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Abstract

This vignette provides a tutorial for the spatial analysis of principal components
(sPCA, [1]) using the adegenet package [2] for the R software [3]. sPCA is first
illustrated using a simple simulated dataset, and then using empirical data of Chamois
(Rupicapra rupicapra) from the Bauges mountains (France). In particular, we illustrate
how sPCA complements classical PCA by being more powerful for retrieving non-trivial
spatial genetic patterns.
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1 Introduction

This tutorial goes through the spatial Principal Component Analysis (sPCA, [1]), a
multivariate method devoted to the identification of spatial genetic patterns. The purpose
of this tutorial is to provide guidelines for the application of sPCA as well as to illustrate
its usefulness for the investigation of spatial genetic patterns. After briefly going through
the rationale of the method, we introduce the different tools implemented for sPCA in
adegenet. This technical overview is then followed by the analysis of an empirical dataset
which illustrates the advantage of sPCA over classical PCA for investigating spatial patterns.

1.1 Rationale of sPCA

Mathematical notations used in this tutorial are identical to the original publication [1].
The sPCA analyses a matrix of relative allele frequencies X which contains genotypes or
populations (later refered to as ’entities’) in rows and alleles in columns. Spatial information
is stored inside a spatial weighting matrix L which contains positive terms corresponding
to some measurement (often binary) of spatial proximity among entities. Most often, these
terms can be derived from a connection network built upon a given algorithm (for instance,
pp.752-756 in [4]). This matrix is row-standardized (i.e., each of its rows sums to one), and
all its diagonal terms are zero. L can be used to compute the spatial autocorrelation of a
given centred variable x (i.e., with mean zero) with n observations (x ∈ Rn) using Moran’s
I [5, 6, 7]:

I(x) =
xTLx

xTx
(1)

In the case of genetic data, x contains frequencies of an allele. Moran’s I can be used to
measure spatial structure in the values of x: it is highly positive when values of x observed
at neighbouring sites tend to be similar (positive spatial autocorrelation, referred to as global
structures), while it is strongly negative when values of x observed at neighbouring sites
tend to be dissimilar (negative spatial autocorrelation, referred to as local structures).

However, since it is standardized by the variance of x, Moran’s index measures only spatial
structures and not genetic variability. The sPCA defines the following function to measure
both spatial structure and variability in x:

C(x) = var(x)I(x) =
1

n
xTLx (2)

C(x) is highly positive when x has a large variance and exhibits a global structure;
conversely, it is largely negative when x has a high variance and displays a local structure.
This function is the criterion used in sPCA, which finds linear combinations of the alleles of
X (denoted Xv) decomposing C from its maximum to its minimum value. Because C(Xv)
is a product of variance and autocorrelation, it is important, when interpreting the results, to
detail both components and to compare their value with their range of variation (maximum
attainable variance, as well as maximum and minimum I are known analytically). A structure
with a low spatial autocorrelation can barely be interpreted as a spatial pattern; similarly, a
structure with a low variance would likely not reflect any genetic structure. We will later see
how these information can be retrieved from spca results.
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1.2 The spca function

The simulated dataset used to illustrate this section has been analyzed in [1], and corresponds
to Figure 2A of the article. In adegenet, the matrix of alleles frequencies previously denoted
X exactly corresponds to the @tab slot of genind or genpop objects:

library(adegenet)

library(spdep)

data(spcaIllus)

obj <- spcaIllus$dat2A

obj

## /// GENIND OBJECT /////////

##

## // 80 individuals; 20 loci; 192 alleles; size: 116.2 Kb

##

## // Basic content

## @tab: 80 x 192 matrix of allele counts

## @loc.n.all: number of alleles per locus (range: 6-14)

## @loc.fac: locus factor for the 192 columns of @tab

## @all.names: list of allele names for each locus

## @ploidy: ploidy of each individual (range: 2-2)

## @type: codom

## @call: old2new(object = obj)

##

## // Optional content

## @pop: population of each individual (group size range: 10-35)

## @other: a list containing: xy

head(tab(obj[loc = 1]))

## L01.1 L01.2 L01.3 L01.4 L01.5 L01.6 L01.7 L01.8 L01.9

## 0035 0 0 0 0 1 1 0 0 0

## 0352 0 0 1 0 1 0 0 0 0

## 0423 0 0 0 0 1 0 0 0 1

## 0289 0 0 0 0 0 1 0 0 1

## 0487 0 0 0 0 0 1 0 1 0

## 0053 0 0 0 0 1 1 0 0 0

The object obj is a genind object; note that here, we only displayed the table for the first
locus (loc=1).

