
LingPy Documentation
Release 1.0

Johann-Mattis List

April 16, 2012

CONTENTS

1 Basic Classes 1
1.1 Sequence Modeling (Model) . 1
1.2 Sequence Analysis (Sequence) . 2
1.3 Pairwise Sequence Comparison (Pairwise) . 3
1.4 Multiple Sequence Comparison (Multiple) . 5
1.5 Lexicostatistical Analyses (LexStat) . 7

2 Specific Modules 9
2.1 Predefined Datasets (data) . 9
2.2 Customizing Sound-Class Models (derive) . 9
2.3 Cluster Algorithms (cluster) . 11
2.4 Miscellaneous Functions (misc) . 14
2.5 Testing the Algorithms (test) . 19
2.6 Evaluation of Automatic Analyses (evaluate) . 20
2.7 Data Plotting (plot) . 28
2.8 What’s Next? . 30

Python Module Index 31

i

ii

CHAPTER

ONE

BASIC CLASSES

1.1 Sequence Modeling (Model)

class lingpy.data.model.Model(model)
Class for the handling of sound-class models.

Parameters model : { ‘sca’, ‘dolgo’, ‘asjp’, ‘art’, ‘color’ }
A string indicating the name of the model which shall be loaded. Select between:
• ‘sca’ - the SCA sound-class model (see List forthcoming),
• ‘dolgo’ - the DOLGO sound-class model (see: :evobib:‘Dolgopolsky1986’),
• ‘asjp’ - the ASJP sound-class model (see Brown et al. 2008 and Brown, Hol-
man, and Wichmann 2011),

• ‘art - the sound-class model which is used for the calculation of sonority profiles and
prosodic strings (see List 2012), and

• ‘color” - the sound-class model which is used for the coloring of sound-tokens when
creating html-output.

See Also:

lingpy.data.derive.compile_model
lingpy.data.derive.compile_diacritics_and_vowels

Notes

Models are loaded from binary files which can be found in the data/models/ folder of the LingPy package. A
model has two essential attributes:

•converter – a dictionary with IPA-tokens as keys and sound-class characters as values, and
•scorer – a scoring dictionary with tuples of sound-class characters as keys and scores (integers or floats) as
values.

Examples

When loading LingPy, the models sca, asjp, dolgo, and art are automatically loaded:

>>> from lingpy import *

Check, how the letter a is converted in the various models:

1

LingPy Documentation, Release 1.0

>>> for m in [asjp,sca,dolgo,art]:
>>> for m in [asjp,sca,dolgo,art]:
... print('{0} > {1} ({2})'.format('a',m.converter['a'],m.name))
...
a > a (asjp)
a > A (sca)
a > V (dolgo)
a > 7 (art)

Retrieve basic information of a given model:

>>> print(sca)
Model: sca
Info: Extended sound class model based on Dolgopolsky (1986)
Source: List (2012)
Compiler: Johann-Mattis List
Date: 2012-03

Attributes

con-
verter

dict A dictionary with IPA tokens as keys and sound-class characters as values.

scorer dict A scoring dictionary with tuples of sound-class characters as keys and similarity scores as
values.

info dict A dictionary storing the key-value pairs defined in the INFO.
name str The name of the model which is identical with the name of the folder from wich the model

is loaded.

1.2 Sequence Analysis (Sequence)

class lingpy.sequence.Sequence(seq, model=sca, merge_vowels=True)
Basic class for handling sound-class sequences.

Parameters seq : str
The input sequence in IPA format.

model : Model
A Model object. Three models are predefined and automatically loaded when loading
LingPy:
• ‘dolgo’ – a model which is based on the sound-class model of Dolgopolsky 1964,
• ‘sca’ – an extension of the “dolgo” sound-class based on List forthcoming, and
• ‘asjp’ – an independent sound-class model which is based on the sound-class model
of Brown et al. 2008 and the empirical data of Brown, Holman, and
Wichmann 2011.

merge_vowels : bool (default=True)
Indicate, whether neighboring vowels should be merged into diphtongs, or whether they
should be kept separated during the analysis.

2 Chapter 1. Basic Classes

LingPy Documentation, Release 1.0

Examples

Initialize a sound-class sequence.

>>> from lingpy import *
>>> sca = Sequence('t͡sɔyɡə')

Print out its tokens.

>>> for token in sca.tokens: print(token)
...
t͡s
ɔy
ɡ
ə

Print out its class-string:

>>> print(sca.classes)
CUKE

Compare the length of the IPA-string with that of the sound-class string.

>>> len(sca) == len(sca.ipa)
False

Access the third element of the sound-class sequence and the IPA-string.

>>> print(sca[3],sca.ipa[3])
ə s

Access the prosodic string of the sequence.

>>> sca.prostring
'#vC>'

Access a trigram representation of the sequence.

>>> sca.trigram
['#CU', 'CUK', 'UKE', 'KE$']

Attributes

ipa str The original format of the input sequence.
tokens list A tokenized version of the input sequence.
classes str A sound-class representation of the input sequence.
prostring str A string-representation of the prosodic environment of the segments.
trigram list A list representing the sequence as a trigram.

1.3 Pairwise Sequence Comparison (Pairwise)

class lingpy.compare.Pairwise(infile, merge_vowels=True, comment=’#’)
Basic class for dealing with the pairwise alignment of sequences.

Parameters infile : file
A file in psq-format.

1.3. Pairwise Sequence Comparison (Pairwise) 3

LingPy Documentation, Release 1.0

merge_vowels : bool (default=True)
Indicate, whether neighboring vowels should be merged into diphtongs, or whether they
should be kept separated during the analysis.

comment : char (default=’#’)
The comment character which, inserted in the beginning of a line, prevents that line from
being read.

Notes

In order to read in data from text files, two different file formats can be used along with this class:
psq-format The psq-format is a specific format for text files containing unaligned sequence pairs. Files in this

format should have the extension psq.
The first line of a psq-file contains information regarding the dataset. The sequence pairs are given in triplets,
with a sequence identifier in the first line of a triplet (containing the meaning, or orthographical information)
and the two sequences in the second and third line, whereas the first column of each sequence line contains
the name of the taxon and the second column the sequence in IPA format. All triplets are divided by one
empty line. As an example, consider the file test.psq:

Harry Potter Testset
Woldemort in German and Russian
German waldemar
Russian vladimir

Woldemort in English and Russian
English woldemort
Russian vladimir

Woldemort in English and German
English woldemort
German waldemar

psa-format The psa-format is a specific format for text files containing already aligned sequence pairs. Files in
this format should have the extension psq.
The first line of a psa-file contains information regarding the dataset. The sequence pairs are given in triplets,
with a sequence identifier in the first line of a triplet (containing the meaning, or orthographical information)
and the aligned sequences in the second and third line, whith the name of the taxon in the first column and all
aligned segments in the following columns, separated by tabstops. All triplets are divided by one empty line.
As an example, consider the file test.psa:

Harry Potter Testset
Woldemort in German and Russian
German. w a l - d e m a r
Russian v - l a d i m i r

Woldemort in English and Russian
English w o l - d e m o r t
Russian v - l a d i m i r -

Woldemort in English and German
English w o l d e m o r t
German. w a l d e m a r -

4 Chapter 1. Basic Classes

LingPy Documentation, Release 1.0

Attributes

taxa list A list of tuples containing the taxa of all sequence pairs.
seqs list A list of tuples containing all sequence pairs.
tokens list A list of tuples containing all sequence pairs in a tokenized form.

