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In the recent years, a shift from document-based to model-based approaches is going on 

within many organizations and industries involved in the development of complex systems. 

Model Based Systems Engineering (MBSE) methods and tools are in fact gaining more and 

more popularity due to all their claimed benefits over traditional document-based approaches, 

including for instance enhanced design quality of systems, clearer development of system 

requirements and specifications and improved communications within the design teams. 

However, these benefits can be possible only if recommendations on how generating and 

representing design information during the development process are made available. The 

present paper introduces a new model-based architectural framework, i.e. a guideline that 

leverages a modeling approach for the development and representation of complex systems. 

More specifically, the MBSE architectural framework addressed in this paper focuses on the 

system architecting activities of a Systems Engineering Product Development process, i.e. 

when multiple conventional and innovative solutions of the systems are generated to address 

all the system stakeholder expectations. The proposed architectural framework aims at 

fostering the agility of the development of complex systems, in order to streamline, improve 

and accelerate their architectures definition and modeling through an MBSE approach. The 

paper provides details of the MBSE architectural framework, including the means to produce 

and represent all the system development information.  

Nomenclature 

ADSG    =    Architecture Design Space Graph 

INCOSE   =    International Council on Systems Engineering 

MBSE    = Model Based Systems Engineering 

MDO    =    Multidisciplinary Design Optimization 

SysML    = System Modeling Language 

I. Introduction 

 

EW challenges as climate neutrality and the continuously increasing demand of higher performance are facing 

the aviation sector for the next decades. All these challenges are pushing aeronautical industries and research 

centers to develop radical innovative concepts characterized by novel and disruptive technologies, including 

for example innovative propulsion systems (e.g. hybrid-electric and hydrogen-powered systems), more efficient high 

aspect ratio laminar wings, more electric on-board systems, new materials. 

The introduction of such radical innovative technologies makes the aeronautical system even more complex as 

ever. The complexity of the development process of aeronautical systems is reflected in an increased number of 

designers and a larger amount of data and information produced. Design data regard multiple aspects of the 

aeronautical product under development. For example, these data include requirements, specifications, descriptions 

and interfaces of the several systems, components and parts of the aircraft. Moreover, data and information include 

                                                           
* Research Scientist, Institute of System Architectures in Aeronautics, Aircraft Design & System Integration, 

Hamburg, Luca.Boggero@dlr.de. 
† Head of MDO Group, Institute of System Architectures in Aeronautics, Aircraft Design & System Integration, 

Hamburg, Pier.Ciampa@dlr.de, AIAA MDO TC member. 
‡ Founding director, Institute of System Architectures in Aeronautics, Hamburg, Bjoern.Nagel@dlr.de. 

N 

  

 AIAA AVIATION 2022 Forum 

 June 27-July 1, 2022, Chicago, IL & Virtual 

 10.2514/6.2022-3720 

 Copyright © 2022 by Luca Boggero (DLR), Pier Davide Ciampa (DLR) and Björn Nagel (DLR). 

 Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 

 AIAA AVIATION Forum 

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2022-3720&domain=pdf&date_stamp=2022-06-20


2 

 

organizational aspects of the entire development process, like design decisions, project life-cycle, which designers are 

involved. All the different elements composing the large amount of design data are related together. For instance, 

different solutions are derived according to different design decisions, which are taken on to satisfy the system 

requirements. In case some specific elements are modified, impacts on the rest of the design data and information are 

originated. In addition, data and information are authored by multiple engineers and designers from different 

departments or organizations of the aeronautical supply chain. Therefore, many relationships among all the elements 

might be hidden, therefore making difficult or even impossible the traceability among all these elements.    

A. Shifting from a document-based to a model-based architectures definition 

An architectural framework can be a solution supporting the organization of all the data produced during the 

development process. The ISO/IEC/IEEE 42010 standard defines an architectural framework as a set of: 

“conventions, principles and practices for the description of architectures established within a specific domain of 

application and/or community of stakeholders” [1]. The architecture in this definition represents the structure 

and behavior of a system, where a system is a “set of entities and their relationships, whose functionality is greater 

than the sum of the individual entities” [2]. For example, an aircraft is a system, since it can fly and transport payload 

(system functionality) thanks to all its entities joined together, as engines, fuselage, wings and on-board systems. 