The function performing the sPCA is spca. As of adegenet 2.1.0, it is a generic with
methods for various types of objects. The genind method accepts a bunch of arguments, but

4



only the first two are mandatory to perform the analysis (see ?spca for further information):

methods("spca")

## [1] spca.data.frame spca.default spca.genind spca.genpop

## [5] spca.matrix

## see '?methods' for accessing help and source code

args(spca.genind)

## function (obj, xy = NULL, cn = NULL, matWeight = NULL, scale = FALSE,

## scannf = TRUE, nfposi = 1, nfnega = 1, type = NULL, ask = TRUE,

## plot.nb = TRUE, edit.nb = FALSE, truenames = TRUE, d1 = NULL,

## d2 = NULL, k = NULL, a = NULL, dmin = NULL, ...)

## NULL

The argument obj is a genind object. By definition in sPCA, the studied entities are
georeferenced. The spatial information can be provided to the function spca in several ways,
the first being through the xy argument, which is a matrix of spatial coordinates with ’x’
and ’y’ coordinates in columns. Alternatively, these coordinates can be stored inside the
genind/genpop object, preferably as @other$xy, in which case the spca function will detect
and use this information, and not request an xy argument. Note that obj already contains
spatial coordinates at the appropriate place. Hence, we can use the following command to
run the sPCA (ask and scannf are set to FALSE to avoid interactivity):

mySpca <- spca(obj, ask=FALSE, type=1, scannf=FALSE)
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Note, however, that spatial coordinates are not directly used in sPCA: the spatial
information is included in the analysis by the spatial weighting matrix L derived from a
connection network (eq. 1 and 2). Technically, the spca function can incorporate spatial
weightings as a matrix (argument matWeight), as a connection network with the classes nb
or listw (argument cn), both implemented in the spdep package. The function chooseCN

is a wrapper for different functions scattered across several packages implementing a variety
of connection networks. If only spatial coordinates are provided to spca, chooseCN is called
to construct an appropriate graph. See ?chooseCN for more information. Note that many of
the spca arguments are in fact arguments for chooseCN: type, ask, plot.nb, edit.nb, d1,
d2, k, a, and dmin. For instance, the command:

mySpca <- spca(obj,type=1,ask=FALSE,scannf=FALSE)

performs a sPCA using the Delaunay triangulation as connection network (type=1, see
?chooseCN), while the command:
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mySpca <- spca(obj,type=5,d1=0,d2=2,scannf=FALSE)

computes a sPCA using a connection network which defines neighbouring entities based
on pairwise geographic distances (type=5), considering as neighbours two entities whose
distance between 0 (d1=0) and 2 (d2=2).

Another possibility is of course to provide directly a connection network (nb object) or
a list of spatial weights (listw object) to the spca function; this can be done via the cn

argument. For instance:

myCn <- chooseCN(obj$other$xy, type=6, k=10, plot=FALSE)

myCn

## Neighbour list object:

## Number of regions: 80

## Number of nonzero links: 932

## Percentage nonzero weights: 14.5625

## Average number of links: 11.65
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class(myCn)

## [1] "nb"

mySpca2 <- spca(obj,cn=myCn,scannf=FALSE)

produces a sPCA using myCn (k = 10 nearest neighbours) as a connection network.

When used interactively (scannf=TRUE), spca displays a barplot of eigenvalues and asks
the user for a number of positive axes (’first number of axes’) and negative axes (’second
number of axes’) to be retained. For the object mySpca, this barplot would be (here we
indicate in red the retained eigenvalue):

barplot(mySpca$eig,main="Eigenvalues of sPCA", col=rep(c("red","grey"),c(1,100)))

Eigenvalues of sPCA
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Positive eigenvalues (on the left) correspond to global structures, while negative eigenvalues
(on the right) indicate local patterns. Actual structures should result in more extreme
(positive or negative) eigenvalues; for instance, the object mySpca likely contains one single
global structure, and no local structure. If one does not want to choose the number of
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retained axes interactively, the arguments nfposi (number of retained factors with positive
eigenvalues) and nfnega (number of retained factors with negative eigenvalues) can be used.
Once this information has been provided to spca, the analysis is computed and stored inside
an object with the class spca.