Methods

align([model, mode, gop, gep_scale, scale, ...]) Align two sequences or a list of sequence pairs pairwise.
output([fileformat, filename]) Write the results of the analyses to a text file.

1.4 Multiple Sequence Comparison (Multiple)

class lingpy.compare.Multiple(infile, merge_vowels=True, comment=’#’)
Basic class for carrying out multiple sequence alignment analyses.

Parameters infile : file
A file in msq-format or msa-format.

merge_vowels : bool (default=True)
Indicate, whether neighboring vowels should be merged into diphtongs, or whether they
should be kept separated during the analysis.

comment : char (default=’#’)
The comment character which, inserted in the beginning of a line, prevents that line from
being read.

Notes

In order to read in data from text files, two different file formats can be used along with this class:
msq-format The msq-format is a specific format for text files containing unaligned sequences. Files in this format

should have the extension msq. The first line of an msq-file contains information regarding the dataset. The
second line contains information regarding the sequence (meaning, identifier), and the following lines contain
the name of the taxa in the first column and the sequences in IPA format in the second column, separated by
a tabstop. As an example, consider the file test.msq:

Harry Potter Testset
Woldemort (in different languages)
German waldemar
English woldemort
Russian vladimir

msa-format The msa-format is a specific format for text files containing already aligned sequence pairs. Files in
this format should have the extension msa.
The first line of a msa-file contains information regarding the dataset. The second line contains information
regarding the sequence (its meaning, the protoform corresponding to the cognate set, etc.). The aligned
sequences are given in the following lines, whereas the taxa are given in the first column and the aligned
segments in the following columns. Additionally, there may be a specific line indicating the presence of
swaps and a specific line indicating highly consistent sites (local peaks) in the MSA. The line for swaps starts
with the headword SWAPS whereas a plus character (+) marks the beginning of a swapped region, the dash

1.4. Multiple Sequence Comparison (Multiple) 5

LingPy Documentation, Release 1.0

character (-) its center and another plus character the end. All sites which are not affected by swaps contain a
dot. The line for local peaks starts with the headword LOCAL. All sites which are highly consistent are marked
with an asterisk (*), all other sites are marked with a dot (.). As an example, consider the file test.msa:

Harry Potter Testset
Woldemort (in different languages)
English w o l - d e m o r t
German. w a l - d e m a r -
Russian v - l a d i m i r -
SWAPS.. . + - +
LOCAL.. * * * . * * * * * .

Examples

Get the path to a file from the testset.

>>> from lingpy import *
>>> seq_file = get_file('test.seq')

Load the file into the Multiple class.

>>> mult = Multiple(seq_file)

Carry out a progressive alignment analysis of the sequences.

>>> mult.prog_align()

Print the result to the screen:

>>> print(mult)
w o l - d e m o r t
w a l - d e m a r -
v - l a d i m i r -

Methods

get_pairwise_alignments([new_calc,
model, ...])

Function creates a dictionary of all pairwise alignments scores.

get_peaks([gap_weight]) Calculate the profile score for each column of the alignment.
get_pid([mode]) Return the Percentage Identity (PID) score of the calculated

MSA.
ipa2cls([model]) Retrieve sound-class strings from aligned IPA sequences.
iterate_all_sequences([check, mode,
gop, ...])

Iterative refinement based on a complete realignment of all se-
quences.

iterate_clusters(threshold[, check, mode,
...])

Iterative refinement based on a flat cluster analysis of the data.

iterate_orphans([check, mode, gop, ...]) Iterate over the most divergent sequences in the sample.
iterate_similar_gap_sites([check,
mode, ...])

Iterative refinement based on the Similar Gap Sites heuristic.

lib_align([model, mode, modes, scale, ...]) Carry out a library-based progressive alignment analysis of the
sequences.

output([fileformat, filename, sorted_seqs, ...]) Write data to file.
Continued on next page

6 Chapter 1. Basic Classes

LingPy Documentation, Release 1.0

Table 1.2 – continued from previous page
prog_align([model, mode, gop, gep_scale, ...]) Carry out a progressive alignment analysis of the input se-

quences.
sum_of_pairs([alm_matrix, mat, gap_weight]) Calculate the sum-of-pairs score for a given alignment analysis.
swap_check([swap_penalty, score_mode]) Check for possibly swapped sites in the alignment.

1.5 Lexicostatistical Analyses (LexStat)

class lingpy.lexstat.LexStat(infile)
Basic class for handling lexicostatistical datasets.

Parameters infile : file
A file in lxs-format.

Notes

The LexStat class serves as the base class for the handling of lexicostatistical datasets (see Swadesh 1955 for a
detailed description of the method of lexicostatistics). It provides methods for data conversion, when analyses on
cognacy have been conducted in a qualitative way, and also allows to carry out cognate judgments automatically,
based on the different methods described in List forthcoming.
The input data for LexStat is a simple tab-delimited text file with the language names in the first row, an ID in the
first column, and the data in the columns corresponding to the language names. Additionally, the file can contain
headwords corresponding to the IDs and cognate-IDs, specifying which words in the data are thought to be cognate.
This structure is almost the same as the one employed in the Starling database program (see http://starling.rinet.ru).
Synonyms are also specified in the same way by simply adding additional rows with the same ID. The following is
an example for the possible structure of an input file:

ID Word German COG English COG ...
1 hand hantʰ 1 hæːnd 1 ...
2 fist faustʰ 2 fist 2 ...
...

Methods

analyze(threshold[, score_mode, model, ...]) Conduct automatic cognate judgments following the method of
List forthcoming.

output([fileformat, filename]) Write the data to file.
pairwise_distances() Calculate the lexicostatistical distance between all taxa.