Therefore, an architecture describes different aspects of the system. An architecture can represent for instance all 

the parts that compose the system, its life-cycle, how it is operated by external users and a lot of other information. A 

system architecture instead is a specific architecture, which represents only all the components (entities in case of 

system architectures) that are part of the system and how they are connected together. An architectural framework 

provides the guidelines for the standard representation of the multiple system architectures. Several architectural 

frameworks are available in literature, e.g. Zachman’s Framework [3], DoDAF [4], MODAF [5], NAF [6] and TOGAF 

[7].  

Traditionally, designers follow the guidelines recommended by architectural frameworks for the preparation of 

documents addressing the different aspects of the system. Textual documents or tables collect system requirements, 

specifications, technical descriptions, but they also track the design decisions taken, showing the evolution of the 

system from the initial concept to its realization. Such document-based approach is however negatively characterized 

by limitations and disadvantages, which include for example poor traceability, ambiguity, misunderstandings, lack of 

clarity. Therefore, novel approaches based on models are spreading among industries and organizations due to their 

potential benefits in terms of easier design activities, enhanced design quality, better system specification and 

improved communications within the design team [8]. Models can indeed be built and employed in place of documents 

to clearly represent architectures. Therefore, all these motivations have given great popularity in the last decade to 

Model Based Systems Engineering (MBSE), where all the activities of a Systems Engineering Product Development 

process (such as definition of customer needs, identification of system functionalities, collection of requirements, 

generation of alternative system architectures and verification and validation tasks) are supported by models instead 

of documents. Due to the exponential rising in systems complexity caused by new demands in higher performance, 

lower environmental impact and augment of functionalities, MBSE is expected to play an increasing role in the field 

of Systems Engineering in the next decades [9]. Therefore, several companies in aerospace and other domains have 

already started the transitioning to MBSE for the development of complex systems. 

B. The ambition of model-based system architecting in the AGILE 4.0 project 

The transition from a document to a model-based Systems Engineering approach is one of the main ambitions of 

the EU funded H2020 AGILE 4.0 project (2019-2022) [10], led by DLR, which enlarges the scope of the predecessor 

EU-H2020 AGILE project by introducing all the development activities of a typical Systems Engineering process and 

including all the main pillars of the aeronautical supply-chain: design, production, certification and manufacturing. In 

AGILE 4.0 project, MBSE technologies are leveraged and integrated within an MBSE development system for the 

modeling, assessment, and optimization of complex systems addressing the entire life cycle. Therefore, the MBSE 

development system being developed in AGILE 4.0 extends the scope of the MDO system built in AGILE project by 

including all the upstream activities that anticipate the setup and deployment of Multidisciplinary Design and 

Optimization (MDO) processes, such as definition of complex systems (in terms of stakeholders, needs and 

requirements) and system architecting [11], [12]. The MBSE development system supports an architectural framework 

to represent through a MBSE approach all the system architectures, where “system” refers to the complex system (i.e. 

the aircraft). 

The architectural framework and MBSE development system developed within the frame of AGILE 4.0 for the 

definition and modeling of system stakeholders, needs and requirements has been presented in [13]. The present paper 
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expands the context of the AGILE 4.0 architectural framework and its implementation by now focusing on the system 

architecting step of a Systems Engineering process. This step aims at generating a large number of potential system 

architecture that should meet the stakeholder needs and be compliant with the system technical requirements. Any 

Systems Engineering approach recommends to develop systems along an increasing evolution of the system’s level 

of abstraction. In other words, the stakeholder expectations should entail solution-neutral functions that the system 

will have to provide through its components, but multiple alternative components can be selected to fulfil the system 

functions, therefore originating multiple alternatives of system architecture. This “Systems Engineering way of 

thinking”, which entails a direction of the development process from solution-neutral to solution-specific level of 

abstraction, is a key enabler to originate a large set of conventional but also innovative concepts, which are necessary 

to face the challenges affecting aviation sector as mentioned earlier. The aim of this paper is therefore to extend the 

previously presented AGILE 4.0 architectural framework in order to guide the designer in the system architecting 

step of a Systems Engineering Product Development process.  

In order to reach the previously stated objectives, this paper is organized as follows. After the introduction of 

Section I, the MBSE architectural framework proposed in this paper is introduced in Section II, where the definitions 

of the main elements composing an architectural framework are given, namely process, ontology and viewpoints. The 

detailed description of the architectural framework is given in Sections III, IV, and V. Few examples of application 

of the guidelines provided by the MBSE architectural framework are described in Section VI. The paper ends with 

Section VII by deriving conclusions and suggesting future developments.  