1.3 Contents of a spca object

Let us consider a spca object resulting from the analysis of the object obj, using a Delaunay
triangulation (type=1) as connection network:

mySpca <- spca(obj,type=1,scannf=FALSE,plot.nb=FALSE,nfposi=1,nfnega=0)

class(mySpca)

## [1] "spca"

mySpca

## ########################################

## # spatial Principal Component Analysis #

## ########################################

## class: spca

## $call: spca.genind(obj = obj, scannf = FALSE, nfposi = 1, nfnega = 0,

## type = 1, plot.nb = FALSE)

##

## $nfposi: 1 axis-components saved

## $nfnega: 0 axis-components saved

## Positive eigenvalues: 0.2309 0.1118 0.09379 0.07817 0.06911 ...

## Negative eigenvalues: -0.08421 -0.07376 -0.06978 -0.06648 -0.06279 ...

##

## vector length mode content

## 1 $eig 79 numeric eigenvalues

##

## data.frame nrow ncol content

## 1 $tab 80 192 transformed data: optionally centred / scaled

## 2 $c1 192 1 principal axes: scaled vectors of alleles loadings

## 3 $li 80 1 principal components: coordinates of entities ('scores')

## 4 $ls 80 1 lag vector of principal components

## 5 $as 2 1 pca axes onto spca axes

##

## $xy: matrix of spatial coordinates

## $lw: a list of spatial weights (class 'listw')

##

## other elements: lw

An spca object is a list containing all required information about a performed sPCA. Details
about the different components of such a list can be found in the spca documentation (?spca).
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The purpose of this section is to explicit how the elements described in [1] are stored inside
a spca object.

First, eigenvalues of the analysis are stored inside the $eig component as a numeric vector
stored in decreasing order:

head(mySpca$eig)

## [1] 0.23087862 0.11184721 0.09378750 0.07816561 0.06910536 0.06429596

tail(mySpca$eig)

## [1] -0.05480010 -0.06279067 -0.06647896 -0.06978457 -0.07375563 -0.08421213

length(mySpca$eig)

## [1] 79

barplot(mySpca$eig, main="A variant of the plot\n of sPCA eigenvalues",

col=spectral(length(mySpca$eig)))

legend("topright", fill=spectral(2),

leg=c("Global structures", "Local structures"))

abline(h=0,col="grey")
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The axes of the analysis, denoted v in eq. (4) [1] are stored as columns inside the $c1

component. Each column contains loadings for all the alleles:

head(mySpca$c1)

## Axis 1

## L01.1 1.268838e-02

## L01.2 5.551115e-17

## L01.3 -1.119979e-01

## L01.4 -2.220446e-16

## L01.5 -2.766095e-02

## L01.6 -4.477031e-02

tail(mySpca$c1)

## Axis 1

## L20.3 0.28715850

## L20.4 0.01485180

## L20.5 -0.01500353
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## L20.6 0.01659481

## L20.7 -0.14260743

## L20.8 -0.15388988

dim(mySpca$c1)

## [1] 192 1

The entity scores, denoted ψ = Xv in the article, are stored in columns in the $li component:

head(mySpca$li)

## Axis 1

## 0035 -0.4367748

## 0352 -0.8052723

## 0423 -0.4337114

## 0289 0.1434650

## 0487 -0.4802931

## 0053 -0.5421831

tail(mySpca$li)

## Axis 1

## 1074 -0.06178196

## 1187 -0.08144162

## 1260 0.41491795

## 1038 0.25643986

## 1434 0.35618737

## 1218 0.21433977

dim(mySpca$li)

## [1] 80 1

The lag vectors of the scores can be used to better perceive global structures. Lag vectors
are stored in the $ls component:

head(mySpca$ls)

## Axis 1

## 0035 -0.7076732

## 0352 -0.6321654

## 0423 -0.4822952

## 0289 0.3947791

## 0487 -0.2803381

12



## 0053 -0.4848376

tail(mySpca$ls)

## Axis 1

## 1074 0.4930238

## 1187 -0.8384871

## 1260 0.6887072

## 1038 0.3665794

## 1434 0.3109197

## 1218 0.3329688

dim(mySpca$ls)

## [1] 80 1

Lastly, we can compare the axes of an classical PCA (denoted u in the paper) to the axes of
the sPCA (v). This is achieved by projecting u onto v, but this projection is a particular
one: because both u and v are centred to mean zero and scaled to unit variance, the value of
the projection simply is the correlation between both axes. This information is stored inside
the $as component:

mySpca$as

## Axis 1

## PCA Axis1 -0.7363595

## PCA Axis2 0.3395674

1.4 Graphical display of spca results

The information contained inside a spca object can be displayed in several ways. While we
have seen that a simple barplot of sPCA eigenvalues can give a first idea of the global and local
structures to be retained, we have also seen that each eigenvalue can be decomposed into a
variance and a spatial autocorrelation (Moran’s I) component. This information is provided
by the summary function, but it can also be represented graphically. The corresponding
function is screeplot, and can be used on any spca object:

screeplot(mySpca)
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The resulting figure represents eigenvalues of sPCA (denoted λi with i = 1, . . . , r, where λ1
is the highest positive eigenvalue, and λr is the highest negative eigenvalue) according the
their variance and Moran’s I components. These eigenvalues are contained inside a rectangle
indicated in dashed lines. The maximum attainable variance by a linear combination of
alleles is the one from an ordinary PCA, indicated by the vertical dashed line on the right.
The two horizontal dashed lines indicate the range of variation of Moran’s I, given the
spatial weighting matrix that was used. This figure is useful to assess whether a given score
of entities contains relatively enough variability and spatial structuring to be interpreted.
For instance, here, λ1 clearly is the largest eigenvalue in terms of variance and of spatial
autocorrelation, and can be well distinguished from all the other eigenvalues. Hence, only
the first global structure, associated to λ1, should be interpreted.

The global and local tests proposed in [1] can be used to reinforce the decision of
interpreting or not interpreting global and local structures. Each test can detect the presence
of one kind of structure. We can apply them to the object obj, used in our sPCA:

myGtest <- global.rtest(obj$tab,mySpca$lw,nperm=99)

myGtest
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## Monte-Carlo test

## Call: global.rtest(X = obj$tab, listw = mySpca$lw, nperm = 99)

##

## Observation: 0.01658103

##

## Based on 99 replicates

## Simulated p-value: 0.01

## Alternative hypothesis: greater

##

## Std.Obs Expectation Variance

## 4.987757e+00 1.300095e-02 5.151976e-07

plot(myGtest)
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The produced object is a randtest object (see ?randtest), which is the class of objects for
Monte-Carlo tests in the ade4 package. As shown, such object can be plotted using a plot

function: the resulting figure shows an histogram of permuted test statistics and indicates
the observed statistics by a black dot and a segment. Here, the plot clearly shows that the
oberved test statistic is larger than most simulated values, leading to a likely rejection of
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the null hypothesis of absence of spatial structure. Note that because 99 permutations were
used, the p-value cannot be lower than 0.01. In practice, more permutations should be used
(like 999 or 9999 for results intended to be published).

The same can be done with the local test, which here we do not expect to be significant:

myLtest <- local.rtest(obj$tab,mySpca$lw,nperm=99)

myLtest

## Monte-Carlo test

## Call: local.rtest(X = obj$tab, listw = mySpca$lw, nperm = 99)

##

## Observation: 0.01397349

##

## Based on 99 replicates

## Simulated p-value: 0.1

## Alternative hypothesis: greater

##

## Std.Obs Expectation Variance

## 1.136881e+00 1.308272e-02 6.138997e-07

plot(myLtest)
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Once we have an idea of which structures shall be interpreted, we can try to visualize
spatial genetic patterns. There are several ways to do so. The first, most simple approach is
through the function plot (see ?plot.spca):

plot(mySpca)
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This figure displays various information, that we detail from the top to bottom and from
left to right (also see ?plot.spca). The first plot shows the connection network that
was used to define spatial weightings. The second, third, and fourth plots are different
representations of a score of entities in space, the first global score being the default
(argument axis). In each, the values of scores ($li[,axis] component of the spca object)
are represented using black and white symbols (a variant being grey levels): white for
negative values, and black for positive values. The second plot is a local interpolation of
scores (function s.image in ade4 ), using grey levels, with contour lines. The closer the
contour lines are from each other, the stepest the genetic differentiation is. The third plot
uses different sizes of squares to represent different absolute values (s.value in ade4 ): large
black squares are well differentiated from large white squares, but small squares are less
differentiated. The fourth plot is a variant using grey levels (s.value in ade4, with ’greylevel’
method). Here, all the three representations of the first global score show that genotypes
are splitted in two genetical clusters, one in the west (or left) and one in the east (right).
The last two plots of the plot.spca function are the two already seen displays of eigenvalues.

While the default plot function for spca objects provides a useful summary of the results,
more flexible tools are needed e.g. to map the principal components onto the geographic
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space. This can be achieved using the colorplot function. This function can summarize up
to three scores at the same time by translating each score into a channel of color (red, green,
and blue). The obtained values are used to compose a color using the RGB system. See
?colorplot for details about this function. The original idea of such representation is due
to [8]. Despite the colorplot clearly is more powerful to represent more than one score on a
single map, we can use it to represent the first global structure that was retained in mySpca:

colorplot(mySpca,cex=3,main="colorplot of mySpca, first global score")
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colorplot of mySpca, first global score

x

y

See examples in ?colorplot and ?spca for more examples of applications of colorplot to
represent sPCA scores.

