulation G from demodulation

Description

G’ and G” by demodulation of a time - shear stress curve

Usage

G_from_demodulation(t,Frequency,m,correct_for_jumps=TRUE,Strain_amplitude=1,relative_threshold=0.15,doPlot=FALSE,plot.new=TRUE,max_plot=400,...)

headerSearchPatterns 15

Arguments

t Vector with the time points

Frequency Frequency of applied oscillatory shear

m Vector with the shear stress measurements, should have same length as t

correct for jumps

Possibility to correct for sudden jumps, arising typically as individual
spheres transit across the boundary under Lees-Edwards conditions

Strain amplitude

Amplitude of the applied sinusoidal strain

relative threshold

Threshold relative to minimum to maximum amplitude found in the mea-
surement m

doPlot Plot the jump-corrected curve?

plot.new Start a new plot? Only relevant, if doPlot=TRUE

max plot Maximum number of values to plot for the stress curve. Only relevant if
doPlot=TRUE and if max plot<length(t)

... Additional parameters to be passed to the graphical functions (either plot
if doPlot=TRUE or otherwise lines

Details

The function assumes that the first time point is at t=0; if not the case, the initial time is
subtracted from all time values.
Second, the in-phase component (the "Gprime" element in the output) is proportional to
the sinus component, whereas the out-of-phase component (the "Gprimeprime" element in
the output) is proportional to the cosine component

Value

Vector of two named elements ("Gprime" and "Gprimeprime").

Author(s)

Thomas Braschler

headerSearchPatterns headerSearchPatterns

Description

Standard search patterns to analyze result text files produced by the python library parti-
cleShearSimulation

Usage

headerSearchPatterns()

Value

Vector of standard regular expression search patterns

16 linear regression p bootstrap

Author(s)

Thomas Braschler

linear regression p bootstrap

linear regression p bootstrap

Description

Uses pre-generated bootstrapping matrices for evaluating relations between variables by
linear regression

Usage

linear_regression_p_bootstrap(x,y,n_agg=5,na.rm=FALSE)

Arguments

x Independent variable for the linear regression; this should be a vector.

y Bootstrapping data. This is a matrix with as many rows as there are
elements in x, and a possible very large number of columns where the
number of columns should be multiple of n agg, otherwise the last columns
are ignored such as to achieve a number of columns which is a multiple
of n agg.

n agg Number of columns in y that should be used together to generate a dataset
to be used for the linear model (i.e. passed to lm).

na.rm In random resampling, it may happen that non-evaluatable samples are
generated (all values identical, for example). Although generally rare, in
large bootstrapping studies, it may be advantages to pass na.rm=TRUE so
that these rare samples are not taken into account.

Details

This function assembles datasets for linear regression, calls lm for carrying out the linear
regression, and returns statistical data averaged over the different runs. This is typically
useful to analyze bootstrapping data, where many data sets are drawn from an original,
larger dataset.

Technically, the function aims at regression the data in y against the independent vari-
able x. For this, datasets are progressively assembled from x and n agg columns of y at
a time. Internally, x is repeated n agg times by concatenation, and associated with the
n agg columns of y assembled into a single vector by concatenation. On this dataset, linear
regression (aka lm) is run.

From each run of linear regression, an F statistics and degrees of freedom of the numerator
(DF1) and denominator (DF2) as well as an adjusted r squared value is obtained. The
function averages these over the number of linear regression runs; the average P-value is
calculated using pf from these average statistic values and return as the main value.

linear regression p bootstrap 17

Value

Single numerical P-value. In addition, attributes accessible via attr are attached:
”F” for the average F-statistics
”DF1” for the number of degrees of freedom in the numerator
”DF2” for the number of degrees of freedom in the denominator
”adj.r.squared” for the adjusted R-squared value as calculated by summary.lm
”p shapiro” averaged P-value for normality testing. The averaging here is particular: The
P-value returned by shapiro.test is first converted to a Z value by qnorm, and the Z values
averaged over the linear regression run. The average Z-value is converted back to an average
P-value via pnorm

Author(s)

Thomas Braschler

Examples

Example 1: usage
x=c(0,1,2)

With a known effect
y=matrix(nrow=length(x),ncol=500,data=x)
y=y+matrix(nrow=dim(y)[1], ncol=dim(y)[2], data=rnorm(dim(y)[1]*dim(y)[2]))
linear_regression_p_bootstrap(x,y,n_agg=5)