II. A model-based architectural framework for the development of system architectures 

As stated in the introduction, this paper focuses on the system architecting activities of a Systems Engineering 

Product Development process. Different sources in literature propose these kinds of process for the development of 

complex systems, part of them in the form of standard (e.g. [14], [15], [16] and [17]), others described in Systems 

Engineering handbooks (e.g. [18] and [19]). The interested reader can find an overview of these main Systems 

Engineering Product Development processes in [20] and [21].  

A novel systems development process combining a typical Systems Engineering approach together with a typical 

MDO approach is being developed in the AGILE 4.0 project, and schematized in Figure 1 [11].  

 
Figure 1 Systems Engineering Product Development process set up in AGILE 4.0 for the collaborative 

development of complex aeronautical systems [11]. 

The process of  Figure 1 aims at designing and optimizing aeronautical systems (i.e. System Synthesis and System 

Design steps), starting from upstream system development activities. The first step aims at defining the systems’ 

required capabilities and objectives. System stakeholders are identified, and their expected needs about the system are 

collected. Then, stakeholder needs are evaluated through operational scenarios and transformed into system 

  



4 

 

requirements during the System Specification step. The guidelines supporting the designers during the definition and 

modeling of the main elements (e.g. stakeholders, needs and requirements) of the first two steps of the AGILE 4.0 

development approach are provided in [13]. The present paper instead covers in more details the development 

activities dealing with the System Architecting step. These activities aim at defining all the possible components that 

should be part of the system architectures in order to provide all the system functions as demanded by the functional 

requirements. Multiple system architectures can be identified in this step, representing conventional but also 

innovative solutions. Therefore, an Architectural Design Space is generated, from which different system architectures 

are derived and moved forward along the AGILE 4.0 Systems Engineering Product Development process. 

As introduced in Section I, an architectural framework can guide the designer during a system development 

process. The architectural framework addressed in the present paper specifically focuses on the definition of system 

architectures. An architectural framework is composed by ontologies and viewpoints, as explained in [22]. An 

ontology defines all the key concepts composing the system architecture and their relationship. A viewpoint lists 

all the conventions for the construction, interpretation and use of system architectures from the perspective of 

specific system concerns, named perspectives. Viewpoints are prescribed to create views for the representation 

of the architectures of the system under development from the different perspectives. In addition, the here 

proposed architectural framework details the system architecting process, which is set up to derive two kinds of system 

architectures: 

• Functional system architectures, made of all the functions that the system should fulfil; 

• Logical system architectures, made of logical components fulfilling all the functions defined in the 

functional architectures; 

• Physical system architectures: made of physical components, i.e. instances of the logical components 

defined in the physical architectures.  

The following Section will describe the process, ontology and the viewpoints of the proposed architectural 

framework for the development and representation of architectures of complex systems.  

III. MBSE architectural framework: process for system architecting 

This Section presents the process developed in AGILE 4.0 for the architecting of complex systems. As explained 

before, three kinds of architectures are identified: functional, logical and physical. Therefore, the system architecting 

process defined in the project can be divided in three parts: functional, logical and physical system architecting.  

A. Functional system architecting process 

The aim of the functional architecting part of the system architecting process (see Figure 2) is to identify all the 

functions that the system (through its components) should fulfill. These functions are called boundary functions, and 

they are determined during the architecting process that focuses on a specific level of elaboration of the system under 

design. Given a System of Interest (or system under design), i.e. a product being developed by a design team, a level 

of elaboration of it is a specific level in a hierarchy ranging from a top system-level (e.g. aircraft-level) to a lower 

subsystem-level (e.g. wing-level). Therefore, a boundary function specifies “what” a level of elaboration of the system 

should provide through its architecture, determined from functional requirements. For example, provide propulsive 

thrust is one of the boundary functions that an aircraft should fulfil through one of its components. Boundary functions 

are solution-neutral, and they are not determined on the basis of which components are part of the system architecture. 

Boundary functions of the system level of elaboration can be determined through use cases. A use case is a single 

high-level function of the level of elaboration assessed in a specific condition. This condition refers to a particular 

situation during/in which the system operates (e.g. in cruise, in emergency, during landing, at cruise altitude, on 

ground, in 1-engine-out condition). For example, a use case can address the aircraft high-level function to fly in the 

cruise condition. At least a use case refines a functional requirement, as recommended by several methodologies 

available in literature, e.g. FAR (Functional Architecture by use case Realizations) [23], FAS (Functional 

Architectures for Systems) [24] and SYSMOD [25]. A use case contains one or more boundary functions that are 

derived from the high-level function. A use case – including all the boundary functions that belong to it – can be 

represented in time, entailing therefore a functional scenario. Once all the boundary functions that the specific level 

of elaboration of the system has to perform are identified, the architecting process can proceed with the following part, 

regarding the logical architecting.    
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Figure 2 Process of the proposed architectural framework for functional system architecting. 