Another common practice is interpolating principal components to get maps of genetic
clines. Note that it is crucial to perform this interpolation after the analysis, and not before,
which would add artefactual structures to the data. Interpolation is easy to realize using
interp from the akima package, and image, or filled.contour to display the results:
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library(akima)

x <- other(obj)$xy[,1]

y <- other(obj)$xy[,2]

temp <- interp(x, y, mySpca$li[,1])

image(temp, col=azur(100))

points(x,y)

Note that for better clarity, we can use the lagged principal scores ($ls) rather than
the original scores ($li); we also achieve a better resolution using specific interpolated
coordinates:

interpX <- seq(min(x),max(x),le=200)

interpY <- seq(min(y),max(y),le=200)

temp <- interp(x, y, mySpca$ls[,1], xo=interpX, yo=interpY)

image(temp, col=azur(100))

points(x,y)
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Alternatively, filled.contour can be used for the display, and a customized color palette
can be specified:

myPal <- colorRampPalette(c("firebrick2", "white", "lightslateblue"))

annot <- function(){
title("sPCA - interpolated map of individual scores")

points(x,y)

}
filled.contour(temp, color.pal=myPal, nlev=50,

key.title=title("lagged \nscore 1"), plot.title=annot())
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Besides assessing spatial patterns, it is sometimes valuable to assess which alleles actually
exhibit the structure of interest. In sPCA, the contribution of alleles to a specific structure
is given by the corresponding squared loading. We can look for the alleles contributing most
to e.g. the first axis of sPCA, using the function loadingplot (see ?loadingplot for a
description of the arguments):

myLoadings <- mySpca$c1[,1]^2

names(myLoadings) <- rownames(mySpca$c1)

loadingplot(myLoadings, xlab="Alleles",

ylab="Weight of the alleles",

main="Contribution of alleles \n to the first sPCA axis")

22



0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Contribution of alleles 
 to the first sPCA axis

Alleles

W
ei

gh
t o

f t
he

 a
lle

le
s

L01.3

L01.8

L01.9
L02.05

L02.09

L03.4

L03.5L04.1
L04.2

L05.8

L05.9
L06.07L06.08

L07.3

L08.06L08.07

L09.01

L09.05
L09.06

L10.5

L11.4

L11.5L11.6

L12.4

L12.7

L12.8

L13.05

L13.06
L14.03L14.05

L14.11

L15.03L15.09

L16.02L16.10

L17.1

L17.2

L17.4

L17.6

L17.7

L18.05L18.06

L19.04

L19.05

L19.12

L20.3

L20.7

L20.8

See ?loadingplot for more information about this function, in particular for the definition
of the threshold value above which alleles are annotated. Note that it is possible to also
separate the alleles by markers, using the fac argument, to assess if all markers have
comparable contributions to a given structure. In our case, we would only have to specify
fac=obj@loc.fac; also note that loadingplot invisibly returns information about the alleles
whose contribution is above the threshold. For instance, to identify the 5% of alleles with
the greatest contributions to the first global structure in mySpca, we need:

temp <- loadingplot(myLoadings, threshold=quantile(myLoadings, 0.95),

xlab="Alleles",ylab="Weight of the alleles",

main="Contribution of alleles \n to the first sPCA axis",

fac=obj$loc.fac, cex.fac=0.6)
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temp

## $threshold

## 95%

## 0.02345973

##

## $var.names

## [1] "L08.06" "L08.07" "L11.4" "L12.4" "L14.11" "L16.02" "L16.10" "L17.2"

## [9] "L20.3" "L20.8"

##

## $var.idx

## L08.06 L08.07 L11.4 L12.4 L14.11 L16.02 L16.10 L17.2 L20.3 L20.8

## 71 72 99 105 130 146 154 157 187 192

##

## $var.values

## L08.06 L08.07 L11.4 L12.4 L14.11 L16.02 L16.10

## 0.03044687 0.03037709 0.06111338 0.03199067 0.02799529 0.02873923 0.02806079

## L17.2 L20.3 L20.8
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## 0.05793290 0.08246000 0.02368209

But to assess the average contribution of each marker, the boxplot probably is a better
tool:

boxplot(myLoadings~obj$loc.fac, las=3, ylab="Contribution", xlab="Marker",

main="Contributions by markers \nto the first global score", col="grey")
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2 Case study: spatial genetic structure of the chamois

in the Bauges mountains

The chamois (Rupicapra rupicapra) is a conserved species in France. The Bauges mountains
is a protected area in which the species has been recently studied. One of the most important
questions for conservation purposes relates to whether individuals from this area form a single
reproductive unit, or whether they are structured into sub-groups, and if so, what causes are
likely to induce this structuring.
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While field observations are very scarce and do not allow to answer this question, genetic
data can be used to tackle the issue, as departure from panmixia should result in genetic
structuring. The dataset rupica contains 335 georeferenced genotypes of Chamois from the
Bauges mountains for 9 microsatellite markers, which we propose to analyse.