Random effect only
y_control=matrix(nrow=dim(y)[1], ncol=dim(y)[2], data=rnorm(dim(y)[1]*dim(y)[2]))
linear_regression_p_bootstrap(x,y_control,n_agg=5)

Example 2:
===

Use of a more reality-inspired scenario: The problem of evaluation of outcomes from an averaged curve.
This is inspired from an Arrhenius-type equation, we use here the temperature at half-maximal reaction rate for
assessing catalyst activity (assuming Arrhenius-type saturation at higher temperature). Same scenario as for the general_linear_regression_p_bootstrap,
but we will use a transformation to address heteroscedasticity

T is the known temperature, in Kelvin; T0 the activation energy in temperature equivalents
Let's assume T0 depends on the addition of some catalyst, this is our x. Let's have the dependency quite extreme
x=c(0,3,6) # Concentrations catalyst
T0=exp(x) # Let's say, this is an exponential dependency
T=c(1,3,10,30,100,300,1000) # Known temperatures
N_per_condition=15
Theoretical values
theory_reaction_rate = matrix(nrow=length(x),ncol=length(T))
In reality, we would dispose of measured values with variability rather than theoretical values. Let's say we dispose of 15 values for theoretical value
measured=data.frame(T=vector(mode="numeric",length=0),x=vector(mode="numeric",length=0),measured_reaction_rate=vector(mode="numeric",length=0))
for(ind_x in 1:length(x))
{
for(ind_T in 1:length(T))
{
theory_reaction_rate[ind_x,ind_T]=50*exp(-T0[ind_x]/T[ind_T])
Let's say we have normal distribution at log scale
Generate a random sample with 15 values
measurements_random =exp(log(theory_reaction_rate[ind_x,ind_T])+rnorm(N_per_condition))

18 linear regression p bootstrap

measured=rbind(measured,data.frame(T=T[ind_T],x=x[ind_x],measured_reaction_rate=measurements_random))

}
}
plot(measured_reaction_rate ˜ T, measured[measured$x==x[1],],pch=21,col="black",bg="black",ylim=c(-10,150))
for(ind_x in 2:length(x))
{
lines(measured_reaction_rate ˜ T, measured[measured$x==x[ind_x],],pch=21,col=palette()[ind_x],bg=palette()[ind_x],type="p")

}

For the evaluation, let's first evaluate things globally. Let's say we are interested in knowing for each catalyst concentration x the temperature where the reaction rate is half-maximal. We estimate the maximum reaction rate at the highest temperature:

v_max = aggregate (measured_reaction_rate ˜ x, measured[measured$T==max(measured$T),],FUN=median,na.rm=TRUE)
General aggregation per x and T
v = aggregate(measured_reaction_rate ˜ x+T,measured,FUN=median,na.rm=TRUE)
for(ind_x in 1:length(x))
{
lines(measured_reaction_rate ˜ T, v[v$x==x[ind_x],],col=palette()[ind_x],type="l")
}

For convenience, define here a function that estimates the temperatures for half-maximal reaction rate

estimate_half_temperature_at_half_maximal_rate<-function(v)
{
x=sort(unique(v$x))
v_max=v[v$T==max(v$T),]

For each concentration, to find the temperature where the rate is half-maximal, we go through the temperatures and interpolate between the point just below have maximum and above
half_temperature = vector(mode="numeric",length=length(x))
names(half_temperature)=x

for(ind_x in 1:length(x))
{
vx = v[v$x==x[ind_x],]
first_point_above = min(which(vx$measured_reaction_rate>v_max$measured_reaction_rate[v_max$x==x[ind_x]]/2))
if(is.infinite(first_point_above))
{
half_temperature[as.character(x[ind_x])]=max(vx$T)
} else {
if(first_point_above==1)
{
half_temperature[as.character(x[ind_x])]=min(vx$T)
} else {
half_temperature[as.character(x[ind_x])]=approx(vx$measured_reaction_rate[c(first_point_above-1,first_point_above)],
vx$T[c(first_point_above-1,first_point_above)],xout=v_max$measured_reaction_rate[v_max$x==x[ind_x]]/2)$y
}
}

}

overall_summary = data.frame(x=x, half_temperature=half_temperature)

return(overall_summary)

linear regression p bootstrap 19

}

overall_summary=estimate_half_temperature_at_half_maximal_rate(v)

dev.new()

