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A value-driven model-based approach concurrently coupling design, manufacturing and 

supply chain in the early development stage of aircraft design has been developed within the 

European project AGILE4.0. The benefits of using this methodology have been highlighted by 

the aeronautical application case focused on the design, manufacturing and supply chain of 

an horizontal tail plane. Finding a Pareto-front simultaneously optimizing the design, 

manufacturing and supply chain domains is the next challenge to face. The research activity 

proposed in this paper represents the first step of this ambitious goal. The objective is to 

identify the optimization strategy to use for the global optimization campaign by exploring, 

first, simple and representative Multidisciplinary Design and Optimization (MDO) problems 

related to the supply chain domain. In the first MDO problem, a 4-objective optimization is 

executed and then the optimized attributes are aggregated in a single measure named value. 

In the second MDO problem instead, attributes are first aggregated in a value and then a bi-

objective value-cost optimization is executed. Thus, two optimization strategies are 

investigated, but both lead to the value-cost Pareto-front investigation. The application case 

addressed in this research activity provides interesting insights for the value-driven 
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optimization strategy to use for future-complex optimization problems involving design, 

manufacturing and supply chain domains. 

Nomenclature 

CPACS = Common Parametric Aircraft Configuration Schema 

HTP  = Horizontal Tail Plane 

MBSE  = Model Based Systems Engineering 

MDO  = Multidisciplinary Design Analysis Optimization 

MfG  = Manufacturing 

OAD  = Overall Aircraft Design 

OEM  = Original Equipment Manufacturers 

SC   = Supply Chain 

TLAR  = Top Level Aircraft Requirements 

XDSM = eXtended Design Structure Matrix 

 

I. Introduction 

 The top-level aircraft requirements (TLARs) historically lead the early phase of aircraft design 

with the objective to search for aircraft configurations with optimized performance. In the last decade, however, the 

European Commission introduced the Flightpath 2050, defining new challenges for the design of future innovative, 

sustainable and circular aircraft configurations. The objective of the sustainable and circular aviation is to reduce the 

environmental impact in terms of fuel consumption, waste and emissions associated with all the aeronautical system 

activities and operations. Hence, the necessity to extend the branches of the aeronautical research to the entire aircraft 

life-cycle, from the design to the production, to the waste disposal after the end of the system activity. The challenge 

is to account for these new requirements in the early design phase to take strategic decisions that would optimize the 

entire aircraft life-cycle.  

 In this frame, the European funded H2020 project AGILE 4.0 [1], follow-up of the AGILE project [2], led by 

DLR, aims to create a digital development of the systems throughout the entire life-cycle by leveraging 

Multidisciplinary Design Optimization (MDO) methods and Model Based Systems Engineering (MBSE) technologies 

[3]. Within this project, a value-driven model-based approach concurrently coupling design, manufacturing and supply 

chain in the early stage of aircraft development has been already developed [4]. This three-dimensional approach, 

applied to an aeronautical system component, highlights the advantages of including manufacturing and supply chain 

decisions in the early design stage. Furthermore, the value model theory, adopted as key enabler of the concurrent 

coupling of multi-domains, allows to quantify and simplify the multi-attribute decision making process [5]. Thus, a 

value-cost solution tradespace is generated by the value-driven three-dimensional approach. 

 The new challenge is to address an optimization design campaign aiming at finding the global optimum 

simultaneously accounting for design, manufacturing and supply chain variables. In this context, the research activity 

presented in this paper aims at identifying the best optimization strategy, in terms of computational time and cost, to 

use for this optimization campaign by addressing simplified, but representative, MDO problems. Hence, two 

optimization strategies are investigated focusing on the supply chain domain. Based on the same design variables, 

both MDO problems lead to the value-cost Pareto-front. However, the way through which the value is estimated 

differentiate the optimization strategies. In fact, the value aggregates multiple criteria, also called attributes, in a single 

measure. In one MDO study, attributes are first optimized and then aggregated in a value for the value-cost Pareto-

front investigation. In the other case, attributes are first aggregated in a value and then a bi-objective optimization is 

executed to achieve the value-cost Pareto-front. Both optimization strategies are applied to a specific horizontal tail 

plane configuration. Preliminary results provide interesting insights on the computational advantages in using one or 

another approach.  

