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According to a study performed by the Project Management Institute, around 47% of unsuc-
cessful projects do not meet their goals and objectives due to poor requirements management.
Taking requirements into account during the aircraft design process and ensuring requirement
compliance during all design phases is important to obtain good and feasible aircraft designs.
However, a typical aircraft design process is very complex and many requirements need to be
taken into account. This paper proposes a new framework that implements requirements in the
design process by establishing a direct link between Model-Based Systems Engineering and
Multidisciplinary Design Analysis and Optimization (MDAO). Model-based requirements are
directly implemented in the optimization problem and based on the requirement verification
methods the MDAO workflows are formulated. When requirements or verification methods
change, the workflow is automatically updated accordingly. This way, requirement compliance
can either be automatically enforced or checked based on the optimization or analysis results.
Automatically generated requirement reports provide information on the requirement compli-
ance results. The framework has been implemented in a software prototype, which was applied
to the design of a wing box, showing the functionalities of the framework. With the framework,
the traceability from requirements to product design is improved, as all stakeholders can see
how the design process was formulated and how requirement compliance has been achieved.
Furthermore, optimized designs can be obtained that satisfy all the stakeholders’ needs.

Nomenclature

CMDOWS Common MDO Workflow Schema
DoE Design of Experiments
KADMOS Knowledge- and graph-based Agile Design for Multidisciplinary Optimization System
KBE Knowledge-Based Engineering
MBSE Model-Based Systems Engineering
MDAO Multidisciplinary Design Analysis & Optimization
MDA Multidisciplinary Design Analysis
MDM Multidisciplinary Modeller
PIDO Process Integration and Design Optimization
RCE Remote Component Environment
RVF Requirement Verification Framework
SOTA State of the Art

∗PhD Candidate, Faculty of Aerospace Engineering, A.M.R.M.Bruggeman@tudelft.nl, AIAA Student Member
†Design Engineer, Centre of Competence Design, Fokker Aerostructures, Bas.vanManen@fokker.com
‡Manager, Centre of Competence Design, Fokker Aerostructures, Ton.vanderLaan@fokker.com, AIAA Member
§Engineering Specialist, Centre of Competence Design, Fokker Aerostructures, Tobie.vandenBerg@fokker.com, AIAA Member
¶Associate Professor, Faculty of Aerospace Engineering, G.LaRocca@tudelft.nl

1

  

 AIAA AVIATION 2022 Forum 

 June 27-July 1, 2022, Chicago, IL & Virtual 

 10.2514/6.2022-3722 

 Copyright © 2022 by Copyright © 2022 by A. 

 M.R.M. Bruggeman, B. van Manen, T. van der Laan, T. van den Berg, G. La Rocca. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 

 AIAA AVIATION Forum 

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2022-3722&domain=pdf&date_stamp=2022-06-20


I. Introduction

According to a study performed by the Project Management Institute, around 47% of unsuccessful projects do not
meet their goals and objectives due to poor requirement management [1]. In product design, requirements must

be well managed to ensure the final product meets the needs of all the stakeholders. This is especially important for
aircraft design, where both the design process as well as the aircraft are becoming increasingly complex, making it
more difficult to ensure all requirements are met. Good requirement management requires on the one hand a thorough
understanding of the stakeholders’ needs and a proper translation of the needs into requirements. On the other hand, it
requires tracking, evaluating, and verifying requirements in the design process to ensure the final design is compliant
with all the specified requirements.
One of the ongoing trends within requirements management is the switch from document-based to model-based

requirements using Model-Based Systems Engineering (MBSE). Adopting a model-based approach has several benefits
compared to a document-based approach. For example, using models enables the creation of a single source of truth
from which all required information can be derived. This improves the consistency within the design process as
information throughout the model is automatically updated. Another benefit of using a model-based approach is that
models can be reused in different design projects, reducing the amount of rework required. Finally, the use of models
improves transparency as the connections between the different models and elements can be inspected more easily.
Nowadays, requirements are often managed using dedicated software packages, like DOORS1, Jama Connect2, and

the Requirements Manager in 3DExperience3. These software packages allow the user to model requirements and to
connect them to system components and analysis methods to check for requirement compliance. However, these analysis
methods are limited to a direct evaluation of the requirements given a pre-defined system design. What-if scenarios are
evaluated by changing the system and analyzing the effect on the requirements. Extracts and reports from these tools are
provided to the designers to serve as a (paper) guide during the design process. Requirements are not actively used
to guide the design process, although they do limit the feasible design space during the design process as they act as
constraints within the design problem. Therefore, it would be beneficial if requirements could be included directly in the
design process to obtain optimal system designs that comply with all requirements.
When designing complex systems like aircraft, many disciplines are involved, each influencing the other. Multidisci-