As one can see, it is quite difficult to infer much from this data. Even though the difference in half-maximal temperature are enormous, the fact that we only have
three experimental points does not allow to conclude much
plot(half_temperature˜x, overall_summary,log="y")
With the log transformation, the standard linear model is at the limit of significance, it depends on the run
summary(lm(log(half_temperature)˜x, overall_summary))

That's where bootstrapping can offer a reasonable alternative
n_agg = 3 # Let's generate three subsampling plots
N_total = n_agg*100 # 100 blocks
n_to_sample = round(N_per_condition/n_agg) # Nominal coverage of 1

y=matrix(nrow=length(x),ncol=N_total)

for(ind_bootstrap in 1:N_total)
{

measured_subsampled=measured[FALSE,]

for(ind_x in 1:length(x))
{
for(ind_T in 1:length(T))
{
to_subsample = measured[measured$T==T[ind_T] & measured$x==x[ind_x],]
measured_subsampled=rbind(measured_subsampled,to_subsample[sample(dim(to_subsample)[1], n_to_sample),])

}
}

v_subsampled=aggregate(measured_reaction_rate ˜ x+T,measured_subsampled,FUN=median)

half_temperature_estimate=estimate_half_temperature_at_half_maximal_rate(v_subsampled)

y[match(half_temperature_estimate$x,x),ind_bootstrap]=half_temperature_estimate$half_temperature

}

x is now the regressor values (catalyst concentrations) as wanted
With the log transformation for the y (temperature at half-maximum rate), this generally highly significant
linear_regression_p_bootstrap(x,log(y),n_agg=n_agg)

Example 3
Basic settings as in example 2, power and analysis
=======================================

as before, to get the temperature estimates at half-maximum rate empirically

20 linear regression p bootstrap

estimate_half_temperature_at_half_maximal_rate<-function(v)
{
x=sort(unique(v$x))
v_max=v[v$T==max(v$T),]

For each concentration, to find the temperature where the rate is half-maximal, we go through the temperatures and interpolate between the point just below have maximum and above
half_temperature = vector(mode="numeric",length=length(x))
names(half_temperature)=x

for(ind_x in 1:length(x))
{
vx = v[v$x==x[ind_x],]
first_point_above = min(which(vx$measured_reaction_rate>v_max$measured_reaction_rate[v_max$x==x[ind_x]]/2))
if(is.infinite(first_point_above))
{
half_temperature[as.character(x[ind_x])]=max(vx$T)
} else {
if(first_point_above==1)
{
half_temperature[as.character(x[ind_x])]=min(vx$T)
} else {
half_temperature[as.character(x[ind_x])]=approx(vx$measured_reaction_rate[c(first_point_above-1,first_point_above)],
vx$T[c(first_point_above-1,first_point_above)],xout=v_max$measured_reaction_rate[v_max$x==x[ind_x]]/2)$y
}
}

}

overall_summary = data.frame(x=x, half_temperature=half_temperature)

return(overall_summary)

}

get_p_value_estimate<-function(x,T0,T,N_per_condition)
{

theory_reaction_rate = matrix(nrow=length(x),ncol=length(T))
In reality, we would dispose of measured values with variability rather than theoretical values. Let's say we dispose of 15 values for theoretical value
measured=data.frame(T=vector(mode="numeric",length=0),x=vector(mode="numeric",length=0),measured_reaction_rate=vector(mode="numeric",length=0))
for(ind_x in 1:length(x))
{
for(ind_T in 1:length(T))
{
theory_reaction_rate[ind_x,ind_T]=50*exp(-T0[ind_x]/T[ind_T])
Let's say we have normal distribution at log scale
Generate a random sample with 15 values
measurements_random =exp(log(theory_reaction_rate[ind_x,ind_T])+rnorm(N_per_condition))
measured=rbind(measured,data.frame(T=T[ind_T],x=x[ind_x],measured_reaction_rate=measurements_random))