 Nevertheless, before introducing the MDO problems, the MBSE technologies adopted for system architecting 

modelling are introduced. In fact, the system architecting is identified as the link between the upstream MBSE 

modelling activities (e.g. modeling of system requirements) and the downstream MDO formulation and execution 

activities. Thus, having a complete overview of the architectures that can be generated by varying the design, 

manufacturing and supply chain decisions support the comprehension of the MDO problems that can be addressed. 

 An overview of the complex architectures that can be generated and optimized in the MDO system is provided in 

Section II. Instead, details of the value-driven MDO problem formulation in Section III. In the same section, the 
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methods and tools used to implement the MDO process are addressed as well. Afterwards, Section IV describes the 

preliminary results obtained from the application of the optimization strategies to a specific horizontal tail plane 

configuration. Conclusions and possible future developments are finally provided in Section V. 

II. MBSE Framework supporting the concurrent coupling of supply chain, manufacturing and 

aircraft design: focus on the system architecting  

 The MBSE framework developed within the European project AGILE 4.0 and showed in Figure 1 supports the 

development of complex aeronautical systems, from the modelling of stakeholders, needs and requirements to the 

MDO exploration, by generating multiple system architectures. In this context, the MBSE framework is adopted to 

support the modelling of the horizontal tail plan, manufacturing and supply chain systems. Details on how to leverage 

the MBSE framework for the modelling of stakeholders, needs and requirements with respect to these three systems 

have been already provided in [6]. Here after, instead, the focus is on the system architecting modelling. It aims to 

generate multiple configuration of systems characterized, for instance, by different components, materials or 

enterprises. The scope is to provide the reader the full comprehension of the architectures that can be generated by 

using the concurrent three-dimensional approach and that might be later optimized in the MDO system [7]. In fact, 

the system architecting modelling represents the link between the upstream system engineering modelling and the 

downstream MDO activities.  

 

 

Figure 1 – Model-based System Engineering (MBSE) Framework supporting the development of complex 

aeronautical systems (adapted from [3]).  

 The system architecture is the combination of the allocation of system functions (e.g. to provide lift) to system 

components (e.g. wing) and the relationships among components [8]. The system architecture modelling starts with 

the collection of boundary functions, derived from functional requirements, for each system. In the problem under 

analysis, one boundary function has been identified for each system. Thus, the horizontal tail plan system has to handle 

the longitudinal flight, the manufacturing system has to manufacture the horizontal tail plane, while the supply chain 

system has to perform manufacturing processes. These boundaries functions already highlight the relationship 

between systems. The horizontal tail plane system requires the manufacturing system for its design. Instead, the 

manufacturing system needs the supply chain system for its execution. This allocation of functions and systems, 

schematically represented in Figure 2, defines the multi-systems architecture coupling the horizontal tail plane, 

manufacturing and supply chain systems.  

 The key aspect of this architecture modelling is the translation of an induced function of a system in the boundary 

function of the other one. For example, the horizontal tail plane (HTP) system has to handle the longitudinal flight 

(boundary function of HTP system), but it needs to be manufactured (induced function of HTP system, boundary 

function of manufacturing system). Same applies for manufacturing and supply chain systems.  
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Figure 2 – Multi-systems architecture coupling horizontal tail plane, manufacturing and supply chain. 