plinary Design Analysis and Optimization (MDAO) accounts for these influences and exploits the synergy between
different design aspects and disciplines to obtain an optimal design from a holistic point of view. An important hurdle in
using MDAO has long been the difficult and lengthy setup time of MDAO problems [2]. However, recent developments
[3–5] have made the setup of MDAO processes faster and more agile. Starting from a repository of tools, it is now
possible to automatically make a formal formulation of the MDAO problem and then automatically translate this
formulation into an executable workflow. The ability to quickly formulate MDAO workflows opens up possibilities to
make a direct link between model-based requirements using MBSE and the design process using MDAO.
Previous research has been performed in making a direct link between MBSE and MDAO. Cencetti et al. [6]

developed a framework that enables the evaluation of different design alternatives generated using MBSE in a fixed
and manually constructed MDAO workflow. Jeyaraj et al. [7] developed a similar framework using Capella4. Capella
models are enriched with variables, which are automatically implemented in the MDAO workflow as input values. The
results from the MDAO execution are then automatically imported back into the Capella models. This enables the
evaluation of many different design alternatives. Leserf et al. [8] used a different approach, as they enriched MBSE
models with MDAO information. Parameters are marked as objectives in the MBSE models and design decisions
are added through model variabilities. The enriched MBSE models are then translated into a Constraint Satisfaction
Problem (CSP). Finally, Beernaert and Etman [9] used the Elephant Specification Language to transfer requirements
into an Analytic Target Cascading (ATC) problem, enabling the optimization of different system levels. The main
limitation of the frameworks described above is that they lack flexibility. The optimization processes are either fixed
[6, 7] and manually constructed [6] or only specific optimization algorithms are supported like CSP [8] and ATC [9].
This paper proposes a new framework, called the Requirement Verification Framework (RVF), that establishes a

more flexible link between MBSE and MDAO. The framework presents a new methodology that enables the derivation of
MDAO problems from model-based requirements. Within the RVF, requirements are formulated in a machine-readable
way and connected to the analysis methods that are required to verify the requirements’ compliance. Based on the
problem the user wants to solve (single design analysis, Design of Experiments (DoE), or optimization), different MDAO

1https://www.ibm.com/products/requirements-management, accessed on: 22-04-2022
2https://www.jamasoftware.com/solutions/requirements-management/, accessed on: 22-04-2022
3https://www.3ds.com/3dexperience, accessed on: 22-04-2022
4https://www.eclipse.org/capella, accessed on 27-04-2022
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problem roles (e.g. design variable, objective, constraint, or quantity of interest) are assigned to the requirements by
the user. The MDAO workflow can then automatically be derived, formulated, and executed. This supports the user
in analyzing and optimizing system designs while ensuring the final design meets all the requirements and thus the
stakeholders’ needs. The automatic MDAO workflow generation allows users to easily reconfigure the design problem
when stakeholders change, requirements are modified, or analysis methods are updated. Furthermore, as all elements in
the process are modeled, a trace is established from the requirements to the design process, improving the requirement
traceability5. A compliance report can automatically be generated, showing the user the requirements’ compliance.
The structure of the paper is as follows. Section II explains the position of the RVF within the systems engineering

process. The RVF consists of two parts. The first part focuses on the automatic verification of requirements and is
described in Section III. The second part of the RVF connects the requirements to the MDAO workflow and is explained
in Section IV. The entire framework has been implemented in a first software implementation. This prototype is
described in Section V. Section VI shows the application of the prototype to the design of a wing box. Finally, Section
VII draws some conclusions and discusses future work and recommendations.

II. The Requirement Verification Framework as Part of the Systems Engineering Process
The goal of the RVF is to support the user in integrating requirements in the design process, improve requirement

traceability, and enable automatic verification of requirements. Using the RVF, different design options can automatically
be designed and evaluated according to the same set of high-level system requirements, while simultaneously accounting
for specific design-related requirements. This enables the evaluation of what-if scenarios and thereby supports the
trade-off process to obtain the best designs according to the stakeholders’ needs. The framework consists of the
theoretical concepts and methods. A prototype implementation of the framework within a software package will be
discussed in Section V.
The process that is followed within the RVF is shown in Figure 1 and consists of two parts. The first part (the top

block in Figure 1) considers the automatic verification of requirements given a fixed design. The functionalities provided
by this part are also provided by current SOTA requirement management tools. The second part (the bottom block in
Figure 1) introduces new and innovative functionalities as it extends the process to include the connection between the
requirements and the MDAO problem. In this part, the product design is iteratively and automatically changed such that
the design complies with a given set of requirements, while it is simultaneously optimized for a given objective.

III.A: Formulate machine 
readable requirements

III.B: Add requirement 
verification methods

IV.A: Assign MDAO roles 
to requirements

IV.B: Derive and execute 
MDAO workflow

III.C: Check requirement 
compliance

Fig. 1 Overview of the different steps within the Requirement Verification Framework. For each step, the
dedicated paper (sub)section is indicated

The function of the RVF within a typical systems engineering process is shown in Figure 2 using the Vee Model
(based on [11]). The parts supported by the RVF are indicated in bold. The systems engineering process starts in the
top left with the generation of concepts. This includes the identification of the different stakeholders and their needs
concerning the System of Interest and the creation of high-level concepts.