}
}

linear regression p bootstrap 21

For the evaluation, let's first evaluate things globally. Let's say we are interested in knowing for each catalyst concentration x the temperature where the reaction rate is half-maximal. We estimate the maximum reaction rate at the highest temperature:

v_max = aggregate (measured_reaction_rate ˜ x, measured[measured$T==max(measured$T),],FUN=median,na.rm=TRUE)
General aggregation per x and T
v = aggregate(measured_reaction_rate ˜ x+T,measured,FUN=median,na.rm=TRUE)

overall_summary=estimate_half_temperature_at_half_maximal_rate(v)

pvals=vector(length=2, mode="numeric")

names(pvals)=c("lm","lm bootstrapping")

pvals["lm"]=coefficients(summary(lm(log(half_temperature)˜x, overall_summary)))["x","Pr(>|t|)"]

n_agg = 3 # Let's generate three subsampling plots
N_total = n_agg*100 # 100 blocks
n_to_sample = round(N_per_condition/n_agg) # Nominal coverage of 1

y=matrix(nrow=length(x),ncol=N_total)

for(ind_bootstrap in 1:N_total)
{

measured_subsampled=measured[FALSE,]

for(ind_x in 1:length(x))
{
for(ind_T in 1:length(T))
{
to_subsample = measured[measured$T==T[ind_T] & measured$x==x[ind_x],]
measured_subsampled=rbind(measured_subsampled,to_subsample[sample(dim(to_subsample)[1], n_to_sample),])

}
}

v_subsampled=aggregate(measured_reaction_rate ˜ x+T,measured_subsampled,FUN=median,na.rm=TRUE)

half_temperature_estimate=estimate_half_temperature_at_half_maximal_rate(v_subsampled)

y[match(half_temperature_estimate$x,x),ind_bootstrap]=half_temperature_estimate$half_temperature

}

x is now the regressor values (catalyst concentrations) as wanted

pvals["lm bootstrapping"]=linear_regression_p_bootstrap(x,log(y),n_agg=n_agg,na.rm=TRUE)

return(pvals)

}

First, the case with a known effect

22 linear regression p bootstrap

x=c(0,2,4) # Concentrations catalyst
T0=exp(x) # Let's say, this is an exponential dependency
T=c(1,3,10,30,100,300,1000) # Known temperatures
N_per_condition=15
N_simulation=100

pfirst=get_p_value_estimate(x,T0,T,N_per_condition)

p_matrix=matrix(ncol=length(pfirst),nrow=N_simulation)

p_matrix[1,]=pfirst

colnames(p_matrix)=names(pfirst)

for(ind in 2:(dim(p_matrix)[1]))
{
p_matrix[ind,]=get_p_value_estimate(x,T0,T,N_per_condition)

cat(paste("Run ", ind, "\n", sep=""))

}

power=pfirst
for(theApproach in names(power))
{
current_data=p_matrix[,theApproach]
current_data=current_data[!is.na(current_data)]
power[theApproach]=sum(current_data<=0.05)/(length(current_data))
}

Second, false positives
T0=exp(0*x) # No effect of the catalyst

pfirst=get_p_value_estimate(x,T0,T,N_per_condition)

p_matrix_control=matrix(ncol=length(pfirst),nrow=N_simulation)

p_matrix_control[1,]=pfirst

colnames(p_matrix_control)=names(pfirst)

for(ind in 2:(dim(p_matrix_control)[1]))
{
p_matrix_control[ind,]=get_p_value_estimate(x,T0,T,N_per_condition)

cat(paste("Run ", ind, "\n", sep=""))

}

false_positives=pfirst
for(theApproach in names(false_positives))
{

measurement periods 23

current_data=p_matrix_control[,theApproach]
current_data=current_data[!is.na(current_data)]
false_positives[theApproach]=sum(current_data<=0.05)/(length(current_data))
}

for_barplot=matrix(nrow=2,ncol=length(false_positives),data=c(false_positives, power),byrow=TRUE)

rownames(for_barplot)=c("False positives (alpha)", "True positives (1-beta, power)")
colnames(for_barplot)=names(false_positives)

barplot(for_barplot,beside=TRUE,legend=TRUE)

measurement periods measurement periods

Description

Identification of different phases of the oscillatory shear experiment

Usage

measurement_periods(shear_stress_data,baseline_pre_periods,periods,Frequency)

Arguments

shear stress data

A shear stress data frame. Needs to have at least a column named "t"
baseline pre periods

The number of periods of pre-equilibration before applying shear

periods The number of periods of application of shear

Frequency Frequency of applied oscillatory shear

Value

Vector of as many elements as there are rows in shear stress data. This function returns
a factor with four levels: "pre", "initiation", "oscillatory measurement", and "post".
Entries with "pre" signify that the time-point is before initiation of the oscillatory shear;
"initiation" is initiation (first period if periods>1); "oscillatory measurement" indicates
the appropriate measurement period; "post" indicates re-equilibration after cessation of
shear

Author(s)

Thomas Braschler

24 read general data from file

read first lines read first lines

Description

Reads the first lines of a text file

Usage

read_first_lines(path,n=100)

Arguments

path The path to the file to be read

n The number of lines to be read

Author(s)

Thomas Braschler

read general data from file

read general data from file

Description

Reads the general text data from the simulation output data files. This is up to, but
without, the stress tensor data.

