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The aerospace industry has set ambitious targets to meet environmental goals while under 

pressure to develop novel and optimized aircraft configurations effectively. Multidisciplinary 

Design Analysis and Optimization (MDAO) are increasingly used to optimize aircraft and 

their systems. Model-Based System Engineering (MBSE) methods show the potential to make 

the design process more effective, integrate new disciplines, and capture complex certification 

constraints. Today, MBSE and MDAO are not connected; different methods and tools are 

used, not harvesting the full potential of both approaches. This paper discusses the need for 

improved system architecting in the aircraft conceptual design process and introduces a 

framework to use MBSE in connection to MDAO. In this framework, the MBSE environment 

compiles system information within a system architecture specification, acting as the 

backbone and visual support for each stage in the systems architecting process. MDAO is used 

for the evaluation of system architectures. 

This paper presents a case study as part of the EU-funded AGILE4.0, in which the specific 

link between model specification in the MBSE tool Capella and a system-level MDAO 

workflow is explored. Overall, this paper presents a practical contribution to linking MBSE 

and MDAO and paves the way for better integration of MBSE into the aircraft design process, 

thereby enabling MBSE implementation from conceptual design onwards. Furthermore, this 

will enable more detailed system analysis, such as safety analysis, starting in conceptual 

design, based on architecture models. 

I. Nomenclature 

AGILE Aircraft 3rd Generation MDO for Innovative Collaboration of Heterogeneous Teams of Experts 

ARCADIA Architecture Analysis & Design Integrated Approach 

ASSET  Aircraft System Sizing Estimation Tool 

ASTRID  Aircraft On-board Systems Sizing and Trade-off Analysis in Initial Design 

CMDOWS Common MDAO Workflow Schema 

PVMT  Property Value Management Tool 

FHA  Functional Hazard Analysis 

MBSE  Model-Based Systems Engineering  

MDA  Multidisciplinary Analysis 
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MDAO   Multidisciplinary Design Analysis and Optimization 

PIDO  Process Integration and Design Optimization 

RCE  Remote Component Environment 

II.   Introduction 

The aerospace industry has set ambitious targets to meet environmental goals while under pressure to develop 

novel and optimized aircraft configurations. As a result, efforts are made to increase the effectiveness and efficiency 

of the design process. Within, the conceptual design phase plays a critical role, particularly for unconventional aircraft 

or aircraft featuring novel technologies. 

The industry increasingly relies on Multidisciplinary Design Analysis and Optimization (MDAO) to explore the 

new aircraft design concepts or optimize more conventional designs, and MDAO  is now widely used during the 

aircraft conceptual design phase [1]–[3]. However, MDAO and its efficient and effective use is an ongoing research 

field, e.g., in the EU-funded project AGILE4.04[4]. One of the aims of AGILE4.0 is to introduce more detailed aspects, 

such as certification-driven constraints, into MDAO frameworks to increase the realism of trade studies. 

Within traditional MDAO frameworks, the consideration of aircraft systems (such as hydraulic, electrical, flight 

control, avionics, or fuel systems) is traditionally limited to overall mass estimation. Recent efforts have improved the 

consideration of the aircraft (sub-)system architectures in MDAO frameworks [5]–[7]. The consideration of the system 

architecture is vital for novel aircraft concepts featuring hybrid-electric, distributed propulsion, advanced 

multifunctional flight control systems, or more electrical subsystem architectures. All these examples require 

estimating the system architecture weight and impact on aircraft fuel burn and a means to validate the architecture's 

feasibility in terms of safety and certification. Within, system architecting is the process of defining a system by 

considering its constituent components and exchanges in response to a need, as defined by the system requirements. 

The resulting system architecture is a conceptual model of the underlying system that specifies the system's 

components, the exchanges between them and describes its ability to fulfill a set of functions. 

Model-Based System Engineering (MBSE), on the other hand, is increasingly used in the industry to specify 

complex system architectures. MBSE can improve coherency, reduce ambiguity, and facilitate collaboration in the 

design of systems [8]–[12] by providing a centralized source of information throughout system development. Ideally, 

MBSE should be introduced in conceptual design; in this phase, requirements, system architecture, and the feasibility 

of the aircraft are conceptualized. Simultaneously, limited information about the subsystems is available, providing a 

high degree of flexibility in design. Most of the critical design decisions are made during the conceptual design. 

Therefore, it is the ideal point for system architects to develop modeling artifacts, to capture system requirements in 

the form of an architecture that can then be enriched as the design progresses through the subsequent stages.  

  One of the key challenges in current aircraft development processes is that MDAO and MBSE are performed as 

two different activity streams, using different tools and requiring specific expertise. However, both deal with 

translating customer requirements into a feasible solution. Also, if more detailed aircraft systems architecture 

evaluation is introduced into future MDAO frameworks, the specification of these architectures should ideally stem 

from a systematic MBSE process. Furthermore, the architectures explored and evaluated in conceptual design should 

ideally transition to later design stages to reduce cost and rework. 