5Requirement traceability is defined here as: "[a] discernible association between a requirement and related requirements, implementations, and
verifications" [10]. This means that there is a link (or trace) between the requirements, the system of interest, and the verification methods and that
this link can be inspected by the user.
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Fig. 2 The function of the Requirement Verification Framework within a typical systems engineering process
using a Vee Model (based on [11]). The parts supported by the RVF are indicated in bold

The next step is to derive the system’s requirements from the stakeholders’ needs. The requirements can be split into
two categories, namely functional and non-functional requirements. A functional requirement is a "requirement that
specifies a function that a system or system component shall perform" [10]. Non-functional requirements are defined
within this paper as all requirements that are not functional requirements. These include, amongst others, performance
requirements, safety requirements, and quality requirements. Note that performance requirements differ from functional
requirements. A performance requirement is defined as "[a] measurable criterion that identifies a quality attribute of a
function or how well a functional requirement shall be accomplished" [10]. The RVF focuses on the quantitative analysis
of requirements. As functional requirements indicate which functions a system should fulfill, they are not quantifiable.
Therefore, only the non-functional requirements are considered within the framework. Once the system’s requirements
are identified, also the verification methods to check requirement compliance are defined and implemented in the RVF.
The functional requirements are used in the third step of the Vee Model to create several system architectures.

Within the system architecting process, the different possibilities for subsystems and components are identified. With
the introduction of each new subsystem or component, new derived requirements are introduced as well. These can
again be divided into functional and non-functional requirements. The derived non-functional requirements are also
covered by the RVF as shown in Figure 2. Note that the system architecting process is not part of the RVF. However,
other frameworks exist that deal with this step in a model-based manner, for example, the framework developed by
Bussemaker et al. [12].
In the lower part of the Vee Model, the full system, including its subsystems and components, is designed and

developed. In this step, the RVF supports the user in setting up the MDAO problem. By letting the user assign
MDAO problem roles (e.g design variable or constraint) to each requirement, a direct link is established between the
requirements and the MDAO problem. Based on the verification methods that were specified for each requirement,
the framework identifies which engineering tools and methods need to be implemented in the MDAO problem. As
will be explained in more detail in Section IV, based on the requirements, the assigned MDAO problem roles, and the
engineering tools, a formal formulation of the MDAO problem is automatically generated. The user can then inspect
whether the formulation is correct or whether requirements and/or engineering tools are missing. Once the MDAO
problem formulation is correct, it is automatically translated into an executable MDAO workflow. This process enables
the optimization of the design according to the specified requirements. Besides optimization, it is also possible to
generate and evaluate a DoE or single design analysis. This supports the user in evaluating what-if scenario’s to make
better design choices.
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Once the system is designed, the requirements are automatically verified using the RVF and the verification methods
that were specified earlier. The user can generate and inspect a requirement compliance report that indicates which
requirements have been met and which have not. Based on these results, the user can choose to adapt the design in
case of a DoE or single design analysis. In case an optimization was performed but no feasible solution was found, the
requirements need to be reevaluated. The RVF supports the user in this process by automating several steps in the RVF
process and supporting the iteration between the requirements definition, design process, and verification as is indicated
in the middle of Figure 2.
The systems engineering process ends in the top right of the Vee model. In this step, the system is validated to check

whether the final system design fulfills the stakeholders’ needs. This step is out of scope for the RVF.
The RVF is completely model-based and object-oriented. This means that all elements, e.g. stakeholders, needs,

requirements, system of interest, and verification methods, are objects within the framework and that connections
exist between all these objects. This supports the user in implementing the correct requirements within the design
process and maintaining requirement traceability. For example, if a stakeholder is removed, automatically the connected
requirements are removed from the design process. Or if a subsystem or component is changed, its derived requirements
are automatically updated. This ensures that one is using a complete and up-to-date set of requirements in the product
development process.

III. Automatic Requirement Verification
The RVF consists of two parts. The first part focuses on the automatic verification of requirements based on a

fixed design. As shown in Figure 1, this process consists of three steps. First, requirements must be formulated in
a machine-readable manner. How this is achieved is explained in Section III.A. Next, Section III.B discusses how
verification methods are defined and assigned to each requirement. In the last step, fixed designs are automatically
verified based on the requirements and the specified verification methods. A compliance report is automatically
generated, which can be inspected by the user. This step is explained in Section III.C.

A. Machine Readable Requirements

Fig. 3 Requirement patterns as shown in [13]. Pat-
terns are originally from [14]. The parts between
square brackets are optional

Requirement management starts with a proper definition
of the stakeholders, needs, and requirements. Stakeholders
express their needs and the needs are translated into require-
ments that can be verified. The methodology presented in
this paper assumes that a thorough stakeholder analysis has
already been performed and all the stakeholders’ needs and
requirements have been defined.
Once the requirements have been identified, they need to

be formulated according to fixed patterns. The use of patterns
makes the requirements machine-readable, as meaning is
given to the different elements of the requirements. Figure 3
shows the patterns of the four requirement types that have been
implemented within the RVF and that are originating from
Carson [14]. The performance requirement indicates how
well a function should be performed. The design constraint
puts a limit on the feasible design space, while the environmental requirement indicates how a system should perform
when it is exposed to a certain environment. Finally, the suitability requirements include all the ’-ilities’, like for example,
maintainability, producibility, reliability, etc. [14]. Each element in the pattern is implemented as an object within the
RVF. The class diagram showing the relations between the different objects is shown in Figure 4 (inspired on [13]).
Using this approach, the requirements can be interpreted by software programs.

