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Abstract

This tutorial presents an overview of likelihood-based genetic clustering in adegenet,
as implemented by the function snapclust. After a brief presentation of the rationale
of the method, we illustrate its use in two situations: for identifying genetic clusters,
and then for detecting hybrids.
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1 The method, in a nutshell

1.1 Model formulation

1.1.1 Notations

The following notations will be used to describe the model.

� i = 1, . . . , I: index of individuals

� j = 1, . . . , J : index of loci

� k = 1, . . . , K: index of groups

� xi,j: vector of allele counts for individual i at locus j

� xi: vector of allele counts of individual i for all loci, i.e. concatenation [xi,1 . . . xi,J ]

� x: matrix of allele counts, obtained by row-concatenation of the xi

� gi: group of individual i (gi ∈ {1, . . . , K} ∀ i ∈ {1, . . . , I})

� g: vector of group memberships (g = g1, . . . , gI)

� fk,j: vector of allele frequencies of group k at locus j

� fk: vector of allele frequencies of group k for all loci, i.e. concatenation [fk,1 . . . xk,J ]

� x: matrix of all allele frequencies, obtained by row-concatenation of the fk

� π: the ploidy of all individuals

1.1.2 General likelihood

Likelihood-based genetic clustering in adegenet is implemented by the function snapclust.
This approach uses Hardy-Weinberg’s equilibrium to define the probabilities of observing
given genotypes under known allele frequencies. For now, we assume the group to which i
belongs is known (noted gi), and has known allele frequencies fgi,j. For any level of ploidy π
and any codominant marker, the likelihood of xi,j is defined as:

p(xi,j|fgi,j, π) = M(xi,j, fgi,j, π) (1)

where M is the multinomial probability mass function.
Assuming independence between loci (j = 1, . . . , J), the likelihood of individual i across

all loci is:
p(xi|fgi , π) =

∏
j

p(xi,j|fgi,j, π) (2)

Assuming further independence between individuals, conditional on their group
membership g and all allele frequencies f , the total likelihood is defined as:

p(x|f, g, π) =
∏
i

p(xi|fgi , π) (3)
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So that the general equation for the total log-likelihood of the model is computed as:

LL(x, f, g, π) =
∑
i

∑
j

log(M(xi,j, fgi,j, π)) (4)

Note that this model could easily accomodate varying ploidy through πi, πj or πi,j but
we leave this out for now.

1.1.3 Useful particular cases

As particular case, the likelihood of all possible diploid genotypes with alleles A and B is
defined, noting fgi the vector of allele frequencies in a given group gi as:

p(AA|fgi , 2) = f 2
A (5)

p(B|fgi , 2) = f 2
B (6)

p(AB|fgi , 2) = 2fAfB (7)

Note that for haploid data, this is even simpler:

p(A|fgi , 1) = fA (8)

p(B|fgi , 1) = fB (9)

1.1.4 Group membership probabilities

Assuming any individual i comes from one of the sampled groups k = 1, . . . , K, the
probability that i belongs to group k is defined as the standardized likelihood:

p(gi = k) =
p(xi|gi = k, fk, π)∑
q p(xi|gi = q, fq, π)

(10)

which ensures that: ∑
k

p(gi = k) = 1 (11)

1.2 Estimation using the EM algorithm

The model formulation above supposes that both the groups g, and the allele frequencies in
these groups f , are known. In practice, though, these need to be estimated. This is achieved
using the expectation-maximization algorithm, which we apply as follow:

1. define initial groups for invididuals, g

2. (expectation) compute allele frequencies f and then p(gi = k) for all i and k

3. (maximization) assign individuals to their most likely group

4. return to 2) until convergence
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Here, we consider that the algorithm has converged when the change in the global log-
likelihood is less than 1e-14. The advantage of this algorithm is that it converges very fast,
typically in less than 10 iterations. The first step can be achieved using random group
allocation, in which case several runs of the EM algorithm can be useful to ensure that the
best solution (with highest log-likelihood) is attained. Alternatively, clusters can be defined
by another fast clustering method, such as the k-means implemented in find.clusters.
This latter option is used by default in our implementation.

1.3 Identifying hybrids

The allele frequency fhw in a hybrid population hw is modelled as weighted averages of the
allele frequencies in the parental populations k and q:

fhw = wfk + (1− w)fq (12)

where w has value between 0 and 1. Typical values of w are 0.5 for F1 hybrids, 0.75 for
backcrosses F1/1, 0.25 for backcrosses F1/2, etc.