1.5. Lexicostatistical Analyses (LexStat) 7

http://starling.rinet.ru

LingPy Documentation, Release 1.0

8 Chapter 1. Basic Classes

CHAPTER

TWO

SPECIFIC MODULES

2.1 Predefined Datasets (data)

LingPy comes along with many different kinds of predefined data. When loading the library, the following data are
automatically loaded and can be used in all applications:

ipa_diacritics : unicode
The default string of IPA diacritics which is used for the tokenization of IPA strings.

ipa_vowels : unicode
The default string of IPA vowels which is used for the tokenization of IPA strings.

sca : Model
The SCA sound-class Model (see List 2012).

dolgo : Model
The DOLGO sound-class Model (see Dolgopolsky 1964).

asjp : Model
The ASJP sound-class Model (see Brown et al. 2008 and Brown, Holman, and Wich-
mann 2011).

art : Model
The ART sound-class Modelwhich is used for the calculation of sonority profiles and prosodic strings
(see List 2012).

2.2 Customizing Sound-Class Models (derive)

The module provides functions for the customized compilation of sound-class models. All models are defined in simple
text files. In order to guarantee their quick access when loading the library, the models are compiled and stored in binary
files.

2.2.1 Customizing Diacritics and Vowels

compile_diacritics_and_vowels() Function compiles diacritics and vowels.

lingpy.data.derive.compile_diacritics_and_vowels

lingpy.data.derive.compile_diacritics_and_vowels()
Function compiles diacritics and vowels.

9

LingPy Documentation, Release 1.0

See Also:

lingpy.data.model.Model
lingpy.data.derive.compile_model

Notes

Diacritics and vowels are defined in the data/models/dv/ directory of the LingPy package and automati-
cally loaded when loading the LingPy library. The values are defined as the constants ipa_diacritics and
ipa_vowels. Their core purpose is to guide the tokenization of IPA strings (cf. ipa2tokens()). In order
to change the variables, one simply has to change the text files diacritics and vowels in the data/mod-
els/dv directory. The structure of these files is fairly simple: Each line contains a vowel or a diacritic character,
whereas diacritics are preceded by a dash.

2.2.2 Customizing Sound-Class Models

compile_model(model) Function compiles customized sound-class models.

lingpy.data.derive.compile_model

lingpy.data.derive.compile_model(model)
Function compiles customized sound-class models.

Parameters model : str
A string indicating the name of the model which shall be created.

See Also:

lingpy.data.model.Model
lingpy.data.derive.compile_diacritcs_and_vowels

Notes

A model is defined by a folder placed in data/models directory of the LingPy package. The name of the folder
reflects the name of the model. It contains three files: the file converter, the file INFO, and the optional file
scorer. The format requirements for these files are as follows:
INFO The INFO-file serves as a reference for a given sound-class model. It can contain arbitrary information (and

also be empty). If one wants to define specific characteristics, like the source, the compiler, the date,
or a description of a given model, this can be done by employing a key-value structure in which the key
is preceded by an @ and followed by a colon and the value is written right next to the key in the same line,
e.g.:

@source: Dolgopolsky (1986)

This information will then be read from the INFO file and rendered when printing the model to screen with
help of the print() function.

converter The converter file contains all sound classes which are matched with their respective sound
values. Each line is reserved for one class, precede by the key (preferably an ASCII-letter) representing the
class:

B : ɸ, β, f, p͡f, p�f, ƀ
E : ɛ, æ, ɜ, ɐ, ʌ, e, �, ə, ɘ, ɤ, è, é, ē, ě, ê, ɚ

10 Chapter 2. Specific Modules

http://docs.python.org/library/functions.html#print

LingPy Documentation, Release 1.0

D : θ, ð, ŧ, þ, đ
G : x, ɣ, χ
...

scorer The scorer file (which is optional) contains the graph of class-transitions which is used for the cal-
culation of the scoring dictionary. Each class is listed in a separate line, followed by the symbols v,‘‘c‘‘, or
t (indicating whether the class represents vowels, consonants, or tones), and by the classes it is directly con-
nected to. The strength of this connection is indicated by digits (the smaller the value, the shorter the path
between the classes):

A : v, E:1, O:1
C : c, S:2
B : c, W:2
E : v, A:1, I:1
D : c, S:2
...

The information in such a file is automatically converted into a scoring dictionary (seeList forthcoming
for details).

Based on the information provided by the files, a dictionary for the conversion of IPA-characters to sound classes
and a scoring dictionary are created and stored as a binary. The model can be loaded with help of the Model class
and used in the various classes and functions provided by the library.

2.3 Cluster Algorithms (cluster)

This module provides functions for basic cluster algorithms.

2.3.1 Flat Cluster Algorithms

flat_upgma(matrix, threshold[, taxa]) Carry out a flat cluster analysis based on theUPGMAalgorithm
(Sokal and Michener 1958).

lingpy.algorithm.cluster.flat_upgma

lingpy.algorithm.cluster.flat_upgma(matrix, threshold, taxa=None)
Carry out a flat cluster analysis based on the UPGMA algorithm (ibid.).

Parameters matrix : list or numpy.array
A two-dimensional list containing the distances.

threshold : float
The threshold which terminates the algorithm.

taxa : list
A list containing the names of the taxa. If set to None, the indices of the taxa will be
returned instead of their names.

Returns clusters : dict
A dictionary with cluster-IDs as keys and a list of the taxa corresponding to the respective
ID as values.

See Also:

2.3. Cluster Algorithms (cluster) 11

LingPy Documentation, Release 1.0

lingpy.algorithm.clusters.upgma
lingpy.algorithm.clusters.neighbor

Examples

The function is automatically imported along with LingPy.

>>> from lingpy import *

Create a list of arbitrary taxa.

>>> taxa = ['German','Swedish','Icelandic','English','Dutch']

Create an arbitrary distance matrix.

>>> matrix = squareform([0.5,0.67,0.8,0.2,0.4,0.7,0.6,0.8,0.8,0.3])
>>> matrix
array([[0. , 0.5 , 0.67, 0.8 , 0.2],

[0.5 , 0. , 0.4 , 0.7 , 0.6],
[0.67, 0.4 , 0. , 0.8 , 0.8],
[0.8 , 0.7 , 0.8 , 0. , 0.3],
[0.2 , 0.6 , 0.8 , 0.3 , 0.]])

Carry out the flat cluster analysis.

>>> flat_upgma(clusters,matrix,0.5)
{0: ['German', 'Dutch', 'English'], 1: ['Swedish', 'Icelandic']}

2.3.2 Deep Cluster Algorithms

upgma(matrix, taxa[, distances]) Carry out a cluster analysis based on the UPGMA algorithm
(Sokal and Michener 1958).

neighbor(matrix, taxa[, distances]) Function clusters data according to the Neighbor-Joining algo-
rithm (Saitou and Nei 1987).

lingpy.algorithm.cluster.upgma

lingpy.algorithm.cluster.upgma(matrix, taxa, distances=True)
Carry out a cluster analysis based on the UPGMA algorithm (Sokal and Michener 1958).