B. Requirement Verification Methods
Each requirement needs to have a verification method that can be used to check whether a design complies with the

requirement. Note that a requirement needs to be quantifiable to be verified. If a requirement is not directly verifiable,
lower-level requirements must be derived from the top-level requirement until a suitable verification method can be
assigned. Within the RVF, a verification method consists of two elements: a means of compliance and a test case.
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Fig. 4 Class diagram indicating how the requirements patterns are translated into classes within the RVF

-UID = "M-001"
-Description = "The requirement will be verified with a stress analysis using FEM"
-

Means of Compliance

Process requirement = "The mesh size shall be 5 mm"

Fig. 5 Example of a Means of Compliance [15]

A means of compliance is defined as the agreement
between the ’need stakeholder’ and the ’responsible stake-
holder’ on how compliance will be achieved. The need
stakeholder is the stakeholder that has the need from
which the requirement is derived, while the responsible
stakeholder is the stakeholder that is responsible for en-
suring the design complies with the requirement. Within the means of compliance, agreements are made on for example
software tools and versions, acceptable assumptions, physical tests, or test conditions. An example of a means of
compliance is shown in Figure 5. Note that one requirement can have multiple means of compliance depending on for
example the design stage. An example is shown in Figure 7. In this case, the rib cost may be verified using empirical cost
estimation during the conceptual design stage, while during the preliminary design stage process-based cost estimations
are required.
A test case is the technical implementation of the means of compliance. A test case consists of all the models, analysis

tools, and physical tests (including the required input and output variables) that are necessary to verify the compliance
of a requirement given a fixed design. At this time, the RVF focuses mostly on the conceptual and preliminary design
stages. Therefore, only the virtual product models and analysis tools have been implemented. The product models (e.g.
CAD model) and analysis models (e.g. FEM or CFD analysis) are called design competences. Thus, a test case within
the RVF consists of design competences and their associated input and output variables. Figure 6 shows two examples
of test cases. Indeed, as can be seen in the second test case, a test case can in itself be a small MDA workflow. In the
future, the RVF could be extended to also support the setup of physical tests.
Figure 7 shows an example of two requirements and their associated means of compliance and test cases. As stated

earlier, one requirement can have multiple means of compliance. Similarly, one means of compliance can have multiple
test cases. For instance, in this example, the means of compliance agrees on using process-based cost estimations for the
rib calculations in the preliminary design stage. Two cost models are available that comply with this agreement, so both
can be used to estimate the rib costs. Note also that similar test cases can be used for different means of compliance. As
shown in Figure 7, cost model 2 can be used for both the rib as well as the spar cost estimations. The difference between
the two test cases is the required input and calculated output.
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With the definition of a means of compliance, also verification process requirements are defined. These requirements
focus on the verification process instead of the system of interest. They indicate the conditions to which the verification
process must comply. An example is shown in Figure 5, where a requirement is placed on the mesh size of the FEM
analysis tool. Verification process requirements determine the settings within a test case. For example, they can specify
certain input values or the design competences to be used within a test case.

Mission 
Analysis

Aerodynamic 
loadsGeometry

Reserve 
Factors

Mission Definition
Engine Performance
Aerodynamic Polars

Mission 
Performance

Aerodynamic 
Analysis

Structural 
Analysis

Geometry

Fig. 6 Examples of test cases. A test case within the RVF consists of the design competences and associated
input and output variables to verify the compliance of a requirement given a fixed design. A design competence is
either a product model (e.g. CAD model) or an analysis tool (e.g CFD or FEM analysis)

Cost Model 2

Spar geometry
Material spar

Production 
process Spar costs

Cost Model 2

Rib geometry
Material rib
Production 

process Rib costs
Cost Model 1

Rib geometry
Material rib
Production 

process Rib costsEmpirical 
Cost Model

Rib geometry
Material rib

Rib costs

Text = “During the conceptual design stage, the 
requirement may be verified using empirical cost 
estimation”

Means of Compliance

Text = “During the preliminary design stage, the 
requirement may be verified using process-based 
cost estimation”

Means of Compliance

Text = “The requirement may be verified 
using process-based cost estimation”

Means of Compliance

Text = “The rib shall have a cost of 
maximum $100”

Requirement

Text = “The spar shall have a cost of 
maximum $500”

Requirement

Fig. 7 Example indicating the link between requirements, means of compliances and test cases. One requirement
can have multiple means of compliances attached to it based on for example the design stage. Furthermore, a
means of compliance can have multiple test cases and test cases may be reused for the compliance verification of
different requirements (with different input and output)

The class diagram in Figure 8 indicates the different elements and their relations concerning the (process)
requirements, means of compliance, and test cases as implemented within the RVF. As can be seen in the Figure, a test
case is built up from one or more design competences. These are the design competences that need to be executed
to check the requirement’s compliance. Furthermore, as indicated in Figure 8, the input and output of the design
competences are specified by parameters. These parameters are the same parameters that are used within the requirement
definitions (see Figure 4). This enables a direct connection between the requirement and its verification method and
enables automatic verification of the requirement as the result from the test case can directly be compared to the value
specified within the requirement.