The EM algorithm described above can be extended to account for various hybrids using:

1. define initial groups for invididuals, g

2. (expectation) define parental populations as the two groups most distant from each
other; compute allele frequencies for parental populations fk and fq and subsequently
for all hybrid populations hw, and then p(gi = k), p(gi = q) and p(gi = hw) for all i
and hw

3. (maximization) assign individuals to their most likely group

4. return to 2) until convergence

2 Example using simulated data

2.1 In the absence of hybrids: DAPC data revisited

The method described above is implemented in the function snapclust. To illustrate it, we
first re-analyse datasets originally simulated to illustrate the DAPC (Jombart et al. 2010,
BCM Genetics). The data dapcIllus contains four datasets:

� $a: island model with 6 demes

� $b: hierarchical island model with 6 demes (3,2,1)

� $c: one-dimensional stepping stone model with 12 demes

� $d: one-dimensional stepping stone with a boundary in between sets of 12 demes
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library(adegenet)

data(dapcIllus)

sapply(dapcIllus, nPop)

## a b c d

## 6 6 12 24

For each dataset, we identify clusters using snapclust, indicating the right number of
clusters, and compare the obtained clusters to the true clusters.

a.clust <- snapclust(dapcIllus$a, k = 6)

class(a.clust)

## [1] "snapclust" "list"

names(a.clust)

## [1] "group" "ll" "proba" "converged" "n.iter" "n.param"

The output of genlcust.em is a list containing the following information:

� group: a factor giving maximum-likelihood group assignment for each individual

� ll: the log-likelihood of the model

� proba: a matrix giving full group membership probabilities, with individuals in rows
and clusters in column

� converged: a logical indicating if the algorithm converged before reaching the
maximum number of iterations

� n.iter: the number of iterations after which the algorithm stopped

Let us examine these components:

head(a.clust$group, 12)

## 1 2 3 4 5 6 7 8 9 10 11 12

## 1 1 1 1 1 1 1 1 1 1 1 1

## Levels: 1 2 3 4 5 6

length(a.clust$group)

## [1] 600

a.clust$ll

## [1] -19536.21
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dim(a.clust$proba)

## [1] 600 6

head(a.clust$proba)

## 1 2 3 4 5 6

## 1 0.9898886 1.806092e-05 2.525667e-06 1.009082e-02 2.475659e-09 4.951317e-10

## 2 1.0000000 2.852050e-12 2.789269e-12 4.088715e-10 7.755781e-10 2.989570e-15

## 3 1.0000000 3.607545e-10 9.469806e-10 9.360291e-09 4.026278e-13 1.731300e-11

## 4 0.9930270 2.111623e-05 6.951046e-03 8.133684e-07 1.567184e-09 1.567184e-09

## 5 1.0000000 1.686716e-11 4.304500e-08 1.349373e-10 1.686716e-09 8.433582e-11

## 6 0.9999988 4.747989e-11 1.208648e-06 4.747989e-11 3.228632e-09 4.747989e-11

head(round(a.clust$proba),3)

## 1 2 3 4 5 6

## 1 1 0 0 0 0 0

## 2 1 0 0 0 0 0

## 3 1 0 0 0 0 0

a.clust$converged

## [1] TRUE

a.clust$n.iter

## [1] 4

The inferred groups can be compared to the original ones using table, which builds
a contingency table putting the original groups in rows, and the newly inferred groups in
columns; results are visualised using table.value

a.tab <- table(pop(dapcIllus$a), a.clust$group)

a.tab

##

## 1 2 3 4 5 6

## P1 100 0 0 0 0 0

## P2 0 99 1 0 0 0

## P3 0 0 1 98 1 0

## P4 0 0 0 0 0 100

## P5 0 0 2 0 96 2

## P6 0 0 99 1 0 0

table.value(a.tab, col.labels = 1:6)
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Here, original groups were nearly perfectly retrieved. Finally, we can visualise the group
membership probabilities, which represent the probabilities that each genotype was generated
under the various populations, using the compoplot:

compoplot(a.clust)
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Here, assignment of individuals to their actual groups is essentially perfect; the few
’misclassified’ individuals are effectively migrants. In fact, results remain very good in other
models as well. Results are near perfect for the hierarchical island mode:

b.clust <- snapclust(dapcIllus$b, k = 6)

b.tab <- table(pop(dapcIllus$b), b.clust$group)

table.value(b.tab, col.labels = 1:6)

P1

P2

P3

P4

P5

P6

1 2 3 4 5 6

 10  30  50  70  90

compoplot(b.clust)
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and for the stepping stone model:

c.clust <- snapclust(dapcIllus$c, k = 12)

c.tab <- table(pop(dapcIllus$c), c.clust$group)

table.value(c.tab, col.labels = 1:12)
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compoplot(c.clust)
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In the larger stepping stone model with a boundary, results remain very good but some
neighbouring demes are harder to distinguish (especially 1-2, 3-4, 13-14 and 18-19).