Parameters matrix : list or numpy.array
A two-dimensional list containing the distances.

taxa : list
An list containing the names of all taxa corresponding to the distances in the matrix.

distances : bool
If set to False, only the topology of the tree will be returned.

Returns newick : str
A string in newick-format which can be further used in biological software packages to
view and plot the tree.

See Also:

12 Chapter 2. Specific Modules

LingPy Documentation, Release 1.0

lingpy.algorithm.cluster.neighbor
lingpy.algorithm.cluster.flat_upgma

Examples

Function is automatically imported when importing lingpy.

>>> from lingpy import *

Create an arbitrary list of taxa.

>>> taxa = ['German','Swedish','Icelandic','English','Dutch']

Create an arbitrary matrix.

>>> matrix = squareform([0.5,0.67,0.8,0.2,0.4,0.7,0.6,0.8,0.8,0.3])

Carry out the cluster analysis.

>>> upgma(matrix,taxa,distances=False)
'((Swedish,Icelandic),(English,(German,Dutch)));'

lingpy.algorithm.cluster.neighbor

lingpy.algorithm.cluster.neighbor(matrix, taxa, distances=True)
Function clusters data according to the Neighbor-Joining algorithm (Saitou and Nei 1987).

Parameters matrix : list or numpy.array
A two-dimensional list containing the distances.

taxa : list
An list containing the names of all taxa corresponding to the distances in the matrix.

distances : bool
If set to False, only the topology of the tree will be returned.

Returns newick : str
A string in newick-format which can be further used in biological software packages to
view and plot the tree.

See Also:

lingpy.algorithm.cluster.upgma
lingpy.algorithm.cluster.flat_upgma

Examples

Function is automatically imported when importing lingpy.

>>> from lingpy import *

Create an arbitrary list of taxa.

>>> taxa = ['Norwegian','Swedish','Icelandic','Dutch','English']

Create an arbitrary matrix.

2.3. Cluster Algorithms (cluster) 13

LingPy Documentation, Release 1.0

>>> matrix = squareform([0.5,0.67,0.8,0.2,0.4,0.7,0.6,0.8,0.8,0.3])

Carry out the cluster analysis.

>>> neighbor(matrix,taxa)
'(((Norwegian,(Swedish,Icelandic)),English),Dutch);'

2.4 Miscellaneous Functions (misc)

This module provides miscellaneous functions which are mostly used internally.

2.4.1 Sequence Modeling

ipa2tokens(seq[, diacritics, vowels, ...]) Tokenize IPA-encoded strings.
tokens2class(tokens, model) Convert tokenized IPA strings into their respective class strings.
class2tokens(tokens, classes[, gap_char]) Turn aligned sound-class sequences into an aligned sequences

of IPA tokens.
prosodic_string(seq) Create a prosodic string of the sonority profile of a sequence.
prosodic_weights(prostring[, scale, factor]) Calculate prosodic weights for each position of a sequence.

lingpy.algorithm.misc.ipa2tokens

lingpy.algorithm.misc.ipa2tokens(seq, diacritics=None, vowels=None, merge_vowels=True)
Tokenize IPA-encoded strings.

Parameters seq : string or unicode
The input sequence that shall be tokenized.

diacritics : unicode
A string containing all diacritics which shall be considered in the respective analysis. When
set to None, the default diacritic string will be used.

vowels : unicode
A string containing all vowel symbols which shall be considered in the respective analysis.
When set to None, the default vowel string will be used.

merge_vowels : bool
Indicate, whether vowels should be merged into diphtongs (default=True), or whether each
vowel symbol should be considered separately.

Returns tokens : list
A list of IPA tokens.

See Also:

tokens2class
class2tokens

14 Chapter 2. Specific Modules

LingPy Documentation, Release 1.0

Examples

>>> from lingpy import *
>>> myseq = 't͡sɔyɡə'
>>> ipa2tokens(myseq)
[u't\u0361s', u'\u0254y', u'\u0261', u'\u0259']
>>> for t in ipa2tokens(myseq): print t
t͡s
ɔy
ɡ
ə

lingpy.algorithm.misc.tokens2class

lingpy.algorithm.misc.tokens2class(tokens, model)
Convert tokenized IPA strings into their respective class strings.

Parameters tokens : list
A list of tokens as they are returned from ipa2tokens().

model : Model
A Model object.

Returns classes : string
A sound-class representation of the tokenized IPA string.

See Also:

ipa2tokens
class2tokens

Examples

>>> from lingpy import *
>>> tokens = ipa2tokens('t͡sɔyɡə')
>>> classes = tokens2class(tokens,sca)
>>> print(classes)
CUKE

lingpy.algorithm.misc.class2tokens

lingpy.algorithm.misc.class2tokens(tokens, classes, gap_char=’-‘)
Turn aligned sound-class sequences into an aligned sequences of IPA tokens.

Parameters tokens : list
The list of tokens corresponding to the unaligned IPA string.

classes : string or list
The aligned class string.

gap_char : string
The character which indicates gaps in the aligned class string (defaults to “-”).

Returns alignment : list

2.4. Miscellaneous Functions (misc) 15

LingPy Documentation, Release 1.0

A list of tokens with gaps at the positions where they occured in the alignment of the class
string.

See Also:

ipa2tokens
tokens2class

Examples

>>> from lingpy import *
>>> tokens = ipa2tokens('t͡sɔyɡə')
>>> aligned_sequence = 'CU-KE'
>>> print ', '.join(class2tokens(tokens,aligned_sequence))
t͡s, ɔy, -, ɡ, ə

lingpy.algorithm.misc.prosodic_string

lingpy.algorithm.misc.prosodic_string(seq)
Create a prosodic string of the sonority profile of a sequence.

Returns prostring : string
A prosodic string corresponding to the sonority profile of the underlying sequence.

Notes

A prosodic string is a sequence of specific characters which indicating their resprective prosodic context (see List
2012 or List forthcoming for a detailed description).