C. Compliance Report
Once the means of compliance and test cases are determined for each requirement, a given design can be checked

for requirement compliance. The first step is to select one means of compliance and test case per requirement. Next,
the design can be loaded into the RVF. For each requirement, the corresponding test case is executed and the results
are collected. The result values are then automatically compared with the target values that were specified within the
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Fig. 8 Class diagram showing the relations between requirements, means of compliance and test cases.
Furthermore, it indicates how a test case is built up from one or more design competences that are connected to a
central data schema

requirements. By comparing the actual values with the target values, requirement compliance is determined. The results
are then automatically reported in a compliance report.
Figure 9 shows an example of such a requirement compliance report, automatically generated using the RVF. The

report shows the requirement, the design value, and the requirement compliance. Furthermore, the report indicates a
compliance margin (indicated in Figure 9 as ’Difference’). The compliance margin indicates the percentual difference
between the actual value and the target value of the requirement. A negative compliance margin indicates that the
requirement has not been satisfied.

Requirements Textual Requirements Compliance Value Difference

R-1001 total cost The movable shall have a total cost of less than $5000 False 5088.42 -1.77%

R-1004 total bracket cost
The movable shall have a total bracket cost of less 
than $2000

True 1562.48 21.88%

R-1005
single bracket
cost

The movable shall have a single bracket cost of 
less than $400

True 312.5 21.88%

R-1006 total skin cost
The movable shall have a total skin cost of 
less than $1500

True 1396.89 6.87%

R-1003 total mass
The movable shall have a total mass of less than 
50 kg. True 19.38 61.24%

R-2005 root chord
The movable shall have a root chord of less than 
3000 mm. False 3537.21 -17.91%

R-2006 tip chord The movable shall have a tip chord of less than 3000 mm. True 1507.25 49.76%

R-2007 span The movable shall have a span of less than 3000 mm. False 3757.34 -25.24%

Unit

$

$

$

$

kg

mm

mm

mm

Fig. 9 Example of an automatically generated requirements compliance report
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IV. Requirements to Drive the Design Process
The previous section explained how requirement compliance can be checked for a given design. The goal of the

second part of the framework is to actively use the requirements to guide the design process, formulated as an MDAO
workflow. In this part, the design is iteratively changed to guarantee requirement compliance while simultaneously
optimizing the design for a certain objective. As shown in Figure 1, the process consists of two steps. Section IV.A
explains how different MDAO problem roles can be assigned to requirements to implement them in the MDAO workflow.
Section IV.B describes how the MDAO workflow can be formulated and executed.

A. Assigning Roles to Requirements
Each requirement puts a restriction on the feasible design space. However, there are multiple ways on how this

restriction can be taken into account in anMDAOworkflow, as a requirement does not necessarily have to be implemented
as a constraint. Within the RVF, six problem roles have been defined that can be assigned to each requirement and that
determine how the requirement will be implemented in the MDAO workflow:

1) Design variable: A requirement can specify the allowed options for a design variable.
Example: The flap shall be produced using in-house manufacturing methods.
In this case, the manufacturing method can be implemented as a categorical design variable. Only those
manufacturing methods that are available in the production facility can be used to manufacture the flap.

2) Design variable bound: A requirement can specify the upper and/or lower bound of a design variable.
Example: The wing shall have a span less than xx m.
If the wingspan is a design variable in the MDAO design process, then this requirement can be implemented as
an upper bound on the wingspan variable.

3) Input parameter: A requirement can specify a fixed value for an input parameter.
Example: The wing shall withstand all critical load cases.
A requirement can be satisfied by setting the correct input or boundary conditions for an analysis tool. In this
case, the load factor should be set to 2.5.

4) Constraint: A constraint limits the feasible design space.
Example: The flap shall weigh less than xx kg.
A requirement can be added as a constraint to limit the design space.

5) Objective: The objective indicates the quantity of interest that should be minimized or maximized during the
optimization process.
Example: The flap shall cost less than $xx
The parameter of a requirement can be added as an objective to the MDAO problem.

6) Quantity of Interest: A quantity of interest does not put any limitation on the design space. It is a result one is
interested in knowing.
A typical design case can contain thousands of requirements. It may not be feasible to integrate all requirements
in the optimization problem or the test case associated with a given requirement may be very expensive to
evaluate. Therefore, a requirement can also be labeled as a quantity of interest. In this case, the associated test
case will be executed after the optimization to check the requirement’s compliance.