  To address these challenges, this paper discusses the need for more detailed systems architecting in conceptual 

design and the current state of MDAO and MBSE frameworks to support this task. Secondly, this paper discusses the 

need to link MBSE and MDAO to enhance the system architecting and presents a framework concept. Finally, the 

authors present a case study in the context of the AGILE4.0 project using specific MBSE and MDAO solutions. 

III. The need for system architecture consideration in conceptual aircraft-level MDAO 

"Systems architecting" is defined as "…activities of defining, documenting, maintaining, improving, and certifying 

proper implementation of an architecture.." [13], and can be applied to any scope of any system. However, in the 

context of this paper, the authors focus on the conceptual portion of the architecting process (defining, documenting) 

and on the aircraft system architecture (Air Transport Association (ATA) chapters 2x, 3x and 4x, mainly [14]), or as 

described in [15], also called aircraft subsystems or on-board systems in some recent literature. 

                                                           
4 AGILE 4.0: Towards cyber-physical collaborative aircraft development is a EU-funded project (2019-2022), and is 

the continuation of the AGILE project (Aircraft 3rd Generation MDO for Innovative Collaboration of Heterogeneous 

Teams of Experts.  
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A. Systems architecting considerations for MBSE and MDAO 

 Typically, aircraft manufacturers or academic aircraft concept studies assume an existing system architecture when 

they start a new conceptual design. This simplified approach is made due to the complexity of the systems architecture 

and often missing data.  In the past, where system architectures and interfaces between systems have been rather 

similar from one aircraft to another, this approach was acceptable. More detail on individual subsystems is then 

introduced in the preliminary design stage, based on established system boundaries and interfaces.  

 However, more recent system architectures, characterized by more electric and all-electric systems, are highly 

integrated and feature cross ATA functionality. Furthermore, More Electric Aircraft (MEA) and All-Electric Aircraft 

(AEA) system architectures do not benefit from the historical system weight databases, heuristic rules, and other 

empirical models that are available for conventional system architectures [15], [16]. The integrated and 

multifunctional nature of modern aircraft systems introduces additional complexity that needs to be dealt with to 

prevent potential integration issues later in the development process, which can lead to expensive rework, schedule 

overruns, and certification issues.  

 In addition, the advent of the SAE ARP4754A [17] now prescribes following a systematic architecting process, 

following a systems engineering approach. Therefore, systems architecting activities need to be performed in 

conceptual design to ensure that the selected architecture, developed further and implemented on the aircraft, best 

satisfies the requirements. In this context, MBSE is currently introduced into the design process to develop a selected 

system architecture in detailed design [18]. However, MBSE is not easily adaptable to conceptual design activities 

due to the difficulty of handling many potential architectures and variants in a multi-layered, complex specification 

model [19], [20]. For the conceptual design, the exploration of many different system architectures, called design 

space exploration, is another key activity that is currently not possible in an integrated manner with the aircraft design 

process.  

 This paper focuses on system architecting activities for design space exploration during conceptual design. Fig. 1 

visualizes the typical current situation in the industry (as-is process) and the envisaged future process (to-be process) 

for design space exploration. As shown in Fig. 1, the current process does not involve MBSE during the exploration 

phase. It is limited to the evaluation of few system architectures, for which the specification is manually transferred 

to an MDAO system-level workflow, which is then evaluated. The MBSE specification phase is disconnected and 

usually employed after this initial phase. However, some approaches in academia enable the evaluation of many 

system architectures [21]; these are typically not widely used in industry. 

 If considered individually, the "to-be- process" addresses the drawbacks of each step of design space exploration. 

The architecture definition stage lacks exhaustive consideration of all system architectures, which needs to be 

improved to reduce the large combinatorial design space to a smaller set of feasible architectures. To this effect, the 

addition of architecture safety and certification constraints are promising for identifying feasible system architectures 

[22].  

 Another aspect to consider is the nature of the system architecture description used to capture and represent 

information about the system configuration required to activate specific modules and interfaces in a subsequent 

evaluation workflow. Typical system descriptors may be textual as in [23], pictorial in [7], and object-oriented as in 

[24]. Based on the structuring of the architecture descriptor, it may be possible to evaluate many types of architectures, 

but this ultimately limits the scope for applying the architect's knowledge base. Therefore, the system architect may 

not be able to easily add redundancies, change power types and incorporate new technologies without having to modify 

a baseline workflow each time.  