Examples

>>> profile = [int(i) for i in tokens2class(ipa2tokens('t͡sɔyɡə'),art)]
>>> prosodic_string(profile)
'#vC>'

lingpy.algorithm.misc.prosodic_weights

lingpy.algorithm.misc.prosodic_weights(prostring, scale=(1.2, 1.0, 1.1000000000000001),
factor=0.29999999999999999)

Calculate prosodic weights for each position of a sequence.
Parameters prostring : string

A prosodic string as it is returned by :py:function:‘prosodic_string‘.
scale : tuple or list

A tuple or list of floats indicating the degree by which the gaps in the environment of
ascending, maximum, and descending should be decreased or increased.

factor : float
A scaling factor by which the specific positions of initial and final should be increased and
decreased.

Returns weights : list

16 Chapter 2. Specific Modules

LingPy Documentation, Release 1.0

A list of floats reflecting the modification of the weight for each position.
See Also:

prosodic_string

Notes

Prosodicweights are specific scaling factors which decrease or increase the gap score of a given segment in alignment
analyses (see List 2012 or List forthcoming for a detailed description).

Examples

>>> from lingpy import *
>>> prostring = '#vC>'
>>> prosodic_weights(prostring)
[1.5600000000000001, 1.0, 1.2, 0.69999999999999996]
>>> prosodic_weights(prostring,scale=(4,1,2),factor=0.5)
[6.0, 1, 4, 0.5]

2.4.2 Internal Data Handling

squareform(x) A simplified version of the
scipy.spatial.distance.squareform() func-
tion.

loadtxt(infile) Function imitates the numpy.loadtxt() function.
LingpyArray(input_list) An extension of the numpy array object which allows the stor-

age of lists in two-dimensional arrays.

lingpy.algorithm.misc.squareform

lingpy.algorithm.misc.squareform(x)
A simplified version of the scipy.spatial.distance.squareform() function.

Parameters x : numpy.array or list
The one-dimensional flat representation of a symmetrix distance matrix.

Returns matrix : numpy.array
The two-dimensional redundant representation of a symmetric distance matrix.

lingpy.algorithm.misc.loadtxt

lingpy.algorithm.misc.loadtxt(infile)
Function imitates the numpy.loadtxt() function.

Parameters infile : file
The input file from which the data is read.

Returns data : list
A list object which renders the dimensions of the input file.

2.4. Miscellaneous Functions (misc) 17

LingPy Documentation, Release 1.0

lingpy.algorithm.misc.LingpyArray

class lingpy.algorithm.misc.LingpyArray(input_list)
An extension of the numpy array object which allows the storage of lists in two-dimensional arrays.

Parameters input_list : list
The list which shall be converted in an array-like object.

__init__(input_list)

Methods

__init__(input_list)

2.4.3 Sequence Comparison

pid(almA, almB[, mode]) Calculate the Percentage Identity (PID) score for aligned se-
quence pairs.

lingpy.algorithm.misc.pid

lingpy.algorithm.misc.pid(almA, almB, mode=1)
Calculate the Percentage Identity (PID) score for aligned sequence pairs.

Parameters almA, almB : string or list
The aligned sequences which can be either a string or a list.

mode : { 1, 2, 3, 4, 5 }
Indicate which of the four possible PID scores described in Raghava and Barton
2006 should be calculated, the fifth possibility is added for linguistic purposes:
1. identical positions / (aligned positions + internal gap positions),
2. identical positions / aligned positions,
3. identical positions / shortest sequence, or
4. identical positions / shortest sequence (including internal gap pos.)
5. identical positions / (aligned positions + 2 * number of gaps)

Returns score : float
The PID score of the given alignment as a floating point number between 0 and 1.

See Also:

lingpy.compare.Multiple.get_pid

Notes

The PID score is a commonmeasure for the diversity of a given alignment. The implementation employed by LingPy
follows the description of ibid. where four different variants of PID scores are distinguished. Essentially, the
PID score is based on the comparison of identical residue pairs with the total number of residue pairs in a given
alignment.

18 Chapter 2. Specific Modules

LingPy Documentation, Release 1.0

Examples

Load an alignment from the test suite.

>>> from lingpy import *
>>> pairs = PSA(get_file('test.psa'))

Extract the alignments of the first aligned sequence pair.

>>> almA,almB,score = pairs.alignments[0]

Calculate the PID score of the alignment.

>>> pid(almA,almB)
0.44444444444444442

2.5 Testing the Algorithms (test)

The module provides functions to handle the testset provided by LingPy. The current testset consists of test files stored in
the folder lingpy/test/tests/. These files are formatted according to the requirements for the different methods.
Each specific format comes along with a specific file extension. Currently, there are the following five extensions:

1. lxs – input files for the LexStat class.
2. psq, psq – input files for the Pairwise class.
3. msq, msa – input files for the Multiple class.
All these files can be easily accessed with help of some specific functions defined in this module.

2.5.1 Basic Functions

get_file(filename) Return a path to the filename in the testset.
list_files(filetype[, dataset]) List all files in the testset that correspond to a certain filetype.

lingpy.test.test.get_file

lingpy.test.test.get_file(filename)
Return a path to the filename in the testset.

Parameters filename : str
The name of the file (with extension) in the testset.

Examples

>>> from lingpy import *
>>> get_file('SLAV.lxs')
'/usr/local/lib/python2.6/dist-packages/lingpy/test/tests/lxs/SLAV.lxs'

2.5. Testing the Algorithms (test) 19

LingPy Documentation, Release 1.0

lingpy.test.test.list_files

lingpy.test.test.list_files(filetype, dataset=’*’)
List all files in the testset that correspond to a certain filetype.

Parameters filetype : { ‘lxs’, ‘msa’, ‘msq’, ‘psa’, ‘psq’ }
The extension of the files that shall be listed.

dataset : str (default=’*’)
A string which can be used to specify the dataset closer. One can use the Unix wildcard
syntax in order to narrow down which files to look for.

Examples

>>> from lingpy import *
>>> list_files('msa','sindial*')
sindial_3_1.msa
sindial_3_2.msa
sindial_3_3.msa
sindial_6_1.msa

2.6 Evaluation of Automatic Analyses (evaluate)

This is the basic module for the evaluation of automatic analyses. The module consists of three classes which deal with
the evaluation of automatic analyses (alignments, cognate judgments). The evaluation is based on the comparison of a
gold standard (reference set) with a test set. The different evaluation measures which can be calculated with help of the
different classes are essentially all based on the calculation of the proportion to which the test set is similar to the reference
set.

The evaluation measures implemented in this module can be divided into two parts: Those measures which deal with
the comparison of automatic alignments, and those which deal with the comparison of automatic cognate judgments.

2.6.1 Evaluation of Automatic Sequence Analyses

EvalPSA(gold, test) Base class for the evaluation of automatic pairwise sequence
analyses.

EvalMSA(gold, test) Base class for the evaluation of automatic multiple sequence
analyses.

lingpy.test.evaluate.EvalPSA

class lingpy.test.evaluate.EvalPSA(gold, test)
Base class for the evaluation of automatic pairwise sequence analyses.