Usage

read_general_data_from_file(path,stress_tensor_data_start_line=-1)

Arguments

path The path to the file to be read

stress tensor data start line

The line where the stress tensor data (including the header, but not the
title) starts

Author(s)

Thomas Braschler

Examples

general_data=read_general_data_from_file(system.file("full_python_simulation_output_example.txt",package="particleShearEvaluation"))
general_data[71:78]

read stress curve from file 25

read stress curve from file

read stress curve from file

Description

Reads the primary stress curves stored in a text file located at path

Usage

read_stress_curve_from_file(path,data_start_line=-1,time_column="t",strain_column="strain",
strain_rate_column="strain_rate",shear_stress_measured_at_surface_column="stress_measured_at_surface",
shear_stress_from_internal_stress_tensor_column="shear_stress_internal_stress.tensor")

Arguments

path Path to the text file

data start line If known, provide the first line to read (the column headers; line num-
bering is assumed to start with 0 in the file); otherwise, provide -1 and
an attempt is made to find the first line to read via stress data start line
with default arguments

time column Header of the time column; by default, this is "t"

strain column Header of the strain column; by default, this is "strain"

strain rate column

Header of the strain rate column; by default, this is "strain rate"

shear stress measured at surface column

Header of the stress column, as measured by force per unit of surface area
at the boundaries where shear force is applied. The stress as measured at
the surface most closely emulates what will be measured in a rheometer

shear stress from internal stress tensor column

Header of the interal stress column; the internal stress is a volume-
averaged shear stress corrected for inertial effects, see eq. 15 in Otsuki et
al.

Details

If inertial effects can be neglected, or if correction for them is perfect, the internal stress
quantification (column shear stress from internal stress tensor column) should match
the surface stress (column shear stress measured at surface column). Large discrepancies
between the two indicate that the simulation should is primarily dynamic with imperfect
correction rather than quasistatic

Author(s)

Thomas Braschler

References

Otsuki, M. and H. Hayakawa, Discontinuous change of shear modulus for frictional jammed
granular materials. Phys Rev E, 2017. 95(6-1): p. 062902.

26 read stress curve from rda file

Examples

stress_curve=read_stress_curve_from_file(system.file("full_python_simulation_output_example.txt",package="particleShearEvaluation"))
plot(strain ˜ t, stress_curve,type="l",xlab="t[s]",ylab="strain [-], stress[kPa]")
lines(stress_curve$t, stress_curve$shear_stress_from_internal_stress_tensor/1000,type="l",col="red")
legend("bottomleft",legend=c("strain","stress"),lty=c(1,1),col=c("black","red"))

read stress curve from rda file

read stress curve from rda file

Description

Reads the primary stress curves stored in a rda file located at path

Usage

read_stress_curve_from_rda_file(path,time_column="t",strain_column="strain",
strain_rate_column="strain_rate",shear_stress_measured_at_surface_column="stress_measured_at_surface",
shear_stress_from_internal_stress_tensor_column="shear_stress_internal_stress.tensor")

Arguments

path Path to the rda

time column Header of the time column; by default, this is "t"

strain column Header of the strain column; by default, this is "strain"

strain rate column

Header of the strain rate column; by default, this is "strain rate"

shear stress measured at surface column

Header of the stress column, as measured by force per unit of surface area
at the boundaries where shear force is applied. The stress as measured at
the surface most closely emulates what will be measured in a rheometer

shear stress from internal stress tensor column

Header of the interal stress column; the internal stress is a volume-
averaged shear stress corrected for inertial effects, see eq. 15 in Otsuki et
al.