d.clust <- snapclust(dapcIllus$d, k = 24)

d.tab <- table(pop(dapcIllus$d), d.clust$group)

table.value(d.tab, col.labels = 1:24, csize = .6)
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compoplot(d.clust, n.col=8)
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However, note that this lack of distinction in some demes merely comes from a weak
genetic differentiation:
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d.dapc <- dapc(dapcIllus$d, n.pca = 20, n.da = 2)

scatter(d.dapc, clab = 0.85, col = funky(24),

posi.da="topleft", posi.pca = "bottomleft", scree.pca = TRUE)
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2.2 Identifying hybrids

2.2.1 Simulating hybrids using hybridize

Simulate hybrids F1

set.seed(1)

data(microbov)

zebu <- microbov[pop="Zebu"]

salers <- microbov[pop="Salers"]

hyb <- hybridize(zebu, salers, n = 30)

x <- repool(zebu, salers, hyb)

Simulate hybrids backcross (F1 / parental)

f1.zebu <- hybridize(hyb, zebu, 20, pop = "f1.zebu")

f1.salers <- hybridize(hyb, salers, 25, pop = "f1.salers")

y <- repool(x, f1.zebu, f1.salers)
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2.2.2 Looking for hybrids using snapclust

snapclust can also be used in the presence of hybridization. In this case, it will attempt
to classify individuals into parental populations (later noted A and B), or various types of
hybrids defined by the user. To activate the detection of hybrids, simply specify hybrids

= TRUE, which will by default look for F1, i.e. 50% of genes coming from each parental
population. Other types of hybrids can be specified through the argument hybrid.coef,
which is a vector of parental coefficients. Each value in this vector defines a given type
of hybrid, by the proportion of its gene pool contributed by the first parental population.
Complementary coefficients will be added automatically for the second parental population.
For instance, hybrid.coef = c(0.25, 0.5) will be converted into hybrid.coef = c(0.75,

0.5, 0.25), respectively corresponding to backcross with A, F1, and backcross with B.

2.2.3 Looking for first-generation hybrids (F1)

We first use a Principal Component Analysis (PCA) to visualise the simulated hybrid data:

x.pca <- dudi.pca(tab(x, NA.method = "mean"), scannf = FALSE, scale = FALSE)

s.class(x.pca$li, pop(x), col = hybridpal()(3))

 d = 2 

 Zebu  Salers  hybrid 

The method applied without hybrid detection correctly identifies the parental populations,
but fails to classify hybrids:
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res.no.hyb <- snapclust(x, k = 2, hybrids = FALSE)

compoplot(res.no.hyb, n.col = 2, col.pal = hybridpal(),

main = "snapclust without hybrids")

snapclust without hybrids
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One may expect that hybrids would appear as individuals with group membership
probabilities around 50% for each parental population. Interestingly, this is almost never
the case, irrespective of the type of clustering method. The detail of likelihood contribution
(results not shown) suggest that individuals slightly closer to either parental population
are simply much more likely to belong to this population. The same can be observed in
the Discriminant Analysis of Principal Components (DAPC), which does not use likelihood
but a geometric criterion. This can be illustrated by analysing the parental population
(first 100 individuals) and predicting the group membership of the hybrids as supplementary
individuals:

x.dapc <- dapc(x[1:100], n.pca=80, n.da=2)

x.pred <- predict(x.dapc)$posterior

hyb.pred <- predict(x.dapc, newdata = x[-(1:100)])$posterior

compoplot(rbind(x.pred, hyb.pred), col.pal = virid,

main = "DAPC prediction")
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DAPC prediction
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The problem of the above is that hybrids are seen as effectively outliers from the parental
populations, so that their classification is inherently very unstable. To be formally identified,
hybrids need to be modelled as a separate population, whose allele frequency distribution
is somewhere between the parental populations. This is exactly the approach taken by
snapclust:

res.hyb <- snapclust(x, k = 2, hybrids = TRUE)

compoplot(res.hyb, n.col = 2, col.pal = hybridpal())
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As we can see, the hybrids are all very well identified.