Parameters gold, test : lingpy.compare.Pairwise
The Pairwise objects which shall be compared. The first object should be the gold
standard and the second object should be the test set.

See Also:

lingpy.test.evaluate.EvalMSA

20 Chapter 2. Specific Modules

LingPy Documentation, Release 1.0

Notes

Moste of the scores which can be calculated with help of this class are standard evaluation scores in evolutionary
biology. For a close description on how these scores are calculated, see, for example, Thompson, Plewniak,
and Poch 1999, List 2012, and Rosenberg and Ogden 2009.

Methods

c_score() Calculate column (C) score.
diff([filename]) Write all differences between two sets to a file.
jc_score() Calculate the Jaccard (JC) score.
pir_score([mode]) Compute the percentage of identical rows (PIR) score.
sp_score() Calculate the sum-of-pairs (SP) score.

lingpy.test.evaluate.EvalPSA.c_score

EvalPSA.c_score()
Calculate column (C) score.

Returns score : float
The C score for reference and test alignments.

See Also:

lingpy.test.evaluate.EvalMSA.c_score

Notes

The C score, as it is described in Thompson, Plewniak, and Poch 1999, is calculated by dividing
the number of columns which are identical in the gold standarad and the test alignment by the total number
of columns in the test alignment.

lingpy.test.evaluate.EvalPSA.diff

EvalPSA.diff(filename=None)
Write all differences between two sets to a file.

Parameters filename : str (default=’eval_psa_diff’)
Default

lingpy.test.evaluate.EvalPSA.jc_score

EvalPSA.jc_score()
Calculate the Jaccard (JC) score.

Returns score : float
The JC score.

See Also:

lingpy.test.evaluate.EvalMSA.jc_score

2.6. Evaluation of Automatic Analyses (evaluate) 21

LingPy Documentation, Release 1.0

Notes

The Jaccard score (see List 2012) is calculated by dividing the size of the intersection of residue pairs in
reference and test alignment by the size of the union of residue pairs in reference and test alignment.

lingpy.test.evaluate.EvalPSA.pir_score

EvalPSA.pir_score(mode=1)
Compute the percentage of identical rows (PIR) score.

Parameters mode : { 1, 2 }
Select between mode 1, where all sequences are compared with each other, and mode 2,
where only whole alignments are compared.

Returns score : float
The PIR score.

See Also:

lingpy.test.evaluate.EvalMSA.pir_score

Notes

The PIR score is the number of identical rows (sequences) in reference and test alignment divided by the total
number of rows.

lingpy.test.evaluate.EvalPSA.sp_score

EvalPSA.sp_score()
Calculate the sum-of-pairs (SP) score.

Returns score : float
The SP score for reference and test alignments.

See Also:

lingpy.test.evaluate.EvalMSA.sp_score

lingpy.test.evaluate.EvalMSA

class lingpy.test.evaluate.EvalMSA(gold, test)
Base class for the evaluation of automatic multiple sequence analyses.

Parameters gold, test : Multiple
The Multiple objects which shall be compared. The first object should be the gold
standard and the second object should be the test set.

See Also:

lingpy.test.evaluate.EvalPSA

22 Chapter 2. Specific Modules

LingPy Documentation, Release 1.0

Notes

Moste of the scores which can be calculated with help of this class are standard evaluation scores in evolutionary
biology. For a close description on how these scores are calculated, see, for example, Thompson, Plewniak,
and Poch 1999, List 2012, and :evobib:‘Rosenberg2009b.

Methods

c_score([mode]) Calculate the column (C) score.
check_swaps() Check for possibly identical swapped sites.
jc_score() Calculate the Jaccard (JC) score.
pir_score() Compute the percentage of identical rows (PIR) score.
sp_score([mode]) Calculate the sum-of-pairs (SP) score.

lingpy.test.evaluate.EvalMSA.c_score

EvalMSA.c_score(mode=1)
Calculate the column (C) score.

Parameters mode : { 1, 2, 3, 4 }
Indicate, which mode to compute. Select between:
1. divide the number of common columns in reference and test alignment by the total num-

ber of columns in the test alignment (the traditional C score described in Thompson,
Plewniak, and Poch 1999, also known as “precision” score in applications of
information retrieval),

2. divide the number of common columns in reference and test alignment by the total num-
ber of columns in the reference alignment (also known as “recall” score in applications
of information retrieval),

3. divide the number of common columns in reference and test alignment by the average
number of columns in reference and test alignment, or

4. combine the scores ofmode1 andmode2 by computing their F-score, using the formula
2 ∗ pr

p+r , where p is the precision (mode 1) and r is the recall (mode 2).
Returns score : float

The C score for reference and test alignments.
See Also:

lingpy.test.evaluate.EvalPSA.c_score

Notes

The different c-

lingpy.test.evaluate.EvalMSA.check_swaps

EvalMSA.check_swaps()
Check for possibly identical swapped sites.

Returns swap : { -2, -1, 0, 1, 2 }

2.6. Evaluation of Automatic Analyses (evaluate) 23

LingPy Documentation, Release 1.0

Information regarding the identity of swap decisions is coded by integers, whereas
1 – indicates that swaps are detected in both gold standard and testset, whereas a
negative value indicates that the positions are not identical,

2 – indicates that swap decisions are not identical in gold standard and testset,
whereas a negative value indicates that there is a false positive in the testset, and

0 – indicates that there are no swaps in the gold standard and the testset.

lingpy.test.evaluate.EvalMSA.jc_score

EvalMSA.jc_score()
Calculate the Jaccard (JC) score.

Returns score : float
The JC score.

See Also:

lingpy.test.evaluate.EvalPSA.jc_score

Notes

The Jaccard score (see List 2012) is calculated by dividing the size of the intersection of residue pairs in
reference and test alignment by the size of the union of residue pairs in reference and test alignment.

lingpy.test.evaluate.EvalMSA.pir_score

EvalMSA.pir_score()
Compute the percentage of identical rows (PIR) score.

Returns score : float
The PIR score.

See Also:

lingpy.test.evaluate.EvalPSA.pir_score

Notes

The PIR score is the number of identical rows (sequences) in reference and test alignment divided by the total
number of rows.

lingpy.test.evaluate.EvalMSA.sp_score

EvalMSA.sp_score(mode=1)
Calculate the sum-of-pairs (SP) score.