2.1 An overview of the data

We first load the data:

data(rupica)

rupica

## /// GENIND OBJECT /////////

##

## // 335 individuals; 9 loci; 55 alleles; size: 515.9 Kb

##

## // Basic content

## @tab: 335 x 55 matrix of allele counts

## @loc.n.all: number of alleles per locus (range: 4-10)

## @loc.fac: locus factor for the 55 columns of @tab

## @all.names: list of allele names for each locus

## @ploidy: ploidy of each individual (range: 2-2)

## @type: codom

## @call: NULL

##

## // Optional content

## @other: a list containing: xy mnt showBauges image.asc contour.asc

rupica is a genind object, that is, the class of objects storing genotypes (as opposed
to population data) in adegenet. rupica also contains topographic information about the
sampled area, which can be displayed by calling rupica$other$showBauges. The spatial
distribution of the sampling can be displayed as follows:

rupica$other$showBauges()

points(rupica$other$xy, col="red",pch=20)
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This spatial distribution is clearly not random, but seems arranged into loose clusters.
However, superimposed samples can bias our visual assessment of the spatial clustering. Use
a two-dimensional kernel density estimation (function s.kde2d) to overcome this possible
issue.

rupica$other$showBauges()

s.kde2d(rupica$other$xy,add.plot=TRUE)

points(rupica$other$xy, col="red",pch=20)
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Unfortunately, geographical clustering is not strong enough to assign unambiguously each
individual to a group. Therefore, we need to carry all analyses at the individual level, which
precludes the use of most population genetics tools.

2.2 Summarising the genetic diversity

As a prior clustering of genotypes is not known, we cannot employ usual FST -based
approaches to detect genetic structuring. However, genetic structure could still result in
a deficit of heterozygosity. Use the summary of genind objects to compare expected and
observed heterozygosity:

rupica.smry <- summary(rupica)

plot(rupica.smry$Hobs, rupica.smry$Hexp, main="Observed vs expected heterozygosity")

abline(0,1,col="red")
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The red line indicate identity between both quantities. Observed heterozygosity do not seem
to deviate massively from theoretical expectations. This is confirmed by a classical pairwise
t-test::

t.test(rupica.smry$Hexp, rupica.smry$Hobs,paired=TRUE,var.equal=TRUE)

##

## Paired t-test

##

## data: rupica.smry$Hexp and rupica.smry$Hobs

## t = 1.1761, df = 8, p-value = 0.2734

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.007869215 0.024249885

## sample estimates:

## mean of the differences

## 0.008190335
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We can seek a global picture of the genetic diversity among genotypes using a Principal
Component Analysis (PCA, function dudi.pca in the ade4 package). The analysis is
performed on a table of alleles frequencies, obtained by tab.

The function dudi.pca displays a barplot of eigenvalues and asks for a number of retained
principal components:

rupica.X <- tab(rupica, freq = TRUE, NA.method = "mean")

rupica.pca1 <- dudi.pca(rupica.X, scale = TRUE, scannf = FALSE, nf = 2)

barplot(rupica.pca1$eig, main = "Rupica dataset - PCA eigenvalues",

col = heat.colors(length(rupica.pca1$eig)))

Rupica dataset − PCA eigenvalues
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The output produced by dudi.pca is a dudi object. A dudi object contains various
information; in the case of PCA, principal axes (loadings), principal components (synthetic
variable), and eigenvalues are respectively stored in $c1, $li, and $eig slots. Here is the
content of the PCA:
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rupica.pca1

## Duality diagramm

## class: pca dudi

## $call: dudi.pca(df = rupica.X, scale = TRUE, scannf = FALSE, nf = 2)

##

## $nf: 2 axis-components saved

## $rank: 51

## eigen values: 3.013 2.563 2.271 2.107 2.1 ...

## vector length mode content

## 1 $cw 55 numeric column weights

## 2 $lw 335 numeric row weights

## 3 $eig 51 numeric eigen values

##

## data.frame nrow ncol content

## 1 $tab 335 55 modified array

## 2 $li 335 2 row coordinates

## 3 $l1 335 2 row normed scores

## 4 $co 55 2 column coordinates

## 5 $c1 55 2 column normed scores

## other elements: cent norm

In general, eigenvalues represent the amount of genetic diversity — as measured by
the multivariate method being used — represented by each principal component (PC). An
abrupt decrease in eigenvalues is likely to indicate the boundary between true patterns and
non-interpretable structures. In this case, the first two PCs may contain some relevant
biological signal.