 Presently, architecture visualization is performed using documents to categorize interfaces and present the overall 

system architecture layout. This approach is replaced by a model-based system architecture specification that serves 

to generate different visualizations and viewpoints of the system architecture. Furthermore, the model-based 

specification is enriched as the system architecture is further developed and can be made available to the subsystem 

supplier to facilitate effective system integration  

 To evaluate the system architecture, the conceptual designer uses sizing and analysis tools, which can be part of  a 

system-level workflow in an aircraft-level MDAO environment. Therefore, a strategy is required in which the system-

level workflow derives information from the system architecture for both configuration and execution. The system 

architecture is then evaluated to elicit key performance metrics, such as increments of mass, drag, fuel, and other 

aircraft level parameters [23], [25]. The evaluation workflow can be made generic and repeatable with minor 

modifications for conventional and novel system architectures [7], [23], [26]. However, reconfiguring the workflow 

may prove to be a time-consuming process for unconventional and novel architectures, as models need to be identified, 

sizing and performance routines synthesized, and a link to aircraft level metrics needs to be made. 
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Fig. 1: Stages in the system architecting process for design space exploration 

   

 The "to-be-process" in Fig. 1 links all three steps and ensures that the information generated in the definition stage 

is compatible with the model-based visualization. More importantly, the MBSE-MDAO link ensures that the wealth 

of information about the system architecture contained in the model-based specification is accessible to the MDAO 

workflow. In this new process, the MDAO workflow is configurable based on the information contained within the 

model-based specification. Additionally, the model-based specification also provides key tool inputs that are assigned 

to model elements for different tools in the system-level workflow.  

 Thus the MBSE-MDAO link forms a crucial part of the updated system architecting process. However, there are 

some challenges to be addressed in enabling this capability. Firstly, the transfer of information from the MBSE 

specification to the MDAO environment needs to be identified and categorized. Organizations typically have static 

multi-fidelity workflows that may not be well suited for reconfiguration to optimize novel architectures or cater to the 

"architecting" process. Significant efforts in this area have led to developing MDAO frameworks such as [27] and 

[28] that feature reconfiguration capability and can support collaborative MDAO processes.  However, an integration 

of MDAO methods to exclusively support system architecting activities is lacking. The lack of effective information 

exchange between system architecting frameworks and MDAO environments is a possible barrier against better 

integration, thereby leading to the question of how architecture description artifacts can be mapped to workflow 

elements in an MDAO specification. 

 Another aspect to consider is that of tool fidelity. It may prove feasible to obtain overall results at the conceptual 

design phase using a workflow constituting low fidelity tools. However, including high-fidelity analysis as part of the 

workflow on aircraft-level metrics would still need to be quantified in terms of uncertainty. Several approaches to 

formalizing the evaluation phase of system architecting have been proposed in the literature [29]–[31], and the 

integration of the architect's knowledge base has been demonstrated by [32], where system safety and performance 

analysis is shown in the context of system architecting. 

 Architecture definition explores the design space of architectural options which constitute combinations of specific 

technologies and functions [24]. The large set of system architecture combinations is checked for feasibility to derive 

a reduced set of architectures. Following this, the system architectures are visualized in a diagrammatic specification 

that could also involve more digital elements in the form of a model-based specification. The specified architecture is 

then evaluated for performance, and the one that best meets the user requirements is selected. 

 Finally, there are the aspects of incorporating safety and certification consideration which can be beneficial as the 

system model can hold this information. An MBSE and MDAO link would then allow this information to be added to 
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the MDAO workflow in the form of constraints [33], [34]. However, attempting to run a large design space through 

the architecture evaluation process is inefficient and restrictive in terms of computational cost. Therefore, a means of 

prefiltering is required to establish a viable design space of safe and certifiable architectures, which leads back to the 

developments required in the architecture definition stage.  

 Overall, there is a disconnect between the fields of system architecting and MDAO, where system architecting is 

a highly iterative and manual process subject to reconfiguration, whereas MDAO is static and automated. A 

categorization of these disparities is presented in Tab. 1. 

Tab. 1 Classification of the differences between MDAO and Systems Architecting 

  

 Recent developments have focused on providing more automation to MDAO implementation and execution [27], 

[35]. The MDAO formulation phase has been made more efficient through the use of centralized MDAO schema and 

MDAO definition environments that allow the consolidation of tool repositories as well as architecting and 

visualization of MDAO workflows [35]. These schemata ensure that an MDAO specification can be architected and 

executed in an automated manner. Overall, MDAO specification, implementation, and execution are mature and 

feature a high level of automation and potential for reconfiguration. However, the general trend of static MDAO 

workflows does remain in many organizations as their workflows are implemented in Process Integration and Design 

Optimization (PIDO) tools and require manual effort for reconfiguration.  

 In summary, the disconnect between the MDAO and system architecting is evident in disparities relating to 

development, fidelity, formalization, and reconfiguration. However, the need to integrate MDAO and system 

architecting is imperative, particularly for unconventional aircraft system configurations. A means of integrating 

MDAO and system architecting can be devised by identifying the information that needs to be shared between these 

two areas. An understanding of the current structure of MDAO related data can be garnered by analyzing recent 

MDAO exchange standards and implementation frameworks. This is described in the following section.  