Parameters mode : { 1, 2, 3 }
Indicate, which mode to compute. Select between:
1. divide the number of common residue pairs in reference and test alignment by the to-

tal number of residue pairs in the test alignment (the traditional SP score described in
Thompson, Plewniak, and Poch 1999, also known as “precision” score in
applications of information retrieval),

24 Chapter 2. Specific Modules

LingPy Documentation, Release 1.0

2. divide the number of common residue pairs in reference and test alignment by the total
number of residue pairs in the reference alignment (also known as “recall” score in
applications of information retrieval),

3. divide the number of common residue pairs in reference and test alignment by the av-
erage number of residue pairs in reference and test alignment.

Returns score : float
The SP score for gold standard and test alignments.

See Also:

lingpy.test.evaluate.EvalPSA.sp_score

Notes

The SP score (see ibid.) is calculated by dividing the number of identical residue pairs in reference and test
alignment by the total number of residue pairs in the reference alignment.

2.6.2 Evaluation of Lexicostatistical Analyses

EvalLXS(gold, test) Basic class for comparing automatic lexicostatistical analyses.

lingpy.test.evaluate.EvalLXS

class lingpy.test.evaluate.EvalLXS(gold, test)
Basic class for comparing automatic lexicostatistical analyses.

Parameters gold, test : lingpy.lexstat.LexStat
The LexStat objects which shall be compared. The first object should be the gold stan-
dard and the second object should be the test set.

Methods

compare_pairwise_decisions(threshold) Compute the number of identical decisions for pairwise scores.
pid_score() Compute the pairwise identical decisions (PID) score.
pind_score() Compute the pairwise identical negative decisions (PIND)

score.
pipd_score() Compute the pairwise identical positive decisions (PIPD)

score.
set_fscore() Compute the set f-score (FSC).
set_precision() Compute the set precision (SPR).
set_recall() Compute the set recall (SRE).

lingpy.test.evaluate.EvalLXS.compare_pairwise_decisions

EvalLXS.compare_pairwise_decisions(threshold)
Compute the number of identical decisions for pairwise scores.

Parameters threshold : float
The threshold which determines the cognacy decisions in the test set.

2.6. Evaluation of Automatic Analyses (evaluate) 25

LingPy Documentation, Release 1.0

Returns scores : tuple
A tule containing the scores for true positives, true negatives and the general percentage
of identical decisions (PID) score.

lingpy.test.evaluate.EvalLXS.pid_score

EvalLXS.pid_score()
Compute the pairwise identical decisions (PID) score.

Returns score : float
The PID score for reference and test set.

See Also:

lingpy.test.evaluate.EvalLXS.pind_score, lingpy.test.evaluate.EvalLXS.pipd_score

Notes

The PID score (see List forthcoming), is calculated by dividing the number of identical pairwise
decisions in reference and test set by the total number of pairwise decisions.

lingpy.test.evaluate.EvalLXS.pind_score

EvalLXS.pind_score()
Compute the pairwise identical negative decisions (PIND) score.

Returns score : float
The PIND score for reference and test set.

See Also:

lingpy.test.evaluate.EvalLXS.pid_score
lingpy.test.evaluate.EvalLXS.pipd_score

Notes

The PIND score (see ibid.), is calculated by dividing the number of identical pairwise negative decisions
in reference and test set by the total number of pairwise negative decisions in the reference set.

lingpy.test.evaluate.EvalLXS.pipd_score

EvalLXS.pipd_score()
Compute the pairwise identical positive decisions (PIPD) score.

Returns score : float
The PIPD score for reference and test set.

See Also:

lingpy.test.evaluate.EvalLXS.pid_score
lingpy.test.evaluate.EvalLXS.pind_score

26 Chapter 2. Specific Modules

LingPy Documentation, Release 1.0

Notes

The PIPD score (see ibid.), is calculated by dividing the number of identical pairwise positive decisions in
reference and test set by the total number of pairwise positive decisions in the reference set.

lingpy.test.evaluate.EvalLXS.set_fscore

EvalLXS.set_fscore()
Compute the set f-score (FSC).

Returns score : float
The FSC for reference and test set.

See Also:

lingpy.test.evaluate.EvalLXS.set_precision
lingpy.test.evaluate.EvalLXS.set_recall

Notes

The set f-score (see Bergsma and Kondrak 2007) is calculated with help of the formula

2
pr

p+ r
,

where p is the set precision and r is the set recall.

lingpy.test.evaluate.EvalLXS.set_precision

EvalLXS.set_precision()
Compute the set precision (SPR).

Returns score : float
The SPR for reference and test set.

See Also:

lingpy.test.evaluate.EvalLXS.set_recall
lingpy.test.evaluate.EvalLXS.set_fscore

Notes

The set precision (see ibid.) is defined as the number of identical cognate sets in reference and test set
divided by the total number of cognate sets in the test set.

lingpy.test.evaluate.EvalLXS.set_recall

EvalLXS.set_recall()
Compute the set recall (SRE).

Returns score : float
The SRE for reference and test set.

2.6. Evaluation of Automatic Analyses (evaluate) 27

LingPy Documentation, Release 1.0

See Also:

lingpy.test.evaluate.EvalLXS.set_precision
lingpy.test.evaluate.EvalLXS.set_fscore

Notes

The set recall (see Bergsma and Kondrak 2007) is defined as the number of identical cognate sets in
reference and test set divided by the total number of cognate sets in the reference set.

2.7 Data Plotting (plot)

The Module provides different functions for the transformation of text data into a visually appealing format.
The main idea is to render alignments in colored tables where the colors of the cells are chosen with respect to the

sound-class of the sound value of each given cell, such as in the following example:

Here, the coloring of sounds follows the sound-class model of Dolgopolsky 1964, the black margin around the
cells in the second, the third, and the fourth column indicates a swapped site. The benefit of this way to display alignments
is that differences and similarities between the sequences become visible at once, making it easy to check the correctness
of a given alignment analysis.

2.7.1 Plotting Alignments

msa2html(infile[, shorttitle, filename]) Convert files in msa-format into colored html-format.

lingpy.output.plot.msa2html

lingpy.output.plot.msa2html(infile, shorttitle=None, filename=None)
Convert files in msa-format into colored html-format.

Parameters shorttitle : str
Define the shorttitle of the html-page. If no title is provided, the default title LexStat
will be used.

filename : str
Define the name of the output file. If no name is defined, the name of the input file will
be taken as a default.

See Also:

lingpy.output.plot.alm2html

28 Chapter 2. Specific Modules

LingPy Documentation, Release 1.0

Notes

The coloring of sound segments with respect to the sound class they belong to is based on the definitions given in
the color Model. It can easily be changed and adapted.

Examples

Load the libary.

>>> from lingpy import *

Load an msq-file from the test-sets.