Details

If inertial effects can be neglected, or if correction for them is perfect, the internal stress
quantification (column shear stress from internal stress tensor column) should match
the surface stress (column shear stress measured at surface column). Large discrepancies
between the two indicate that the simulation should is primarily dynamic with imperfect
correction rather than quasistatic

Author(s)

Thomas Braschler

References

Otsuki, M. and H. Hayakawa, Discontinuous change of shear modulus for frictional jammed
granular materials. Phys Rev E, 2017. 95(6-1): p. 062902.

read stress tensor data from file 27

Examples

This is the same data stored in rda format that is also read from text for read_stress_curve_from_file
path=system.file("split/stress_full_python_simulation_output_example.rda",package="particleShearEvaluation")
stress_curve=read_stress_curve_from_rda_file(path)
plot(strain ˜ t, stress_curve,type="l",xlab="t[s]",ylab="strain [-], stress[kPa]")
lines(stress_curve$t, stress_curve$shear_stress_from_internal_stress_tensor/1000,type="l",col="red")
legend("bottomleft",legend=c("strain","stress"),lty=c(1,1),col=c("black","red"))

read stress tensor data from file

read stress tensor data from file

Description

Reads the stress tensor data in the file located at path

Usage

read_stress_tensor_data_from_file(path,data_start_line=-1,time_column="t",strain_column="strain",
strain_rate_column="strain_rate",shear_stress_measured_at_surface_column="stress_measured_at_surface",
shear_stress_from_internal_stress_tensor_column="shear_stress_internal_stress.tensor")

Arguments

path Path to the text file

data start line If known, provide the first line to read (the column headers; line num-
bering is assumed to start with 0 in the file); otherwise, provide -1 and
an attempt is made to find the first line to read via stress data start line
with default arguments

time column Header of the time column; by default, this is "t"

strain column Header of the strain column; by default, this is "strain"

strain rate column

Header of the strain rate column; by default, this is "strain rate"

shear stress measured at surface column

Header of the stress column, as measured by force per unit of surface area
at the boundaries where shear force is applied. The stress as measured at
the surface most closely emulates what will be measured in a rheometer

shear stress from internal stress tensor column

Header of the interal stress column; the internal stress is a volume-
averaged shear stress corrected for inertial effects, see eq. 15 in Otsuki et
al.

Details

This function returns a plain dataframe, where the components of the various stress tensor
are encoded in separate columns. For their meaning, see the particleShear python package.

Value

data.frame with the same columns as the ones configured in the text file, stress tneosr
section

28 read stress tensor data from file

Author(s)

Thomas Braschler

References

Love, A.E. H. A Treatise on the Mathematical Theory of Elasticitiy. Cambridge University
Press, 1927.
Weber, J. Recherches concernant les contraintes intergranulaires dans les milieux pulvru-
lents. Bull. Liaison P. et Ch 20, 1-20, 1966.
Otsuki, M. and Hayakawa, H. Discontinuous change of shear modulus for frictional jammed
granular materials. Phys Rev E95, 062902
Nicot, F., Hadda, N., Guessasma, M., Fortin, J. and Millet, O. On the definition of the stress
tensor in granular media. Int J Solids Struct, 50, 2508-2517, doi: 10.1016/j.ijsolstr.2013.04.001

Examples

path=system.file("full_python_simulation_output_example.txt",package="particleShearEvaluation")
stress_tensor_data=read_stress_tensor_data_from_file(path)
Some of the stress tensors are symmetrical, some not

The classical Love-Weber tensors are not:
stress_tensor_asymmetry_Love_Weber=stress_tensor_data$stress_tensor_Love_Weber_01-stress_tensor_data$stress_tensor_Love_Weber_10
plot(stress_tensor_data$t,stress_tensor_asymmetry_Love_Weber,type="l", ylim=c(-20,20),main="Asymmetry: Love-Weber",ylab="Stress tensor asymmetry [Pa]")

dev.new()
Otsuki et al. indicate a dynamic symmetry correction; in our experience, this does not correct the problem. The Otsuki correction is indeed orders of magnitude smaller than
the asymmetry in the Love-Weber tensor to correct
stress_tensor_asymmetry_Otsuki=stress_tensor_data$stress_tensor_peculiar_acceleration_otsuki_01-stress_tensor_data$stress_tensor_peculiar_acceleration_otsuki_10
plot(stress_tensor_data$t,stress_tensor_asymmetry_Otsuki,type="l", ylim=c(-20,20),main="Asymmetry: Otsuki correction term",ylab="Stress tensor asymmetry [Pa]")
lines(stress_tensor_data$t,stress_tensor_asymmetry_Love_Weber,type="l", col="red")

dev.new()
Stress tensors calculated uniquely by the externally visible forces are also asymmetric
stress_tensor_asymmetry_external=stress_tensor_data$stress_tensor_from_external_forces_01-stress_tensor_data$stress_tensor_from_external_forces_10
plot(stress_tensor_data$t,stress_tensor_asymmetry_external,type="l", ylim=c(-20,20),main="Asymmetry: Stress tensor from surface forces",ylab="Stress tensor asymmetry [Pa]")