B. MDAO Process and Implementation Standards 

The MDAO process is driven by the MDAO formulation phase, where the MDAO problem is addressed by 

consolidating a tool repository, selecting a solution strategy, and deriving an MDAO specification. The MDAO 

workflow is formulated in response to an MDAO problem, which dictates the associated disciplinary tools and MDAO 

solution strategy that is to be employed. Finally, a consolidation of MDAO tools and solution strategy is formalized 

in an MDAO specification containing information about tool interconnections, exchanged data, and runtime execution 

order. The MDAO formulation phase takes up a significant amount of time and is a crucial step in the success of any 

MDAO activity [36].  

The MDAO specification needs to be implemented in a software environment and made executable, thus requiring 

a robust data framework within which information about MDAO workflow configuration can be stored, exchanged, 

and processed.  

The Common MDAO Workflow Schema (CMDOWS) as defined by [35] along with the Common Parametric 

Aircraft Schema (CPACS)  provides a means by which information pertaining to the MDAO workflow is captured 

within a neutral data format that can then be processed by software and visualization frameworks for execution and 

interaction [37].  The CMDOWS file stores three top-level information types relating to the MDAO specification: 

information, nodes, and connections. The information category contains data about the MDAO specification 

pertaining to problem definition, problem formulation. Nodes and constraints are described within the framework of 

a graph-based representation. Nodes contain executable blocks which further represent either analytical relations or 

design competencies. These offer sophisticated evaluations that cannot be represented by a single relation and can 

also be provided as a remote service. Connections hold information about the links between executable blocks and the 

order of execution of these blocks when following a particular solution strategy. A detailed description of the 

CMDOWS can be found in [35]. Overall, CMDOWS provides the required framework to transition from MDAO 

specification to execution within a software environment such as the Remote Component Environment (RCE) and 

enables collaboration through being amenable to interaction and visualization. 

OpenMDAO is another MDAO framework within which MDAO problems are specified and executed [38]. Its 

object-oriented implementation uses classes specified as Components, Groups, Problems, and Drivers. The component 

Category  Systems Architecting MDAO 

Development Iterative Mostly Static 

Implementation  Manual/Some Automation Mostly Automated 

Fidelity Mixed – Low/High Mixed- Low/High 

Formalization Architect/System Engineer Knowledge Established MDAO Frameworks 
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class is used to implement relations, expressions, and even external code. Groups are containers for components, and 

drivers are used to implement a particular optimization strategy or DOE. Overall, it is seen that an MDAO specification 

requires the derivation of information from the MDAO problem and its storage in an exchangeable schema- either 

implicit as in OpenMDAO or explicit, as exemplified in the CMDOWS schema- for complete MDAO execution. 

  The extraction of data from the MDAO specification into the data schema and its subsequent execution is well 

handled by existing frameworks. However, the integration of an MDAO implementation into the system architecting 

process requires information derived from the architecture specification. Therefore, the specification needs to be 

detailed enough to include information about system physical components, the nature of exchanges, exchanged 

variables, and the level of detail included in the representation. However, this level of specification might be 

prohibitive for a large architectural design space, and therefore a reduced design space needs to be considered. 

 The established MDAO frameworks allow an MDAO workflow to be specified and executed in software 

frameworks. Once an MDAO architecture is established, it can be used to complete numerous computations. 

Moreover, the benefits of a single point MDA can also be exploited once the workflow is set up. However, 

reconfiguring the workflow is a major challenge, and recent advances have gone a long way in addressing this issue 

[35]. Extensive automation of workflow implementation and experience with multi-fidelity MDAO in an industrial 

context for the development of a complex product shows that MDA and MDAO results are reliable [1]. On the other 

hand, systems architecting is a relatively manual and iterative process, requiring knowledge from the architect. 

 Moreover, systems architectures are more prone to reconfiguration, and the impact of architectural choices needs 

to be quantified quickly to aid the decision-making process. An architectural layer exists where system architecture 

choices are evaluated for key metrics and reconfigured according to the architect's experience [39]. This type of 

flexibility may not be easily implementable in an MDAO framework.  

IV. Proposed Framework Concept 

The proposed framework aims to link MBSE and MDAO to facilitate the efficient architecting of aircraft systems. 

Fig. 2 describes the MDAO process in the context of systems architecting. The system architecture design space is 

represented using a graph-based descriptor and filtered for feasibility based on predefined rules. This results in a 

reduced set of architectures that are modeled within an MBSE environment. Here, MBSE is introduced as a link 

between MDAO and systems architecting but also as an integral part of the systems architecting process. The MDAO 

environment consists of the MDAO specification containing information about the tools, interconnections, and choices 

about MDAO architecture, as well as the designation of different design variables, objectives, and constraints. The 

MDAO data schema holds this information in a structured manner which then allows MDAO execution through a 

PIDO platform, as discussed in Section III A. Furthermore, it is envisioned that the model-based specification aids the 

development process by reusing model artifacts beyond the conceptual design phase. It is also noted that ensuring an 

architecture specification early in the design process helps establish a traceable baseline for later reference.  