The problem role that is assigned to a requirement has a major impact on whether requirement compliance is
guaranteed. If the requirement is implemented as a design variable (bound) or input parameter, then all design options
the optimizer explores are compliant with the requirement by design. If the requirement is implemented as a constraint,
the optimizer will evaluate design options for which the requirement can be violated. However, if the optimization is
successful, the design will be compliant with the requirement. If the requirement is implemented as an objective or
quantity of interest, there is no guarantee that the requirement will be satisfied by the final design.
Note that there can be multiple problem role options that can be assigned to a single requirement. It is up to the

user to decide which problem role is assigned to each requirement. This means that different optimization and design
problems can be derived from the same set of requirements. Not only optimization problems but also single design
analyses or DoE’s can be formulated. This provides the user with the flexibility to explore different what-if scenarios. If
a requirement does not get a problem role assigned, it will also not be considered in the analysis.
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B. Formulating and Executing the MDAO Workflow
Once the problem roles are assigned to the requirements, the next step is the formulation of the MDAO workflow.

The class diagram in Figure 10 indicates the connection between the MDAO workflow and the test cases. For each
requirement that has a problem role assigned to it, the test cases are collected, as the test cases contain the design
competences that need to be implemented within the MDAO problem.

ExecutableMDAO
Workflow
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Parameter

TestCase
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MdaoWorkflow
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AnalysisModel

1..*

1..*

1

1..*

1..*

1..*

1..*1..*

1 1

1..*1..*

1

1..*
11..*

evaluates

Input/output defined by

translated in

represents

Fig. 10 Class diagram showing the relations between the MDAO workflow description and the test cases. Only
the test cases from the requirements that have a problem role assigned to them will be taken into account in the
MDAO workflow

N(N-1) 2N

Fig. 11 Number of interfaces between
disciplinary tools when using discipline
specific interfaces (left) or when using
a central data schema (right) (adapted
from [16])

The design competences from the different test cases can automatically
be connected as the input and output of all competences are formulated
according to a central data schema. This means that all competences
require an input XML file and generate an output XML file according to
the same data schema. This enables a plug-and-play method for the design
competences as is shown in Figure 11. Besides the design competences,
also the requirements use this central data schema, as shown in Figure 4.
Each parameter in a requirement has an attribute called parameterXPath.
This attribute points to an element in the central data schema. If a parameter
is required that needs to be calculated from a combination of elements in
the data schema, a wrapper needs to be created that maps the parameter
to the elements of the data schema. Using a central data schema makes it
easier to connect the requirements and design competences and to reuse
them in different design studies.
After the required design competences are identified, the MDAO workflow is formulated. Over the past few years,

new methodologies have been developed that enable one to go from a repository of tools to fully formulated MDAO
workflows [3–5]. These methodologies support the user in collecting the design competences, assigning problem roles
(e.g. objective, constraint, design variable) to the input and output variables, and applying the MDAO architecture
(e.g. DoE, MDF, IDF). If multiple requirements use the same design competences (for example with the Cost Model
in Figure 7), they will also make sure that each design competence will appear only once in the MDAO workflow to
prevent unnecessary calculations.
When the workflow has been formulated, it can be inspected by the user for correctness and completeness. Each

element in the workflow is present because of a direct link with one of the requirements (through the problem roles and
test cases). If some competences the user was expecting are missing, this could be an indication that some requirements
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are missing or that certain test cases are incomplete. For example, if the user expects a structural analysis tool within the
workflow, but the tool is missing, it could be that a requirement concerning the structural properties of the design is
missing or that the structural analysis tool is missing in a test case. Besides missing competences, it could also be that
some extra design competences are required to calculate some of the required input values. Finally, the user can add
extra design variables or constraints if desired.
Once the MDAO workflow has been inspected by the user, it needs to be translated into an executable workflow such

that results can be obtained. A methodology to automate this process has been developed by Van Gent and La Rocca [4].
In this case, the formulated workflow is written to a CMDOWS (Common MDOWorkflow Schema) file [17], which can
then be imported into a PIDO (Process Integration and Design Optimization) tool, like RCE6 or OpenMDAO [18], to
generate the executable workflow. Once the MDAO workflow has been executed, the results can be imported back into
the RVF to generate a requirements compliance report, as described in Section III.C.

V. Prototype Implementation
Figure 12 shows an overview of all elements in the RVF and their relations. The class diagram shows the derivation

of the requirements from the stakeholders, the formulation of the machine-readable requirements, the connection of
the requirements with their verification methods, and the derivation of the MDAO workflows from the test cases. The
different parts are indicated with the colored boxes. Based on this overview, a first prototype of the RVF has been
implemented into a software package as described in the work of Van Manen [15].
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Fig. 12 Class diagram showing all the elements of the RVF and their relations
6https://rcenvironment.de/, accessed on: 29-04-2022
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The prototype has been implemented in a Knowledge-Based Engineering (KBE) application built using the ParaPy7
system. The use of KBE technology provides several advantages. Due to ParaPy’s GUI, one can easily inspect the
relations between the requirements, means of compliance, test cases, and requirement compliance. Furthermore, one
can directly execute the test cases from within the KBE application. Due to the dependency tracking, only those design
competences are executed that are necessary to calculate the compliance for the requested requirements. Because of the
result caching and lazy evaluation, the design competences are only executed once even though they may be required
to check the compliance of several requirements, which saves time and computational resources. As soon as some
requirement changes, the previously generated data dependent on the changed requirement is invalidated and reevaluated
on demand.
Note that not all elements as shown in Figure 12 have been implemented in the prototype yet. For example, the

verification process requirements that put restrictions on the test cases, are not yet supported.