dev.new()
To symmetrize the stress tensors (Nicot et. al), one can use internal acceleration. Here, accounting done as for the external forces
stress_tensor_asymmetry_linear_acceleration=stress_tensor_data$stress_tensor_linear_acceleration_01-stress_tensor_data$stress_tensor_linear_acceleration_10
plot(stress_tensor_data$t,stress_tensor_asymmetry_linear_acceleration,type="l", ylim=c(-20,20),main="Asymmetry: Linear acceleration tensor",ylab="Stress tensor asymmetry [Pa]")
lines(stress_tensor_data$t,stress_tensor_asymmetry_external,type="l",col="red")

dev.new()
To symmetrize the stress tensors (Nicot et. al), one can use acceleration stress tensors. The importance is matching: Here, accounting done as for the external forces
stress_tensor_asymmetry_linear_acceleration=stress_tensor_data$stress_tensor_linear_acceleration_01-stress_tensor_data$stress_tensor_linear_acceleration_10
plot(stress_tensor_data$t,stress_tensor_asymmetry_linear_acceleration,type="l", ylim=c(-20,20),main="Asymmetry: External linear acceleration tensor",ylab="Stress tensor asymmetry [Pa]")
lines(stress_tensor_data$t,stress_tensor_asymmetry_external,type="l",col="red")
legend("topleft",legend=c("linear acceleration correction of total system","external force tensor"),lty=c(1,1),col=c("black","red"))

dev.new()
To symmetrize the stress tensors (Nicot et. al), one can use internal acceleration. As above, but accounting as for Love-Weber:
stress_tensor_asymmetry_internal_torques=stress_tensor_data$stress_tensor_internal_tangential_torque_01-stress_tensor_data$stress_tensor_internal_tangential_torque_10
plot(stress_tensor_data$t,stress_tensor_asymmetry_internal_torques,type="l", ylim=c(-20,20),main="Asymmetry: Internal torque correction",ylab="Stress tensor asymmetry [Pa]")
lines(stress_tensor_data$t,stress_tensor_asymmetry_Love_Weber,type="l",col="red")
legend("topleft",legend=c("internal torque correction","Love-Weber"),lty=c(1,1),col=c("black","red"))

read stress tensor data from rda file 29

The relevant shear stress for evaluation is the column stress_tensor_data$shear_stress_internal_stress.tensor
This is also -(stress_tensor_data$stress_tensor_internal_tangential_torque_01+stress_tensor_data$stress_tensor_Love_Weber_01), or equivalently
-(stress_tensor_data$stress_tensor_internal_tangential_torque_10+stress_tensor_data$stress_tensor_Love_Weber_10)
plot(stress_tensor_data$t,stress_tensor_data$shear_stress_internal_stress.tensor,type="l",ylab="Shear stress [Pa]", xlab="Time[s]")

read stress tensor data from rda file

read stress tensor data from rda file

Description

Reads the stress tensor data in the file located at path

Usage

read_stress_tensor_data_from_rda_file(path)

Arguments

path Path to the rda file

Details

This merely reads the rda file specified and returns the stress data variable which needs
to be contained in the r data file specified by path

Value

The stress data variable read from the .rda file indicated by path.

Author(s)

Thomas Braschler

References

Love, A. E. H. A Treatise on the Mathematical Theory of Elasticity. (Cambridge University
Press, 1927).
Weber, J. Recherches concernant les contraintes intergranulaires dans les milieux pulvuru-
lents. Bull. Liaison P. et Ch.20, 1-20 (1966).
Otsuki, M. & Hayakawa, H. Discontinuous change of shear modulus for frictional jammed
granular materials. Phys Rev E95, 062902
Nicot, F., Hadda, N., Guessasma, M., Fortin, J. & Millet, O. On the definition of the stress
tensor in granular media. Int J Solids Struct50, 2508-2517, doi:10.1016/j.ijsolstr.2013.04.001
(2013).