 

Fig. 2  Proposed framework for integrating MBSE and MDAO for systems architecting 

The architecture specification uses a catalog of architectural artifacts, which include logical and physical and 

components that have been defined with a granularity level that is appropriate for use in conceptual design. The benefit 

of having the artifacts defined early in the process is that once a system architecture has been chosen, the basic artifacts 

already contained in the model-based specification can be easily enriched and developed further as the design process 
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continues.  These modeling artifacts are mapped to specific disciplinary tools by categorizing the inputs and outputs 

that each modeling artifact is assigned. 

 As an example, for the enhanced use of the MBSE specification, the system architectures can now be used for 

safety assessment, e.g., performing a functional hazard analysis or the extraction of fault trees. The authors will explore 

these enhanced capabilities in future work; the proposed framework prepares the integration of this capability.  

The remaining few architectures can now be evaluated in an overall integrated, aircraft level and system level 

MDAO workflow. The information for the MDAO specification is extracted from the architecture specification model. 

The architecture specification helps configure the subsystem-level workflows in conjunction with information from 

the top-level requirements such as range, payload, and mission profile. These subsystem workflows are then formally 

specified and integrated into an MDAO specification. The aircraft level workflow is assumed to have already been 

created based on the available tool repository. 

 The resulting specification is incorporated into an existing MDAO specification data schema such as CMDOWS. 

This allows the MDAO workflow to be executed within an existing MDAO implementation framework such as RCE 

and OPTIMUS [40][41]. A single point iteration is conducted, and the results of the MDA for each architecture are 

compared. At this point, architectures with unacceptable performance characteristics may be discarded. The metrics 

of evaluation are those present at the aircraft level, such as MTOW, fuel burn, and operating cost. Each architecture 

is optimized accordingly, and the results are compiled to compare their relative performance. A multi-attribute 

decision-making approach is employed to make the final selection of system architecture from the published MDAO 

results.   

The presented framework employs a model-based architecture specification to enrich the information being 

supplied to the MDAO specification. It uses two loops of evaluation to utilize the capabilities of MDA and MDAO, 

respectively. The following case study illustrates the envisioned information to be exchanged between the MBSE 

specification and the MDAO environment to enhance the system architecting process. 

V. Case Study: Modelling and extraction of properties from a sample system architecture in 

Capella 

Within the scope of this study, specific model elements are enriched by adding information to quantify characteristic 

properties that support system-level sizing tools such as actuator technology, operating pressure, and actuator to 

surface assignment for a primary flight control system architecture. A means of extracting this information from the 

underlying data model is presented in an automatization algorithm. The extracted properties are then relayed to 

associated tools, and the results are written back to the Capella model elements in the form of additional model 

properties. An initial approach to integration with AGILE 4.0 project workflows is also described where-in a static 

workflow is considered, and tool inputs are extracted from Capella model properties and provided to the workflow 

specification data model.   

 

 

Fig. 3  Tool selections for MBSE-MDAO integration framework 

Fig. 3 shows the specific tools implemented to explore the integration between MBSE and MDAO. Here, the 

architecture specification is built in Capella, then enriched with specific input parameters corresponding to tools in 
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the system-level workflow, which is translated into a graph-based MDAO specification. The reference of each input 

parameter in the CPACS file is stored in the CMDOWS schema along with information on tool interconnections and 

tool execution order. The CMDOWS file is then processed by a PIDO framework such as RCE, where the workflow 

is executed and results are obtained.  

This case study will explore the following aspects of linking the architecture specification Capella with a system-

level MDAO workflow, using an example of the flight control system and tools developed in the frame of the 

AGILE4.0 project: 

1. Enriching the specification model with system-level tool input parameters  

2. Extraction of parameters from MBSE (Capella) data model 

3. Integration of extracted parameters into an MDAO workflow  

 The Capella tool is used for the MBSE portion. In Capella, four different levels of abstraction (the operational 

level, system level, logical level, and physical level) are available to specify a system. Here, the physical level is 

selected to establish the interface to the MDAO workflow. The link could potentially be established at other 

specification levels; however, this consideration is out of scope for this paper and will be discussed in future work.  