The mappings functions – systems applied at the systems level are also valid at the system components level. Thus, 

the HTP components, i.e. spars, stringers, ribs and skins perform other functions to assure that the HTP fulfills its 

boundary function. For instance, the skins maintain the aerodynamic shape to produce the lift needed to handle the 

longitudinal flight. For the manufacturing system, the manufacturing and assembly processes is defined as main 

components. Thus, the machining, the hand-lay-up, the riveting can be used to manufacture and assembly the HTP 

components. These manufacturing processes are then performed by the enterprises (OEM and suppliers) 

characterizing the supply chain to guarantee the production of the HTP. The main features of the system architecting 

are summarized in Table 1. 

 

Table 1 – System Architecting: definition of boundary functions, systems and their respectively components.  

Boundary Function 

 

System Components 

Handle longitudinal flight Horizontal Tail Plane Spars, Stringers, Ribs, Skins 

Manufacture the Horizontal 

Tail Plane 

Manufacturing Manufacturing and 

Assembly Processes 

Produce the Horizontal Tail 

Plane 

Supply Chain  OEM and Suppliers  
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 The modelling of the architecture instead has been realized by using ADORE, the DLR tool supporting the MBSE 

framework for the system architecting [9]. A simplified but representative system architecting modelling coupling the 

three systems of HTP, manufacturing and supply chain is shown in Figure 3. In this figure, it is possible to recognize 

the boundary functions, the systems and components previously described. 

 

 

 

 

Figure 3 – Multi-systems architecture modelling in ADORE coupling the horizontal tail plane, manufacturing 

and supply chain systems. 

From the systems architecting modelling, multiple architectures can be generated based on decisions related to the 

choice of:  

• materials for each HTP component 

• manufacturing and assembly processes for each material (and so for each HTP component) 

• production quantity performed by each OEM and supplier site 

• OEM and supplier site performing assembly processes 

 

Thus, many architectures can be generated given the large number of variables and decisions that can be taken. 

Each of these architectures can be optimized once the optimization parameters are defined. This can be done in 
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ADORE, by assigning the quantities of interest that can be used in the MDO problems as design variables, constraints 

or objectives. In Figure 3, multiple quantities of interest are shown as example. In the next section, some of these 

quantities of interest are used as objectives of the MDO problems. However, simplified MDO studies are investigated 

since the main objective of this research activity is to identify the best optimization strategy to be used later for even 

more complex architecture optimization activities. Therefore, in the next section are analyzed architectures that differ 

each other only for the production quantity performed by each OEM and supplier site as well as for the choice of OEM 

and supplier site performing assembly processes. All the other decisions (materials, manufacturing and assembly 

processes) are assumed as frozen. 

III. Value-driven optimization strategies definition and MDO process implementation  

 The system architecting bridges the upstream MBSE modelling and the downstream MDO activities. It is a 

powerful mean that simplifies the set-up of the MDO process providing directly the architecture models to analyze in 

the MDO system. As described in the previous section, complex architectures can be investigated if considering all 

the variables related to the HTP, manufacturing and supply chain systems. However, only simplified architectures are 

optimized in the following MDO problems. In fact, the main objective of this research activity is to find the best 

optimization strategy to use later for more complex MDO problems. Analyzing simplified architectures allows to 

perform multiple analyses quickly and efficiently. Particularly, the simplification assumes frozen the choices related 

to the design and manufacturing of the HTP, thus the materials, manufacturing and assembly processes that can be 

selected. The optimization is therefore related only to the supply chain system. Details on the definition of the 

optimization strategies and on the MDO process implementation are provided here-after. 

 

A. MDO Value-driven problems definition  

 Two MDO problems, schematically represented in Figure 4 and Figure 5, are addressed in this research activity. 

They represent two different optimization strategies. Both lead to the value-cost Pareto-front, but they differ on how 

the value, aggregating multiple attributes in one measure, is estimated. The definition of the MDO value-driven 

problems relays on the identification of the main parameters characterizing an optimization problem. Therefore, the 

design variables, the objectives functions, the constraints and the algorithms of these MDO studies are described in 

details.  