See Also

read stress tensor data from file for reading the data directly from the large, raw text files;
and split tensor and overview data for splitting the large direct output of the particleShear
Python library into a header and rda file to save space

30 split tensor and overview data

Examples

path=system.file("split/stress_full_python_simulation_output_example.rda",package="particleShearEvaluation")
stress_tensor_data=read_stress_tensor_data_from_rda_file(path)

#This should be the same variable as the one read with read_stress_tensor_data_from_file, see that example for further plots

split tensor and overview data

split tensor and overview data

Description

Splits an output file generated by the python simulation into a header part as a small text
file and an rda file for the stress tensor data

Usage

split_tensor_and_overview_data(origin_root,path,file_name,destination_root,overwrite=FALSE)

Arguments

origin root Root path for the full output file

path Path (folders) within the origin root location

file name File name of the text file to be split

destination root

Destination path. The function expects the folder structure within the
destination location to be the same as in the original location; no folders
are created by this function.

overwrite Should already existing text and rda files be overwritten?

Details

The original text file will be split into a header text file, having the same file name as the
original file but preceded by ”header ”, and a stress tensor rda file. The file name of the
rda file is composed of the prefix ”stress ”, followed by the origina filename, followed by the
extension which is ”.rda” instead of ”.txt”. The aim of the splitting operation is permit
more rapid access to the stress tensor data, as reading a text file is substantially slower
than reading a .rda file

Author(s)

Thomas Braschler

Examples

Not run:
split_tensor_and_overview_data(origin_root=system.file("",package="particleShearEvaluation"),path="","full_python_simulation_output_example.txt")

End(Not run)

stress data start line 31

stress data start line stress data start line

Description

Finds the line where the stress data starts in the file identified by path

Usage

stress_data_start_line(path,data_header_pattern="Detailed[a-zA-Z0-9\\s].*data",n_header=200)

Arguments

path Path to the text file

data header pattern

Pattern identifying the line prior to data start (perl-style, see grep).

n header Number of lines to read while searching for the information. Provide
n header=-1 for reading the entire file. This argument is passed to read first lines,
used internally.

Details

The pattern argument should uniquely identify the data start line (if not possible, it should
at least identify the first occurrence). Also, it should match the text line right above the
first data line to read. If in addition to numerical data, there is a header line labelling
the data, the pattern needs to identify a text line ONE LINE ABOVE the header line;
alternatively, 1 needs to be subtracted from the line number returned

Author(s)

Thomas Braschler

Index

∗ misc
evaluate stress curve, 2
file information table from folder,

3
file information table from folders,

3
find info from file, 5
find info from text, 5
find infos from file, 4
G from demodulation, 14
general linear regression p bootstrap,

6
get yield point, 13
headerSearchPatterns, 15
linear regression p bootstrap, 16
measurement periods, 23
read first lines, 24
read general data from file, 24
read stress curve from file, 25
read stress curve from rda file, 26
read stress tensor data from file,

27
read stress tensor data from rda file,

29
split tensor and overview data, 30
stress data start line, 31

∗ package
particleShearEvaluation-package, 2

attr, 17

coefficients, 6

data.frame, 27

evaluate stress curve, 2

family, 6
file information table from folder, 3
file information table from folders, 3,

4
find info from file, 5
find info from text, 5
find infos from file, 4

G from demodulation, 14
general linear regression p bootstrap,

6
get yield point, 13
glm, 6, 7
grep, 31

headerSearchPatterns, 3, 15

linear regression p bootstrap, 16
lines, 15
lm, 6, 7, 16

measurement periods, 23

particleShearEvaluation-package, 2
pf, 16
plot, 15
plot.counts

(particleShearEvaluation-package),
2

pnorm, 17

qnorm, 17

read first lines, 24, 31
read general data from file, 24
read stress curve from file, 25
read stress curve from rda file, 26
read stress tensor data from file, 27,

29
read stress tensor data from rda file,

29

shapiro.test, 17
split tensor and overview data, 29, 30
stress data start line, 25, 27, 31
summary.glm, 6
summary.lm, 17

32

	particleShearEvaluation-package
	evaluate_stress_curve
	file_information_table_from_folder
	file_information_table_from_folders
	find_infos_from_file
	find_info_from_file
	find_info_from_text
	general_linear_regression_p_bootstrap
	get_yield_point
	G_from_demodulation
	headerSearchPatterns
	linear_regression_p_bootstrap
	measurement_periods
	read_first_lines
	read_general_data_from_file
	read_stress_curve_from_file
	read_stress_curve_from_rda_file
	read_stress_tensor_data_from_file
	read_stress_tensor_data_from_rda_file
	split_tensor_and_overview_data
	stress_data_start_line
	Index