 Fig. 4 shows the main physical components, the logical components, and the associated functions of a portion of 

the flight control system architecture. Functional exchanges are depicted, and the physical links between components 

are also specified. Here, the key components are the hydraulic actuators, control surfaces, and elements representing 

the supply of secondary power to each actuator. The flows of signal and power are highlighted using the "functional 

chain" feature in Capella, wherein individual functional exchanges can be selected and converted into a continuous 

chain. In this model, all the actuators are of the Electrohydraulic Servo Actuator (EHSA) type, of which two are 

assigned to each elevator control surface. The type of actuator and the allocation per control surface are important for 

the sizing of actuators. Each of these elements has specific properties that are used by the system level sizing and 

performance workflows to estimate mass, power demand, and other metrics using empirical or physics-based methods.  

  However, the extraction of information is challenging as most of this information (such as number and type of 

actuator) can be inferred from the diagram and other information, which can include hydraulic pressure, supplied 

power, and component efficiencies, have to be extracted from the underlying data model. This aspect will be covered 

in the following sections.  

 

 

Fig. 4: Physical architecture model in Capella for a portion of a flight control system (pitch control system), 

from [20] (EHSA stands for Electrohydraulic Servo Actuator) 

 An architecture specification developed in Capella already supports additional information such as component 

descriptions, architecture summaries, model developmental status, and model validation information. However, 

Capella does not natively support the addition of custom or model-specific properties and the interrogation of model 

elements to access these properties. However, an open-source plugin for Capella called the Property Value 

Management Tool (PVMT) [42] which allows the definition of properties of different data types (string, float, integer, 

and others), as well as the implementation of specific rules or conditions with which the properties are applied. 
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Furthermore, properties can be made applicable to specific modeling levels such as the system or physical level. They 

can also be set to specific modeling artifacts such as exchanges or functions.  

As an example, Fig. 5 (a) shows properties such as efficiency, specific power, installation factor, and depth of 

discharge applied to a physical component representing a battery. These properties can be used to provide input to a 

battery sizing tool that will provide the battery's overall weight.  Fig. 5 (b) shows properties that are inputs to an 

actuator sizing tool, such as actuation type and assigned surface. Tool outputs such as the weight and flow demand 

can be categorized separately and specified within the Capella workbench. Properties can also be directly accessed 

from the underlying data model in Capella. This aspect is explored in the following section.  

 

 

 

 
(a) Component characteristics for a battery (b) Component characteristics and sizing results for a 

flight control actuator 

Fig. 5: Allocation of properties to battery physical component in Capella using the PVMT add-on 

A. Extraction of Parameters from the Capella Data Model 

 Capella is built on the Eclipse Modelling Framework and thus supports customization through modifying the core 

functionality and the development of add-ons [43]. The underlying framework consists of a structured data model 

which stores all information. The Capella model can be interrogated in the following ways:  

1. Visually using the workbench and diagram editors5  

2. Accessing the underlying data model and schema 

 Visual inspection of the Capella model is achieved by the system architect manually interacting with the diagram 

editor and accessing the PVMT viewpoint tab. The system architect then will have to transcribe the information 

manually to either an excel sheet, intermediate data format, or directly to the input file of a system-level workflow or 

tool.  

 Reading and writing to and from the underlying data model is a practical solution to integrating an MBSE 

specification in Capella with external tools. This data model is an XML schema that contains all the information about 

the system architecture specification, including the names of functions, logical components, physical components, 

functional exchanges, component exchanges, physical links, owned components (functions, logical and physical 

components), as well as information on assigned properties and their values. Furthermore, the location of graphical 

elements and changes made to the model are also stored within this schema.  

                                                           
5 Querying the model from within the workbench user interface is also considered here. 
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 The data model consists of two files to which all the information is written every time a user saves changes to the 

model. These are the ".melodymodeller" – which is now called ".capella" as of version 5.0.0 and the ".aird" files. The 

".aird" file contains information on active diagrams within a Capella project, including the location and formatting of 

elements in a diagram and a record of changes made to the model. The ". capella" file stores information about each 

model element, including characteristics, assignments, links, input and output ports, as well as any assigned property 

values 

 Each model artifact is assigned a unique alphanumeric sequence as an identifier within the schema, and links 

between elements such as functional chains and physical links reference these identifiers in specifying the source and 

target of each exchange. Although the schema is well structured, the size and tag names can make navigation 

cumbersome. In order to simplify the traversal of different tags for property extraction and the automation of the 

process, a simplified schema is created which contains only the tags that are accessed to extract model element 

properties. The mapping from the actual schema tags to a simplified version is shown in Tab. 2, supplemented by an 

illustration in the Appendix. 