B. Logical system architecting process 

The aim of the logical architecting part of the system architecting process (see Figure 3) is to generate multiple 

architectures characterized by different logical components fulfilling all the boundary functions defined in the previous 

part. For instance, the components turbofan engine or turboprop engine can fulfil the function provide propulsive 

power. Components can also induce other functions – which are therefore called induced functions – that are fulfilled 

by other components. For example, an engine component would induce the induced function provide fuel. Moreover, 

each component can be specified according to some characterization options (i.e. number of instances, quantities of 

interest with possible values and types of component) and connection options (ports define interfaces between 

components). The Architectural Design Space represents all the possible system architectures that can be generated 

by taking architectural design decisions. These decisions encompass the selection of components, and the specification 

of characterization and connection options. The architecting decisions allow the selection of one or more architecture 

instances from the Architectural Design Space that can be addressed in the physical system architecting process. More 

details about the theory behind the logical architecting process can be found in [26]. 
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Figure 3 Process of the proposed architectural framework for logical system architecting. 
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C. Physical system architecting process 

The aim of the physical architecting part of the system architecting process (see Figure 4) is to identify suitable 

physical components compliant with the non-functional requirements of the system’s level of elaboration. A physical 

component instantiates a logic one by specifying characteristics as performance, dimension, material attributes. For 

example, the CFM56 is a physical component characterized by certain mass, thrust, fuel consumption, which 

instantiates the logical component turbofan engine. Physical architectures can be derived from logical ones through 

the formulation and execution of MDO processes. An MDO process can be set-up by identifying the test cases (e.g. 

disciplinary competence, as aerodynamics and structure) required to verify the non-functional requirements of the 

system’s level of elaboration [27]. Moreover, the mapping between architecture components and disciplinary 

competences can be done at this stage as recommended in [28], in order to make sure that the design team has all the 

necessary disciplinary tools required to design and optimize a specific logical system architecture. Once an MDO 

process has been formulated and (successfully) executed, system solutions are determined. This step entails the 

verification of requirements at the system’s level of elaboration and the determination of a physical architecture, 

designed and possible optimized. 

 
Figure 4 Process of the proposed architectural framework for physical system architecting. 

IV. MBSE architectural framework: ontology for system architectures 

An ontology representing the main concepts of system architectures (e.g. functions, components, architectural 

space) and their relations (e.g. function induced by a component) is described in the present section and depicted in 

Figure 5. The ontology is represented in SysML (System Modeling Language) [29], specifically through a SysML 

Internal Block Diagram, where the new stereotype named «ontology concept» is derived from the SysML element 

«Block» and it represents each main architecture element. 

A first relevant concept is the Level of the System of Interest, which is the level of elaboration of the system that 

has to be architected. This level of the system has to provide different functionalities, each one of them expressed by 

a functional requirement. These types of requirement are refined by use cases, which describe how external actors 

are involved with the level of abstraction of the system. In addition, use cases are made of multiple boundary 

functions, which is a specialization of a function. In fact, other types of functions are determined in the system 

architecting process, i.e. the induced functions. The system functional behavior described by each use case can be 

represented in time through functional scenarios. 
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Figure 5 Ontology of the proposed architectural framework representing key concepts and their 

relationships about system architectures. 
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Both boundary and induced functions are defining the system functional architectural design space, in which 

solution-neutral and solution-specific functional architectures are included. The former ones are made of only 

boundary functions, while the latter ones include also induced functions. Both functions should be allocated to logical 

components, which all together form the system logical architectural space. Multiple characterization and 

connection options characterize the different system components. Architecting decisions are also part of the system 

architectural space, and they are taken by the system architects in order to define specific system logical 

architectures.  

Each logical architecture is then designed and optimized through an MDO problem, which is driven by quantities 

of interest (e.g. constraints) extracted from the non-functional requirements and included in design vectors. The 

results that are derived from the execution of MDO problems determine and/or size physical components, which are 

instantiations of logical components. All the physical components together form the system physical architectural 

space, which includes multiple system physical architectures.  