>>> msa = Multiple(get_file('test.msq'))

Align the data progressively and carry out a check for swapped sites.

>>> msa.prog_align()
>>> msa.swap_check()
>>> print(msa)
w o l - d e m o r t
w a l - d e m a r -
v - l a d i m i r -

Save the data to the file test.msa.

>>> msa.output('msa')

Convert the msa-file to html.

>>> msa2html('test.msa')

2.7.2 Plotting Lexicostatistic Wordlists

alm2html(infile[, title, shorttitle]) Convert files in alm-format into colored html-format.

lingpy.output.plot.alm2html

lingpy.output.plot.alm2html(infile, title=None, shorttitle=None)
Convert files in alm-format into colored html-format.

Parameters title : str
Define the title of the output file. If no title is provided, the default title LexStat -
Automatic Cognate Judgments will be used.

shorttitle : str
Define the shorttitle of the html-page. If no title is provided, the default title LexStat
will be used.

See Also:

lingpy.output.plot.msa2html

2.7. Data Plotting (plot) 29

LingPy Documentation, Release 1.0

Notes

The coloring of sound segments with respect to the sound class they belong to is based on the definitions given in
the color Model. It can easily be changed and adapted.

2.8 What’s Next?

2.8.1 Download

Source Code and Binaries

http://pypi.python.org/pypi/lingpy

Documentation

PDF

http://lingulist.de/lingpy/lingpy_doc.pdf
HTML (zip)

http://lingulist.de/lingpy/lingpy_doc.zip

30 Chapter 2. Specific Modules

http://pypi.python.org/pypi/lingpy
http://lingulist.de/lingpy/lingpy_doc.pdf
http://lingulist.de/lingpy/lingpy_doc.zip

PYTHON MODULE INDEX

a
lingpy.algorithm.cluster, 11
lingpy.algorithm.misc, 14

d
lingpy.data, 9
lingpy.data.derive, 9

o
lingpy.output.plot, 28

t
lingpy.test.evaluate, 20
lingpy.test.test, 19

31

LingPy Documentation, Release 1.0

32 Python Module Index

BIBLIOGRAPHY

Bergsma, S. and G. Kondrak (2007). “Multilingual Cognate Identification using Integer Linear Programming”. In: RANLP
Workshop on Acquisition and Management of Multilingual Lexicons. Ed. by The International Conference on Recent Ad-
vances in Natural Language Processing. Borovets, Bulgaria. URL: \url{http://pers-www.wlv.ac.uk/
~in8113/amml07/papers/7.pdf}.
Brown, C. H., E. W. Holman, and S. Wichmann (2011). Sound correspondences in the world’s languages. URL: http:
//wwwstaff.eva.mpg.de/~wichmann/wwcPaper23.pdf.
Brown, C. H. et al. (2008). “Automated classification of theworld’s languages. A description of themethod and preliminary
results”. In: Sprachtypologie und Universalienforschung 61.4, 285–308.
Dolgopolsky, A. B. (1964). “Gipoteza drevnejšego rodstva jazykovych semej Severnoj Evrazii s verojatnostej točky zrenija
[A probabilistic hypothesis concering the oldest relationships among the language families of Northern Eurasia]”. In:
Voprosy Jazykoznanija 2, 53–63; English translation: Dolgopolsky, A. B. (1986). “A probabilistic hypothesis concerning
the oldest relationships among the language families of northern Eurasia”. In: Typology, relationship and time. A collection
of papers on language change and relationship by Soviet linguists. Ed. and trans. from the Russian by V. V. Shevoroshkin.
Ann Arbor: Karoma Publisher, 27–50.
List, J.-M. (2012). “Multiple Sequence Alignment in Historical Linguistics. A Sound Class Based Approach”. In: Pro-
ceedings of ConSOLE XIX (2011), 241–260. PDF: http://media.leidenuniv.nl/legacy/console1
9-proceedings-list.pdf.
— (forthcoming[a]). “LexStat. Automatic Detection of Cognates in Multilingual Wordlists”. In:
— (forthcoming[b]). “SCA: Phonetic alignment based on sound classes”. In: New directions in logic, language, and com-
putation. Ed. by M. Slavkovik and D. Lassiter. Berlin and Heidelberg: Springer.
Raghava, G. P. S. and G. J. Barton (2006). “Quantification of the variation in percentage identity for protein sequence
alignments”. In: BMC Bioinformatics 7.415.
Rosenberg, M. S. and T. H. Ogden (2009). “Simulation approaches to evaluating alignment error and methods for com-
paring alternate alignments”. In: Sequence alignment. Methods, models, concepts, and strategies. Ed. by M. S. Rosenberg.
Berkeley, Los Angeles, and London: University of California Press, 179–207.
Saitou, N. and M. Nei (1987). “The neighbor-joining method: A new method for reconstructing phylogenetic trees”. In:
Molecular Biology and Evolution 4.4, 406–425.
Sokal, R. R. and C. D. Michener (1958). “A statistical method for evaluating systematic relationships”. In: University of
Kansas Scientific Bulletin 28, 1409–1438.
Swadesh,M. (1955). “Towards greater accuracy in lexicostatistic dating”. In: International Journal of American Linguistics
21.2, 121–137. JSTOR: 1263939.
Thompson, J. D., F. Plewniak, and O. Poch (1999). “A comprehensive comparison of multiple sequence alignment pro-
grams”. In: Nucleic Acids Research 27.13, 2682–2690. PMID: 10373585.

33

\url{http://pers-www.wlv.ac.uk/~in8113/amml07/papers/7.pdf}
\url{http://pers-www.wlv.ac.uk/~in8113/amml07/papers/7.pdf}
http://wwwstaff.eva.mpg.de/~wichmann/wwcPaper23.pdf
http://wwwstaff.eva.mpg.de/~wichmann/wwcPaper23.pdf
http://media.leidenuniv.nl/legacy/console19-proceedings-list.pdf
http://media.leidenuniv.nl/legacy/console19-proceedings-list.pdf
http://www.jstor.org/stable/1263939
http://www.ncbi.nlm.nih.gov/pubmed/10373585

	Basic Classes
	Sequence Modeling (Model)
	Sequence Analysis (Sequence)
	Pairwise Sequence Comparison (Pairwise)
	Multiple Sequence Comparison (Multiple)
	Lexicostatistical Analyses (LexStat)

	Specific Modules
	Predefined Datasets (data)
	Customizing Sound-Class Models (derive)
	Cluster Algorithms (cluster)
	Miscellaneous Functions (misc)
	Testing the Algorithms (test)
	Evaluation of Automatic Analyses (evaluate)
	Data Plotting (plot)
	What's Next?

	Python Module Index