Tab. 2: Mapping between Capella schema and simplified schema tag names 

Capella Schema Tag Name Simplified Schema Tag Name 

Root: org.polarsys.capella.core.data.capellamodeller:Project Project 

Root:ownedPropertyValuePkgs Property Value Packages 

Child:owned PropertyValueGroups Property Value Groups 

Child:ownedPropertyValues Property Values 

Root: ownedModelRoots Models 

Child: ownedArchitectures Architectures 

Child:ownedPhysicalComponentPackage Physical Architecture 

Child:ownedPhysicalComponents Components 

Child:ownedPropertyValueGroups Property Value Groups 

Child:ownedPropertyValues Property Values 

 

 An algorithm for extracting model properties from the ". Capella" file is explained below in Fig. 6. This process 

is based on the following assumptions: 

1. A predefined list of components is created in Capella, each with its name and unique identifier.  

2. A list of properties is defined with the PVMT tool, and variable names are included in the "key" field 

within the PVMT editor.  

 

 

Fig. 6: Process for parameter input and extraction in Capella 

 First, the inputs are compiled and added to the Capella model through the PVMT tool. To do so, one needs to 

activate the PVMT viewpoint in Capella and define and name each property's data type. Once the properties are 
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defined, values are assigned to each field, and the model must be saved. One can extract parameters by first reading 

the top-level property value group tag and then reading the name and ID of the child property value tag. Secondly, 

one can access the components tag and parse for the name, ID, and applied property ID of each physical component. 

The child property value groups tag is then accessed, and the ID value is read. Finally, the property values tag, which 

itself is a child of the property value groups tag assigned to the physical component, -is accessed. Here a match is 

made between the applied property ID and the property value ID defined in step 1 of Fig. 6, and the value of the 

property is stored.  

 In some cases, when the number of inputs from system architecture to a system-level tool or workflow is relatively 

high, it may be cumbersome to complete an exhaustive specification of properties in Capella. In such cases, parsing 

the Capella schema in the manner described above can be aided by adding inferential logic from the system 

architecture specification to define the additional tool input values. This functionality is demonstrated for system 

architecture shown in Fig. 5, when linking it to an actuator sizing tool that is part of a system-level workflow. The 

inputs and outputs of this tool are defined in Tab. 3. 

Tab. 3: Tool inputs derived from different Capella elements 

Required Tool Inputs Source of Value Referenced Capella Element 

Control Surface name Specified Physical Component Property 

Control Surface function Specified Physical Component Property 

Pressure Specified Physical Link Property 

Voltage Specified Physical Component/Link Property 

Voltage type Specified Physical Component/Link Property 

Technology Specified/Inferred Physical Component Property 

Flight critical system designation Specified Physical Component Property 

Association to System Inferred Physical Component Property 

No. of Hydraulic Actuators Inferred Physical Component Property 

No. of Electric Actuators  Inferred Physical Component Property 

Surface to Actuator Assignment  Inferred Physical Component Property 

 In Fig. 7, the physical links from the power system element to the actuator elements are shown to have assigned 

properties that include power type and pressure. When reading these parameters, one can deduce that the actuator 

connected to this power system type uses hydraulic power. Similarly, one can assign a parameter called 'signal type' 

to the input signal that is represented by a functional exchange. In this case, the system architect can deduce that the 

actuator is electrically controlled as the control signal is of type 'electric.' Combining the logic of these two inferences 

allows for the actuator to be hydraulically powered and electrically controlled. This results in the identification of the 

actuator type, and iterating through all the actuator components allows the total number of actuators of a given type 

to be determined.  
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Fig. 7: Properties applied to physical components and physical links as a basis for inferential logic 

 Similarly, the assignment of actuators to control surfaces may be determined by iterating through all physical links. 

Figure 9 shows an example of an actuator and control surface combination. Here, the physical links represent the 

hydraulic power that is supplied to the actuator. Inspection of the properties contained within these links reveals 

additional details such as pressure and assigned hydraulic system identifiers.  

C. Methodology to transfer parameters into AGILE 4.0 workflows 

 For the example of the AGILE4.0 project, the MDAO workflow specification is created collaboratively using the 

KADMOS tool and the process platform KE-chain [44], [45]. In KE-chain, each tool owner specifies a so-called 

design competence. For each of these design competencies, the input and output parameters are initialized using 

separate CPACS files as an interface standard. Additional information, such as tool parameters, versioning, and 

ownership information, may also be provided at this stage. Following this stage, a merged CPACS baseline file is 

created by linking all the individual input and output files. This merged baseline carries the information between tools 

during workflow execution. The next steps involve modifying the workflow architecture, specifying the tool execution 

order, setting up design parameters, and specifying constraints, objectives, and state variables. A CMDOWS file is 

generated, which can then be used to execute the workflow in RCE along with the input baseline CPACS file.  