V. MBSE architectural framework: viewpoints for system architectures 

Multiple viewpoints are part of the MBSE architectural framework for the representation of the system 

architectures model. As described in the following subsections, the proposed viewpoints make use of different 

modeling languages. The most used language is an extension of SysML, named AGILE4Profile. As suggested by its 

name, this profile has been developed within the frame of the AGILE 4.0 project, and it extends the standard SysML 

by introducing new stereotypes, as described in the Appendix. The modeling language of the MBSE process 

ARCADIA [30] (implemented in the tool Capella) is used as well in some viewpoints. Finally, the Architecture Design 

Space Graph (ADSG) [26] is employed as language to model architectural design spaces. 

A. Functional Architectures viewpoints  

During the system functional architecting process, four view can be created by adhering to the viewpoints 

described in the present subsection and summarized in the SysML Package diagram of Figure 6. 

 
Figure 6 Proposed viewpoints for the representation of system functional architectures. 
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1. Viewpoints “Context of the system’s level of elaboration” and “Use cases refining functional requirements” 

The first two viewpoints proposed in this paper make use of the SysML diagrams of Figure 7, and they represent 

the interactions of the system’s level of elaboration with external actors and the refinement of functional requirements 

by means of use cases. 

The viewpoint “Context of the system’s level of elaboration” can be represented by the SysML Use Case Diagram 

of Figure 7 (a). This representation is commonly used in MBSE activities (e.g. [25]) in order to show which external 

actors (e.g. other systems, stakeholders) interact with the system’s level of elaboration in each use case. As an original 

contribution, the new stereotype «systemStakeholder» defined in the AGILE4Profile (see the Appendix for more 

details) can be included in the view. This new element represents every stakeholder (e.g. pilot, passenger, maintainer) 

that interacts with the system of interest when in operation. 

A SysML Requirement Diagram like the one of Figure 7 (b) can be employed to represent which use cases refine 

which functional requirements. Again, a new stereotype name «requirementPlus» is defined in the AGILE4Profile, 

and it is used to model each system requirement (more information can be found in [13]). 

 
Figure 7 (a) SysML Use Case Diagram representing the context of the systems level of elaboration; (b) 

SysML Requirement Diagram representing Use Cases that refine functional requirements. 

2. Viewpoint “List of functions” 

A SysML Block Definition Diagram (see Figure 8) can be made to display the functions that are included in one 

or more use cases, according to the viewpoint “List of function”. This view utilizes the new stereotype «function» 

defined in the AGILE4Profile to represent both boundary and induced functions. Functions can be represented in a 

hierarchy through the “composite association” relationship (i.e. connector with the black diamond). In this way, it is 

possible to indicate which lower-level functions are derived from a top function.  

 

 
Figure 8 SysML Block Definition Diagram representing the list of system functions.  

(a) (b) 
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3. Viewpoint “Functional scenario” 

The determination of the boundary functions that are included in a use case can be effectively done by identifying 

functional scenarios. The approach here proposed entails the definition of a single functional scenario per use case. A 

different recommendation is instead proposed by Eriksson et al. [23], who suggest to evaluate each use case in up to 

three different types of scenario, each one representing a condition: “main success”, “alternative” and “exceptional” 

scenarios. However, the approach proposed in this paper evaluates each top function – therefore not a use case – in 

different conditions (nominal and off-nominal), therefore deriving multiple use cases described by single functional 

scenarios. Views representing functional scenarios can be built through two kinds of SysML diagram: Activity and 

Sequence, as depicted in Figure 9 (a) and (b) respectively. The SysML Activity Diagram of  Figure 9 (a) models a 

single high-level function, and it represents the lower-level functions that happen in different conditions. The SysML 

element “Decision Node” (i.e. a white rhombus) is used to differentiate the conditions. The top function evaluated in 

the different conditions entails multiple Use Cases, which are represented in time through the SysML Sequence 

Diagram of  Figure 9 (b). It should be noted that other alternatives are present in literature for the modeling of the 

functions belonging to a Use Case. Traditionally, a SysML Activity Diagram is utilized for this purpose (e.g. see [24]). 

Eriksson et al. [23] instead propose to describe Use Case through natural language, although they mention SysML 

Sequence Diagram as a graphical way for representing the sequence of functions. However, it is here recommended 

to use a diagram rather than natural language for the description in time of Use Case, therefore fostering the transition 

towards MBSE.       

 

 
Figure 9 (a) SysML Activity Diagram representing the functions derived from a top function and their 

relations in multiple conditions; (b) SysML Sequence Diagram representing a single Use Case in time (i.e. 

functional scenario). 

B. Logical Architectures viewpoints  

The present paper proposes five viewpoints to represent logical architectures, as described below.  

1. Viewpoint “Allocation functions – logical components” 

The “allocation functions – logical components” is one of the views that can be created in the Logical Architecting. 