2.2.4 Looking for F1 and back-crosses

We repeat similar analyses on the dataset y, which includes all the individuals from x with
additional backcrosses. First, a PCA shows the basic structure of the data:

y.pca <- dudi.pca(tab(y, NA.method = "mean"), scannf = FALSE, scale = FALSE)

s.class(y.pca$li, pop(y), col = virid(5)[c(1,5,3,2,4)])
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 d = 2 

 Zebu 
 Salers 

 hybrid  f1.zebu 

 f1.salers 

Looking for F1 hybrids only in y shows the expected misclassifications of backcrosses into
either hybrids or the closest parental population:

res2.hyb <- snapclust(y, k = 2, hybrids = TRUE)

compoplot(res2.hyb, n.col = 2, col.pal = hybridpal(),

main = "snapclust with hybrids")
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snapclust with hybrids
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Note that the differentiation between the groups drops very fast, despite a substantial
initial Fst between the parental populations:

hierfstat::pairwise.fst(y)

## Error: ’pairwise.fst’ is not an exported object from

’namespace:hierfstat’

Despite really low differentiation, we still get decent results at identifying backcrosses:

res2.back <- snapclust(y, k=2, hybrids = TRUE, hybrid.coef = c(.25, .5))

compoplot(res2.back, col.pal = hybridpal(),

main = "snapclust with F1 and backcrosses")

19



snapclust with F1 and backcrosses

m
em

be
rs

hi
p 

pr
ob

ab
ili

ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
B

0.75_A−0.25_B
0.5_A−0.5_B

0.25_A−0.75_B

A number of individuals are mis-classified, but this is merely a reflection of the low
differentiation between the backcrosses and the other populations. Let us see the extent of
these mis-classifications, using ggplot2 for an alternative way of displaying this information:

library(ggplot2)

tab <- table(pop(y), res2.back$group)

df <- data.frame(tab)

colnames(df) <- c("Original", "Inferred", "Frequency")

p <- ggplot(df, aes(x = Original, y = Inferred)) +

geom_point(aes(size = Frequency), col="navy", alpha=.7) +

scale_size_continuous("Number of individuals",

breaks = c(1, 5, 10, 25, 50),

range = c(0,10))

print(p)
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tab

##

## A B 0.75_A-0.25_B 0.5_A-0.5_B 0.25_A-0.75_B

## Zebu 49 0 1 0 0

## Salers 0 50 0 0 0

## hybrid 0 0 1 26 3

## f1.zebu 6 0 13 1 0

## f1.salers 0 13 0 0 12

3 Looking for the optimal number of clusters

The function snapclust.choose.k permits to run snapclust for various values of k, and
outputs the corresponding AIC or BIC values. Its use is similar to that of find.clusters:
ideally, the lowest AIC/BIC corresponds to the best model, but in practice sharp decreases in
AIC/BIC will reflect substantial improvement of fit. We illustrate it using the dapcIllus$a
and dapcIllus$c datasets, which have 6 and 12 populations, respectively. We first compare
the AIC and BIC on dapcIllus$a. We indicate the true ’k’ by a dashed line, and represent
in blue the ’optimal k’:

data(dapcIllus)

table(pop(dapcIllus$a))
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##

## P1 P2 P3 P4 P5 P6

## 100 100 100 100 100 100

## look for k = 1:20

a.aic <- snapclust.choose.k(20, dapcIllus$a)

plot(a.aic, type = "b", cex = 2, xlab = "k", ylab = "AIC")

points(which.min(a.aic), min(a.aic), col = "blue", pch = 20, cex = 2)

abline(v = 6, lty = 2, col = "red")
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## same data, using BIC

a.bic <- snapclust.choose.k(20, dapcIllus$a, IC = BIC)

plot(a.bic, type = "b", cex = 2, xlab = "k", ylab = "BIC")

points(which.min(a.bic), min(a.bic), col = "blue", pch = 20, cex = 2)

abline(v = 6, lty = 2, col = "red")
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In both cases, the true number of groups (6) is well identified, albeit more clearly by the
BIC. Note that this is not systematically the case, and AIC may work better on other data.
In practice, it is probably useful to compare both approaches.

We repeat these analyses on the second dataset, which was simulated as a 1-dimensional
stepping stone with 12 demes:

data(dapcIllus)

table(pop(dapcIllus$c))

##

## P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12

## 50 50 50 50 50 50 50 50 50 50 50 50

## look for k = 1:30

c.aic <- snapclust.choose.k(30, dapcIllus$c)

plot(c.aic, type = "b", cex = 2, xlab = "k", ylab = "AIC")

points(which.min(c.aic), min(c.aic), col = "blue", pch = 20, cex = 2)

abline(v = 12, lty = 2, col = "red")
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## same data, using BIC

c.bic <- snapclust.choose.k(30, dapcIllus$c, IC = BIC)

plot(c.bic, type = "b", cex = 2, xlab = "k", ylab = "BIC")

points(which.min(c.bic), min(c.bic), col = "blue", pch = 20, cex = 2)

abline(v = 12, lty = 2, col = "red")
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