VI. Results
The prototype of the RVF was applied to a use case of a Tier-1 supplier [15]. The use case focuses on the design of

a wing box for an aircraft fin. An example of such a wing box is shown in Figure 13. The wing box consists of two
spars, multiple ribs, and a top and bottom skin.

Fig. 13 Example of a wing box (generated using
ParaPy) consisting of two spars (orange), multiple
ribs (purple) and a top and bottom skin (red). The
top skin is left out for clarity [15]

Fig. 14 Screenshot showing the requirements,
means of compliance and test cases as implemented
in the RVF [15]

The first step is to formulate the machine-readable requirements. Five requirements were formulated that put
restrictions on the cost, weight, and geometry of the wing box. These requirements are listed in Table 1. The colors
used within the requirement text correspond to the colors of the requirement patterns, as shown in Figure 3, to make the
requirements machine-readable.
For each requirement, one or two means of compliance and test cases have been identified as shown in Figure 15.

As explained in the previous section, the verification process requirements have not been implemented in the RVF yet,
and are therefore also not included in the means of compliance. Four different disciplinary tools are used within the test
cases. The Multidisciplinary Modeller (MDM) [19] is a KBE model and generates the CAD model of the wing box.

7https://parapy.nl/, accessed on: 21-04-2022
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Table 1 Overview of the wingbox requirements. The colors indicate the different elements of the requirement
patterns as specified in Figure 3 [15]

ID Requirement text Requirement type
R-1001 The wing box shall have a total cost of less than $7,000. Performance
R-1002 The wing box shall have a total weight of less than 50 kg. Performance
R-1003 The wing box shall have a total rib cost of less than $1,600. Performance
R-2001 The wing box shall have a span in the range of 3.5 m and 4.0 m. Design constraint
R-2002 The wing box shall have a root chord in the range of 3.0 and 3.5 m. Design constraint

The Mass Properties Module (MPM) calculates the mass of the wing box. The Open Source Cost tool (OSC) [20] is an
open-source tool that calculates the cost of the wing box, given the manufacturing method, geometry, and geometry
complexity. The Project-Based Cost tool (PBC) is an alternative to the OSC tool.
The requirements, means of compliance, and test cases are implemented within the RVF. The resulting KBE tree

can be seen in Figure 14. As shown in Figure 15, the requirement on the total cost of the wing box has two means of
compliance and two test cases. Within the RVF, one can easily select one or the other depending on the scenario the
user wants to evaluate. For now, the means of compliance during the conceptual design stage and the open-source cost
estimation test case are chosen and selected within the RVF. Table 2 Design parameters of the ini-

tial wing box [15]
Parameter Value Unit
Root chord 3.54 m
Tip chord 1.51 m
Sweep 40.66 deg
Span 3.76 m

Once the means of compliance and test cases have been selected, a first
compliance report can be generated based on a fixed design. The design
parameters and corresponding values for the initial design are shown in
Table 2. Based on these design parameters, the test cases are executed by
the RVF and the compliance report is automatically generated. The results
are shown in Table 3. As can be seen, three of the five requirements are
violated. The initial wing box design is too heavy, the rib costs are too high
and the root chord is too large.

Table 3 Automatically generated compliance report for the initial design of the wing box. The report indicates
the calculated values, indicates whether the requirement has been met and shows the compliance margin. [15]

ID Requirement text Test case
value

Compliant Compliance
Margin

R-1001 The wing box shall have a total cost of less than $7,000. $6,824 True 2.51%
R-1002 The wing box shall have a total weight of less than 50 kg. 57.97 kg False -15.94%
R-1003 The wing box shall have a total rib cost of less than $1,600 $1,710 False -6.88%
R-2001 The wing box shall have a span in the range of 3.5 m and 4.0

m.
3.76 m True 7.43 / 6.00%

R-2002 The wing box shall have a root chord in the range of 3.0 and
3.5 m.

3.54 m False 18.00 / -1.14%

One of the benefits of the RVF is that a design process can be formulated to change the current wing box design to
try and find a design that complies with the specified requirements, while simultaneously optimizing the design for a
specified objective. The MDAO problem roles that are assigned to the different requirements are shown in the third
column of Table 5. In this case, the wingspan and root chord have been chosen as design variables and therefore their
corresponding requirements (R-2001 and R-2002, respectively) are marked as design variable bounds. Note, that the
tip chord and sweep have not been chosen as design variables and will stay constant during the optimization. The
requirement on the total cost of the wing box (R-1001) is marked as a constraint and the objective is to minimize the
weight of the wing box (R-1002). The rib cost requirement (R-1003) will not be enforced during the design process as it
is marked as a quantity of interest. The resulting MDAO workflow, automatically generated using KADMOS [4], is
shown in Figure 16. KADMOS (Knowledge- and graph-based Agile Design for Multidisciplinary Optimization System)
is one of the software tools that can automatically generate an MDAO workflow starting from a repository of tools.
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Fig. 16 XDSM generated using KADMOS. The optimization focuses on minimizing the mass of the wing box
[15]