Two solutions are here proposed, each one exploiting a different modeling language. The former makes use of the 

Domain Specific Language of the ARCADIA method, and it results in the [LAB] Logical Architecture Diagram, a 

template of which is depicted in Figure 10. The blue rectangles represent system logical components (dark blue) and 

external actors (light blue), while the (boundary and induced) functions are represented by the green rectangles. Green 

rectangles are included into the blue ones, in order to depict the allocation of functions to logical components. 

Furthermore, this view shows the functional interactions (named Functional Exchanges) between system functions. 

(a) (b) 

  



12 

 

 
Figure 10 [LAB] Logical Architecture Diagram of the ARCADIA method representing the allocation 

functions – logical components. 

The second solution is a SysML Activity Diagram (see Figure 11), where functions are represented by rectangles, 

which are allocated to components through swimlanes, vertical divisions of the diagram, each one per logical 

component. This view can be derived from the SysML Activity Diagram built to represent functional scenarios (see 

Figure 9 a). 

 
Figure 11 SysML Activity Diagram representing the allocation functions – logical components. 

2. Viewpoint “Architecture Design Space” 

The ADSG is proposed as modeling language in the MBSE architectural framework to model the Architecture 

Design Space. A template of view is depicted in Figure 12, which shows all the logical components that can be part 

of the system architecture in order to provide all the system functions, both induced and boundary ones. 
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Figure 12 Graph representing the template prescribed by the viewpoint “Architecture Design Space” to 

show logical components and functions and their relations (i.e. “fulfilled by” and “needs”). 

3. Viewpoints “Logical components of an architecture” and “Connections between logical components in an 

architecture” 

Multiple architecture instances can be generated from the Architecture Design Space by taking architectural 

decision, e.g. by selecting a specific component that provides a function. Two viewpoints are proposed to represent 

information for each specific logical architecture. 

The viewpoint “Logical components of an architecture” can be used to represent through a SysML Block 

Definition Diagram like the one of Figure 13 (a) which logical components are part of the system’s level of elaboration. 

As original contribution, the new stereotype «logicComponent» defined in the AGILE4Profile is included in any view 

built according to this viewpoint. This new SysML element displays the functions the components fulfil, and the 

characterization and connection options of each component. 

The viewpoint “Connections between logical components in an architecture” instead consists of a SysML Internal 

Block Diagram (see Figure 13 (b)), representing the connections between logical components of the system’s level of 

elaboration and the external actors (both as inputs and outputs). These connections marked in the figure as Item flow 

can be different kinds of exchange, e.g. mechanical power, electric signal, force exchanges. 

 
Figure 13 (a) SysML Block Definition Diagram representing the logical components of a specific logical 

architecture; (b) SysML Internal Block Diagram representing the connections between logical components of 

a specific logical architecture. 

4. Viewpoint “States of the logical components” 

The last viewpoint of the Logical Architecting part of the system architecting process can be built to model the 

states of each logical component, and the transitions from one state to another. A state represents some significant 

condition in the life of a block (i.e. a system component), typically because it represents some change in how the block 

(a) (b) 
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responds to events and what behaviors it performs [8]. The SysML State machine Diagram of Figure 13 is a template 

that can be used to represent this view. 

 
Figure 14 SysML State Machine Diagram representing the states of logical components.  

C. Physical Architectures viewpoints  

Finally, five viewpoints are recommended by the authors to represent physical architectures. These viewpoints are 

described below.  

1. Viewpoints “List of physical components” and “Physical Components satisfying non-functional requirements” 

The first viewpoint addressed in the present paper about Physical Architecting shows the list of physical 

components of a physical architecture. The SysML Block Definition Diagram of Figure 15 (a) represents a template 

that can be employed to represent this view. This diagram includes the new SysML element physicalComponent, 

introduced with the AGILE4Profile as an extension of the block element, where the new property logical component 

has been added in order to state which logical component (e.g. an engine) is instantiated by which physical component 

(e.g. CFM56-5B). The values properties represent instead the Quantities of Interest of the system component.  

 
Figure 15 (a) SysML Block Definition Diagram representing the physical components of a specific physical 

architecture; (b) SysML Requirement Diagram representing the “satisfy” relationships between physical 

components and requirements. 

(a) (b) 
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Physical components can also be linked to requirements, in case they satisfy what stated by requirement statements. 

The viewpoint “Physical Components satisfying non-functional requirements” aims at representing this information. 