We can use s.label to display the two first components of the analysis. Kernel density
estimation (s.kde2d) is used for a better assessment of the distribution of the genotypes onto
the principal axes:

s.label(rupica.pca1$li)

s.kde2d(rupica.pca1$li, add.p=TRUE, cpoint=0)

add.scatter.eig(rupica.pca1$eig,2,1,2)
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This scatterplot shows that the only structure identified by PCA points to a few outliers.
loadingplot confirms that this corresponds to the possession of a few original alleles:

loadingplot(rupica.pca1$c1^2)
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We can go back to the genotypes for the concerned markers (e.g., Bm203) to check whether
the highlighted genotypes are uncommon. tab extracts the table of allele frequencies from a
genind object (restoring original labels for markers, alleles, and individuals):

X <- tab(rupica)

class(X)

## [1] "matrix" "array"

dim(X)

## [1] 335 55

bm203.221 <- X[,"Bm203.221"]

table(bm203.221)

## bm203.221

## 0 1

## 331 4
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Only 4 genotypes possess one copy of the allele 221 of marker bm203 (the second result
corresponds to a replaced missing data). Which individuals are they?

rownames(X)[bm203.221 > 0.5]

## [1] "8" "86" "600" "7385"

These are indeed our outliers. From the point of view of PCA, this would be the only
structure in the data. However, further analyses show that more is to be seen...

2.3 Mapping and testing PCA results

A frequent practice in spatial genetics is mapping the first principal components (PCs) onto
the geographic space. ade4 ’s function s.value is well-suited to do so, using black and white
squares of variable size for positive and negative values. To give a legend for this type of
representation:

s.value(cbind(1:11,rep(1,11)), -5:5, cleg=0)

text(1:11,rep(1,11), -5:5, col="red",cex=1.5)
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We apply this graphical representation to the first two PCs of the PCA:

showBauges <- rupica$other$showBauges

showBauges()

s.value(rupica$other$xy, rupica.pca1$li[,1], add.p=TRUE, cleg=0.5)

title("PCA - first PC",col.main="yellow" ,line=-2, cex.main=2)
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showBauges()

s.value(rupica$other$xy, rupica.pca1$li[,2], add.p=TRUE, csize=0.7)

title("PCA - second PC",col.main="yellow" ,line=-2, cex.main=2)
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As we can see, none of these PCs seems to display a particular spatial pattern. This visual
assessment can be complemented by a test of spatial autocorrelation in these PCs. This
can be achieved using Moran’s I test. We use spdep’s function moran.mc to perform these
two tests. We first need to define the spatial connectivity between the sampled individuals.
For these data, spatial connectivity is best defined as the overlap between home ranges
of individuals, modelled as disks with a radius of 1150m. chooseCN is used to create the
corresponding connection network:

rupica.graph <- chooseCN(rupica$other$xy,type=5,d1=0,d2=2300, plot=FALSE,

res="listw")

The connection network should ressemble this:

rupica.graph

## Characteristics of weights list object:

## Neighbour list object:

## Number of regions: 335

## Number of nonzero links: 18018
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## Percentage nonzero weights: 16.05525

## Average number of links: 53.78507

##

## Weights style: W

## Weights constants summary:

## n nn S0 S1 S2

## W 335 112225 335 15.04311 1352.07

plot(rupica.graph, rupica$other$xy)

title("rupica.graph")

We perform Moran’s test for the first two PCs, and plot the results.

pc1.mctest <- moran.mc(rupica.pca1$li[,1], rupica.graph, 999)

plot(pc1.mctest)
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This result is surprisingly significant. Why is this? Moran’s plot (moran.plot) represents
the tested variable against its lagged vector; we apply it to the first PC:

moran.plot(rupica.pca1$li[,1], rupica.graph)
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Positive autocorrelation corresponds to a positive correlation between a variable and its lag
vector. Here, we can see that this relation is entirely driven by the previously identified
outliers, which turn out to be neighbours. This is therefore a fairly trivial and uninteresting
pattern. Results obtained on the second PC are less surprisingly non-significant:

pc2.mctest <- moran.mc(rupica.pca1$li[,2], rupica.graph, 999)

plot(pc2.mctest)
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2.4 Multivariate tests of spatial structure