 In both MDO problems, as also shown in Figure 4 and Figure 5, the optimization is focused on the supply chain 

domain. In this domain, the supply chain cost, time, quality and risk are estimated based on the individual 

characteristics of each OEM and supplier. Particularly, the supply chain performance parameters depend on the 

manufacturing and transportation contributions. The first one is mainly related to the production quantity performed 

by each company, the second one to the distance between the production and assembly sites. The production quantity 

performed by each OEM and supplier is the first design variable of the investigated MDO problems. Defined as a 

categorical variable, it indicates the number of components produced by each OEM and supplier site. The production 

quantity is assigned for each component of the HTP. Therefore, there is a production quantity for skin, stringers, spars 

and ribs. The second design variable is instead the location of the assembly site responsible for the assembly of some 

components of the HTP. It is defined as a flag. When it is equal to 1, it means that the selected OEM or supplier is an 

assembly site. The properties of the design variables characterizing these MDO problems are summarized in Table 2. 

 

Table 2 – Design variables characterizing the value-driven MDO problems.  

Design Variables Type Content Meaning 

Production Quantity Categorical Variable 0.5 Half of total components  

1 Total components 

Assembly Site Categorical Variable 
0  No assembly site 

1 Assembly site 

 

 Changing the production quantity allocated to each company of a supply chain automatically impacts the supply 

chain cost, risk, quality and time. In fact, a given company might have higher production cost than another, for 

instance. Consequently, the production of the same number of components lead to a different supply chain cost 

depending on the selected company. At the same way, the choice of the assembly site impacts the supply chain 

performance, particularly the transportation cost, time and risk. In fact, the HTP components are moved from the 

production sites, in which the manufacturing processes are performed, to the assembly sites, in which the assembly 

processes are executed among multiple components. The supply chain parameters vary depending on the distances 
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between assembly sites and productions sites. Due to this dependency, the supply chain cost, time, risk and quality 

are chosen as objective functions of the first MDO problem, see Figure 4. This figure highlights the design variables 

of this optimization problem, thus the production quantity and the assembly site, as well as the 4-objective functions, 

i.e. the supply chain cost, time, quality and risk. However, instead of a four-objective Pareto-front, it ends with the 

value-cost Pareto-front investigation. The value therefore aggregates, in this case, the optimized attributes. Thus, first 

the optimization is executed, then the attributes are aggregated in the value. As results, the optimized value-cost 

solution tradespace is achieved. This is the first optimization strategy investigated in this research activity.  

 

 

Figure 4 – First optimization strategy addressing a MDO problem having the production quantity and 

assembly site as design variables, the supply chain cost, time, quality and risk as objective functions. First the 

optimization is executed, then the optimized attributes are aggregated in a value to investigate the cost-value 

Pareto-front. 

 

 The second optimization strategy, related to the other MDO problem here analyzed, is instead schematically 

represented in Figure 5. As in the previous MDO problem, the production quantity and the assembly site are used as 

design variables. However, the objective functions are different. In this case, the attributes (i.e. the supply chain 

quality, risk and time) aggregated in the value are not individually optimized anymore. Instead, the value, which 

aggregates all the attributes, is optimized. Thus, a bi-objective optimization problem is executed and the value-cost 

Pareto front is obtained and investigated. So, with respect to the previous MDO problem, in this case, the attributes 

are first aggregated in a value and then the optimization is executed. This is the second optimization strategy adopted 

to achieve the optimized value-cost solution tradespace.  
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Figure 5 – Second optimization strategy addressing a MDO problem having the production quantity and 

assembly site as design variables, the supply chain cost and value as objective functions. First the attributes 

are aggregated in a value, then the optimization is executed to investigate the cost-value Pareto-front. 