A traditional approach through SysML is characterized by the link between a block and a requirement SyML element 

through the satisfy relationship. In this paper instead, the block element is substituted with the «physicalComponent» 

stereotype, as illustrated in the SysML Requirement Diagram of Figure 15 (b).  

2. Viewpoint “Connections between physical components in an architecture” 

The Domain Specific Language of the ARCADIA method is instead exploited for the following viewpoint, which 

aims at representing the connections between the physical components of a physical architecture. The [PAB] Physical 

Architecture Diagram of Figure 16 can be used as template for creating views that conform to this viewpoint. The 

diagram contains all the elements (e.g. logical components and functions) of the Logical Architecture viewpoint 

“allocation functions – logical components” (see Figure 10). In addition, the [PAB] diagram depicts physical 

components (yellow rectangles), while connections between them are represented by the Physical Link elements. 

 
Figure 16 [PAB] Physical Architecture Diagram of the ARCADIA method connections between physical 

components. 

3. Viewpoint “States of physical components” 

The states of physical components and the transitions from one state to another can be represented by a SysML 

State Machine Diagram, similar to the one for the viewpoint “States of the logical components” adressing logical 

components (see Figure 14). In the case of physical components, however, this kind of diagram can include 

parameters, as shown in Figure 17. These parameters characterize the transition between states, and they include: 

• Time values or variables that trigger the change of state; 

• Condition that should be verified in order to be possible a change of state; 

• Result determined as a consequence with a change of state. 

 
Figure 17 SysML State Machine Diagram representing the states of physical components.  

4. Viewpoint “Interactions between physical components” 

The last viewpoint addressed in this paper aims at representing the interactions between physical components. The 

SysML Sequence Diagram of Figure 18 can be used for this purpose. This diagram is the same one of Figure 9 (b), 

but with two main differences. First, each physical component of the system’s level of elaboration is depicted in this 

viewpoint, while in the Functional Architecting case there’s only a single block representing the entire system. 

Therefore, interactions flow between system and actors but also between components. Second, interactions between 
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physical components are specified by variables. For example, an interaction might be an exchange of power between 

two components, and the amount of power exchanged can also be indicated in this viewpoint.   

 
Figure 18 SysML Sequence Diagram representing the interactions between physical components and 

external actors. 

VI. Examples of application of the MBSE architectural framework for system architecting 

In the context of the AGILE 4.0 project, the guidelines proposed in this paper for the system architecting have 

been implemented in the so-called Operational Collaborative Environment (OCE), which integrates several tools 

developed by the partners of the project Consortium to support all the development activities of the Systems 

Engineering Product Development process set up in AGILE 4.0 for the collaborative development of complex 

aeronautical systems. More details about the technologies integrated in the OCE can be found in [31].  

The proposed MBSE architectural framework is being exploited through the OCE for the development of different 

AGILE 4.0 application cases, which are introduced in [12]. Therefore, the proposed MBSE architectural framework 

is leveraged to support:  

1. the design of different architectures of trailing edge flaps including manufacturing constraints [32]; 

2. the development of different architectures of Horizontal Tail Plane designed and produced by multiple 

configurations of Supply Chain system [33]; 

3. the design of conventional and innovative on-board system architectures of a regional aircraft including 

certification constraints [34]; 

4. the design of a Unmanned Aerial Vehicle (UAV) accounting for certification constraints [35]; 

5. the retrofitting of a regional jet [36]; 

6. the design a family of business jets [37]. 

Nevertheless, few examples of application of the proposed MBSE architectural framework are presented in this 

section. More specifically, three examples are proposed, each one of them focusing on a specific part of the system 

architecting process. 

A. Functional Architecting example of application 

The first example of application focuses on the functional architecting of a generic regional jet aircraft. The 

functional architecting process represented in Figure 2 is followed in order to determine the boundary functions that 

the aircraft should fulfil. Once all the functional requirements at aircraft-level are collected, use cases are identified to 
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refine the top function of each requirement by specifying a condition. The SysML Requirement Diagram of Figure 19 

shows some functional requirements, each one of them refined by one or more use cases. For instance, two use cases 

refine the requirement “The aircraft shall perform manoeuvres”, by specifying the two conditions “in flight” and “on 

ground”. 

 
Figure 19 SysML Requirement Diagram representing the use cases that refine some functional 

requirements of a regional jet aircraft.  

The use cases are then utilized to identify all the boundary functions that the regional jet aircraft should fulfil. The 

identified functions are collected in the SysML Block Definition Diagram of Figure 20. For example, the use case “fly 

in nominal mission cruise” entails the boundary functions “to generate lift” and “to provide thrust”.  