 Transferring parameters into the MDAO workflow can be achieved by the following means: 

1. directly modifying the CPACS baseline file and the CMDOWS file 

2. packaging extracted parameters and integrating them with the AGILE environment to generate a CMDOWS 

file 

3. integrating the extracted parameters in the form of an example tool 

 The third approach is presented here as it is the most straightforward. However, its limitations include the need 

always to have an existing baseline workflow. Furthermore, only the system-level tool inputs, i.e., the inputs that do 

not change and are not overwritten upon workflow execution, are considered. Fig. 8 shows the overall process and the 

resulting workflow with the integration of parameters derived from Capella. 
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Fig. 8: Process to integrate Capella with AGILE4.0 workflow 

 The system architecture from Figure 5 is used as input to the ASSET6 tool, which performs the actuator sizing and 

returns the overall actuator weight and power demand. This tool derives its input from the parameters specified in 

Capella. The functionality of parameter extraction is integrated within the AGILE workflow as the Capella2Workflow 

tool. This is performed by defining the input and output within the AGILE workbench. Capella2Workflow provides 

the parameter values directly to ASSET, which further passes its output to the ASTRID7 tool [46], which performs 

the sizing of all other systems. The parameters extracted from Capella are written directly to the output CPACS file 

of Capella2Workflow, which then serves as the input file for the ASSET tool. The workflow output is written to the 

baseline CPACS file. The relevant parameters are extracted and written back to the Capella data model schema, which 

is then available for inspection within the Capella workbench.  

D. Discussion 

 Overall, the presented case study demonstrates how properties can be added to Capella model elements and how 

they can be extracted by parsing the data model schema. The addition of properties is flexible with the ability to define 

multiple property groups. In this study, property extraction is performed by manually parsing the Capella data model. 

However, the parsing approach is generic and can be performed manually or automated with the appropriate tools. 

The challenge of automating this process is reduced by understanding and simplifying Capella's data schema structure.  

 An initial approach to integrating Capella, as an MBSE tool, with the system-level MDAO tools in the AGILE4.0 

workflow is also presented. The current approach is straightforward as it packages the extraction of Capella model 

properties as a tool that provides these properties as an input to other tools in the workflow. The main limitation of 

this approach is that the system-level workflow, including the selected tools and execution order, needs to be 

predefined. Although the model properties include a field for the name of the tool to which the parameters will be 

passed, the ability to reconfigure the workflow based on the referenced tool is not yet supported. The use of different 

modeling elements to infer tool inputs that are not explicitly specified is also shown. However, an algorithm to make 

such inferences is required alongside automation to make this process efficient.  

 Overall, the presented study explores the practical aspects of linking system architectures specified in the Capella 

MBSE tool to system-level tools and the AGILE 4.0 MDAO workflow. As a result, areas of improvement to mature 

the MBSE-MDAO link functionality have been identified.  

                                                           
6 ASSET: Aircraft System Sizing Estimation Tool in development at Concordia University 
7 ASTRID: Aircraft system sizing and performance estimation tool developed by the Politecnico di Torino 
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VI. Conclusion and future work 

The development of novel aircraft featuring unconventional and more electric systems architectures drives the 

need to incorporate systems architecting as a critical activity in conceptual design. In addition to constructing 

integrated system sizing and performance analysis frameworks, the optimization of system architectures must also be 

considered by implementing MDAO workflows.  

This paper highlights the iterative nature of systems architecting and the recent advances that have been made in 

the specification and automation of MDAO workflows. Furthermore, the gap in the use of MBSE for systems 

architecting in conceptual design is highlighted. Herein, a framework has been proposed that treats the following: a 

means of adding tool input properties to elements within the Capella MBSE tool, a means of extracting the applied 

properties to supply system-level tools, and an initial concept of integrating with established MDAO specification and 

visualization environment developed by the AGILE 4.0 project. A demonstration of the application of properties in 

Capella using the PVMT plugin as well as their extraction by parsing the Capella data model has been made through 

a case study of a pitch control system architecture.  

Future development of this framework will include the improvement of automation and the ability to reconfigure 

the workflow based on the system architecture specification. Additionally, the aspects of safety and certification 

described briefly in this paper will be presented in greater detail. Also, the automated analysis of a large design space 

and the exploration of required modeling levels in MBSE will be investigated. 

Overall, this paper presents a practical contribution to linking MBSE and MDAO and paves the way for better 

integration of MBSE into the aircraft design process, allowing the use of MBSE from conceptual design onwards and 

enabling more detailed system analysis, such as safety analysis starting in conceptual design, based on architecture 

models. 

VII. Appendix  

Fig.A1 shows the simplified Capella data schema with the tag names that represent different types of model 

information. An expanded version is also included with annotations describing the steps required to extract property 

information from the schema. These steps are labeled from 1 to 4 and include sub-steps about accessing and opening 

specific elements of each parent tag.  

 

A 1: Condensed and expanded versions of the simplified Capella XML Schema 

Fig. A2 shows the expanded schema and an additional section that is included when a user manually modifies the 

schema to add a property value. These additions are shown to be both within the Property Value Packages tag and 

within the Physical Architecture parent tag. 
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A 2: Capella XML data schema: the highlighted section shows where properties have been added manually 
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