Once the MDAO workflow has been formulated, the user can inspect the workflow. In this case, one can see that
important elements are missing. For example, there is no disciplinary tool concerning the structural analysis of the wing
box present in the MDAO workflow. None of the requirements needed this tool, therefore the tool was not presented in
the test cases used to built up the MDAO workflow. This is an indication to the user that important requirements are
missing, for example: "The wing box shall withstand all critical load cases."Table 4 Design parameters of the op-

timized wing box [15]
Parameter Value Unit
Root chord 3.00 m
Tip chord 1.51 m
Sweep 40.66 deg
Span 3.5 m

The MDAO workflow as defined by KADMOS was translated into
an executable workflow by uploading the CMDOWS file into RCE. The
optimization was executed and the results were loaded back into the RVF.
The values of the optimized wing box are shown in Table 4. Within the
RVF, a requirement compliance report was again automatically generated
and the results are shown in Table 5. Here, one can see that in this case the
design is compliant with all requirements. The final design is smaller than
the initial design and has a reduced cost and weight.

Table 5 Automatically generated compliance report for the final design of the wing box. The table also indicates
the MDAO problem roles that were used to formulate the design process. [15]

ID Requirement text MDAO problem role
Test case
value

Compliant
Compliance
Margin

R-1001 The wing box shall have a total cost
of less than $7,000.

Constraint $6,017 True 14.04%

R-1002 The wing box shall have a total
weight of less than 50 kg.

Objective 48,28 kg True 3.44%

R-1003 The wing box shall have a total rib
cost of less than $1,600

Quantity of Interest $1,538 True 3.88%

R-2001 The wing box shall have a span in
the range of 3.5 m and 4.0 m.

Design variable bound 3.50 m True 0.00 / 12.50%

R-2002 The wing box shall have a root
chord in the range of 3.0 and 3.5 m.

Design variable bound 3.00 m True 0.00 / 14.29%
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VII. Conclusions and Outlook
In aircraft design, requirements must be well managed to ensure the final product meets the needs of all the

stakeholders. Nowadays, requirements are often managed using dedicated software packages. However, these software
packages are limited to a direct evaluation of the requirements given a fixed design. What-if scenarios can only be
evaluated by manually changing the design and analyzing the effect on requirements, which is time-consuming and
leads to sub-optimal designs.
This paper presented a new framework, called the Requirements Verification Framework, that focuses on the

implementation of model-based requirements in the aircraft design process using MBSE and MDAO. The framework
enables the automatic verification of requirements and lets requirements drive the design process. By iteratively and
automatically changing the design, requirement compliance is enforced while simultaneously optimizing the design for
a certain objective.
The RVF consists of a five-step approach. During the first step, machine-readable requirements are formulated.

Next, verification methods are defined for each requirement. Verification methods contain the methods required to check
the compliance of a requirement. In the third step, MDAO problem roles, such as objective, design variable, constraint,
or quantity of interest are assigned to the requirement. Based on the MDAO problem roles and the verification methods,
the full MDAO workflow can be formulated and executed in the fourth step. Finally, once the MDAO workflow has been
executed, the results are automatically checked for compliance and a compliance report is generated.
The framework was implemented in a software prototype, which was applied to the design of a wing box. The use

case demonstrated how requirements are formulated, how they are implemented in the MDAO process, and how they are
verified. By deriving an optimization problem from the requirements, an improved wing box design was obtained that
satisfied all specified requirements, while simultaneously minimizing the weight of the wing box. Furthermore, the
use case demonstrated how the RVF can be used to inspect the correctness and completeness of both the requirements
as well as the design problem. The software prototype is not complete yet. Verification process requirements will be
implemented in the future.
The RVF is completely model-based and object-oriented. This improves the traceability from requirements to

product design, as all stakeholders can inspect the models to see how the design process was formulated and how
requirement compliance has been achieved. Furthermore, it enables the reuse of models within different design studies,
reducing the amount of rework required.
With the framework, a direct link betweenMBSE andMDAO has been established. This enables the easier evaluation

of what-if scenarios leading to better design choices. Most importantly, using the framework, optimized designs can be
obtained that comply with all the stakeholders’ needs.
In the future, the RVF will be further extended to also include design-dependent requirements. As soon as a design

choice has been made to include a certain subsystem in the design (e.g. a turbofan engine), new derived requirements
become active. These derived requirements would have stayed inactive if a different design choice was made (e.g. a
propeller instead of a turbofan engine). Therefore, the RVF will be extended to include the possibility to automatically
activate requirements based on design choices. This will make it easier to compare design alternatives, leading to better
design choices.
Besides the design-dependent requirements, also manufacturing requirements will be included in the RVF. The

production process puts requirements on the design and vice versa, creating a system of systems. By taking the
interactions between design and production into account already during early design stages, improved designs can be
obtained that are also producible.
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