 
Figure 20 SysML Block Definition Diagram representing some system functions of a regional jet aircraft.  
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B. Logical Architecting example of application 

A different system’s level of elaboration is here used to present an example of the view “Architectural Design 

Space”, conforming to the relative viewpoint of the logical architecting part. The system to be architected is an engine, 

and its architectural design space is modeled and represented as ADSG in Figure 21. In this case, the boundary function 

is “Accelerate Air”, as this is the only function that is not induced by any of the components. This boundary function 

can then be fulfilled by two components: the Fan Compressor or the Nozzle. In both cases, additional functions are 

induced, which have to fulfill by additional components. For example, in case a Nozzle is selected in an architecture 

instance, a Burner should be introduced as well in order to fulfill the function “Energize air”. In turns, the Burner 

induces the function “Compress air”, which requires a Compressor. Finally, a Turbine has to be introduced to provide 

the mechanical power required by the Compressor. More information about the present example can be found in [28]. 

 

 
Figure 21 Graph representing the Architecture Design Space of a jet engine [28].  

C. Physical Architecting example of application 

The last view proposed as an example represents the connection between the physical components of a simplified 

communication system. This physical architecture is made of two physical components: a real headset and a real radio. 

The Physical Architecture Diagram of the ARCADIA method represented in Figure 22 shows this view.  

 
Figure 22 [PAB] Physical Architecture Diagram of the ARCADIA method connections between physical 

components of a simplified communication system. 
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The pilot and the Air Traffic Control (ATC) need to communicate (functions talk and listen). The sound emitted 

by the pilot – which is characterized by TBD Hz frequency and TBD dB amplitude – is received by a microphone 

(logical component), which is part of the headset. The microphone converts the sound into an electric signal, which is 

sent to the radio via an electric connector or wire (physical link). This electric signal then generates electromagnetic 

waves that are transmitted to the ATC. The opposite happens in the other direction, i.e. when the ATC talks to the 

pilot. In this case, the radio waves are transmitted to the receiver of the radio mounted on the aircraft, which converts 

this wave into an electric signal that is converted in sound and sent to the pilot via the speaker of the headset. 

VII. Conclusions and future developments 

A new architectural framework that leverages an MBSE approach is being realized within the context of the EU-

funded research project H2020 AGILE 4.0. This MBSE architectural framework offers guidelines to designers in the 

development of complex aeronautical systems. These guidelines aim at accelerating, improving and streamlining all 

the development activities of a typical Systems Engineering process, as stakeholder needs identification, 

transformation of needs in technical requirements, generation of multiple alternative system architectures, design and 

optimization, trade-off assessments, decision-making and validation and verification activities.  

More specifically, present paper focuses on the system architecting part of the MBSE architectural framework. 

Therefore, guidelines supporting the generation of conventional and innovative system architectures starting from the 

system functional requirements are provided. These guidelines include a process defining all the steps necessary to 

generate system architectures, an ontology providing the definition and relationships between different concepts 

related to system architecting, and multiple viewpoints that can guide the representation of the information regarding 

the system architectures.  

Further developments will entail the formalization of the latest activities of AGILE 4.0 Systems Engineering 

Product Development process, therefore supporting activities related to trade-off assessment and decision making. 

Appendix  

A new profile derived from SysML and named AGILE4Profile has been developed, and it is represented in the 

SysML Package Diagram of Figure 23.  

 
Figure 23 SysML Package Diagram representing the extension of the SysML profile (AGILE4Profile) 

adopted in the proposed architectural framework for the modeling of system architectures. 
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The new stereotypes introduced with the AGILE4Profile are instead collected in the SysML diagram of Figure 24. 

The new profile has been illustrated in [13]. The new stereotypes exploited in the present paper are marked in orange 

in the figure and illustrated below.  

   

Figure 24 SysML Package Diagram representing the new stereotypes for the modeling of stakeholders, needs 

and requirements introduced with the new AGILE4Profile. 

The following extensions have been made to the standard SysML and are part of the AGILE 4Profile: 

• The new stereotype «systemStakeholder» specializes the metaclass «actor». 
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• The metaclass «requirement» is employed to generate the stereotype «requirementPlus», which other than 

specifying the text and ID of the requirement as prescribed by SysML, includes additional properties, for 

instance type of requirement (e.g. functional or performance), author, version and verification status.  

• The metaclass «block» is specialized with the new stereotypes «system» and «function». 

• The new stereotypes «logicComponent» and «physicalComponent» are derived from the metaclass «block».  
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