So far, we have only tested the existence of spatial structures in the first two principal
components of a PCA of the data. Therefore, these tests only describe one fragment of the
data, and do not encompass the whole diversity in the data. As a complement, we can use
Mantel test (mantel.randtest) to test spatial structures in the whole data, by assessing the
correlation between genetic distances and geographic distances. Pairwise Euclidean distances
are computed using dist. Perform Mantel test, using the scaled genetic data you used before
in PCA, and the geographic coordinates.

mtest <- mantel.randtest(dist(rupica.X), dist(rupica$other$xy))

plot(mtest, nclass=30)
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Interestingly, this test turns out to be marginally significant, and would encourage us to look
for spatial patterns. This is the role of the spatial Principal Component Analysis.

2.5 Spatial Principal Component Analysis

We apply an sPCA to the rupica dataset, using the connection network used previously in
Moran’s I tests:

rupica.spca1 <- spca(rupica, cn=rupica.graph,scannf=FALSE,

nfposi=2,nfnega=0)

barplot(rupica.spca1$eig, col=rep(c("red","grey"), c(2,1000)),

main="rupica dataset - sPCA eigenvalues")
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The principal components associated with the first two positive eigenvalues (in red) shall be
retained. The printing of spca objects is more explicit than dudi objects, but named with
the same conventions:

rupica.spca1

## ########################################

## # spatial Principal Component Analysis #

## ########################################

## class: spca

## $call: spca.genind(obj = rupica, cn = rupica.graph, scannf = FALSE,

## nfposi = 2, nfnega = 0)

##

## $nfposi: 2 axis-components saved

## $nfnega: 0 axis-components saved

## Positive eigenvalues: 0.03001 0.01445 0.00924 0.006851 0.004485 ...

## Negative eigenvalues: -0.008643 -0.006407 -0.004488 -0.003977 -0.003248 ...

##

## vector length mode content
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## 1 $eig 51 numeric eigenvalues

##

## data.frame nrow ncol content

## 1 $tab 335 55 transformed data: optionally centred / scaled

## 2 $c1 55 2 principal axes: scaled vectors of alleles loadings

## 3 $li 335 2 principal components: coordinates of entities ('scores')

## 4 $ls 335 2 lag vector of principal components

## 5 $as 2 2 pca axes onto spca axes

##

## $xy: matrix of spatial coordinates

## $lw: a list of spatial weights (class 'listw')

##

## other elements: lw

Unlike usual multivariate analyses, eigenvalues of sPCA are composite: they measure both
the genetic diversity (variance) and the spatial structure (spatial autocorrelation measured
by Moran’s I). This decomposition can also be used to choose which principal component
to interprete. The function screeplot allows to display this information graphically:

screeplot(rupica.spca1)
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While λ1 indicates with no doubt a structure, the second eigenvalue, λ2 is less clearly distinct
from the successive values. Thus, we shall keep in mind this uncertainty when interpreting
the second principal component of the analysis.

We map the sPCA results using s.value and lagged scores ($ls) instead of the PC ($li),
which are a ’denoisified’ version of the PCs.

showBauges()

s.value(rupica$other$xy, rupica.spca1$ls[,1], add.p=TRUE, csize=0.7)

title("sPCA - first PC",col.main="yellow" ,line=-2, cex.main=2)
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This first PC shows a remarkably clear structure opposing two high-altitude areas separated
by a valley, which is thought to be an obstacle to the dispersal of Chamois (due to higher
exposition to predation in low-altitude areas).

The second PC of sPCA shows an equally interesting structure:

showBauges()

s.value(rupica$other$xy, rupica.spca1$ls[,2], add.p=TRUE, csize=0.7)

title("sPCA - second PC",col.main="yellow" ,line=-2, cex.main=2)
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The smaller clusters appearing on this map correspond to social units identified by direct
observation in the field. Therefore, this genetic structure is merely a reflect of the social
behaviour of these individuals.

Both genetic structures can be represented altogether using colorplot. The final figure
should ressemble this (although colors may change from one computer to another):

showBauges()

colorplot(rupica$other$xy, rupica.spca1$ls, axes=1:2, transp=TRUE, add=TRUE,

cex=3)

title("sPCA - colorplot of PC 1 and 2\n(lagged scores)", col.main="yellow",

line=-2, cex=2)
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