 

 The main optimization characteristics of the already introduced value-driven MDO problems are summarized in 

Table 3. In both cases, the supply chain domain is optimized, constraints have not been applied and the value-cost 

Pareto-front is investigated. The main difference relays in the objective functions and thus in the way that the value is 

estimated, before or after the optimization execution. However, it is worth to underline, that the weights and utility 

functions needed to estimate the value are assumed to be equal in both MDO problems. 

 

Table 3 – Value-driven MDO problems formulation focused on the supply chain (SC) domain: definition of 

design variables, constraints, objective functions and Pareto-front  

Case Study Domain Design Variable Constraints Objective Functions Pareto-front 

1 SC Production Quantity, 

Assembly Site 

- Minimize cost, time, risk  

Maximize quality 

Value-Cost 

2 SC Production Quantity, 

Assembly Site 

- Minimize cost 

Maximize value 

Value-Cost 

 

 Regarding the optimization algorithm, both 4 objective and 2 objective case studies are solved using surrogate 

based optimizer. The proposed optimization algorithm is a constrained Bayesian optimizer where the expensive black 

boxes (objectives and constraints functions) are approximated by some surrogate models in order to reduce CPU time. 

The main idea of SEGOMOE (Super-Efficient Global Optimization using Mixture Of Experts), developed by 

ONERA, is to use some adaptive mixture of kriging based models to tackle high dimension problems. The initial 

version of SEGOMOE aimed at solving mono-objective problems involving an intermediate number of design 

variables (up to 100) and potentially constrained by both inequality and equality nonlinear constraints. Its 

competitiveness relies essentially on the use of a sequential enrichment strategy, performed on adaptive surrogate 

models. SEGOMOE fully described in [8] has been successful applied for different applications: aerodynamic shape 

optimization [10], nacelle optimization [9], overall aircraft configurations [11], as some industrial test case in 

collaboration with Bombardier [10]. 

 Some recent developments have been made to consider highly non-linear constraints [11] or mixed integer 

variables [12]. The newest capability concerns multi-objective described in [12]From few initial points, an adaptive 

process is used to add some Pareto-optimal points chosen from an acquisition function that assigns a maximum value 

to the points having a high probability of improving our knowledge of the objectives and respecting the constraints in 

the probably optimal areas.  Then, after some iterations, final surrogate models are trained on the enriched database 

and an evolutionary algorithm such as NSGA-II [13] is applied to obtain the Pareto front. Since only surrogate models 

are used, this usually expensive step is performed here at no additional cost. The challenge in the current case studies 

is the use of categorical variables in a multi-objective context. 

 

B. MDO Process implementation 

 The two optimization strategies previously described have been applied to a selected HTP configuration, as 

explained in the next section. However, to achieve some preliminary results, the value-driven MDO problems have 

been set-up and executed by using some tools and technologies, as described here-after.  

 The supply chain domain and the value model theory were already implemented in disciplinary codes able to 

automatically exchange information through CPACS [4]. The MDO process coupling the disciplinary codes in a single 

workflow has been automatically generated by the MDAO Workflow Design Accelerator, short MDAx [14]. It 

provides an intuitive workflow modelling environment using an expansion of the XDSM format [15]. The XDSM of 

both MDO problems are reported in Figure 6. The optimizer and the disciplinary codes are placed on the main 

diagonal, the inputs of each tool are represented vertically, the outputs horizontally. 

  



9 

 

 

a) First optimization strategy - XDSM 4-objective MDO workflow. 

 

b) Second optimization strategy - XDSM 2-objective MDO workflow. 

Figure 6 – XDSM MDO workflows obtained by using MDAx: a) XDSM 4-objective MDO workflow - the 

value is estimated and then the optimization is executed for the value-cost Pareto-front investigation; b) 

XDSM 2-objective MDO workflow - the optimization is executed and then the optimized attributes are 

aggregated in a value for the value-cost Pareto-front investigation. 

 

 Once set-up the MDO workflow, MDAx also provides the possibility to export the workflow configurations to be 

executed within the Remote Component Environment (RCE). In this platform, workflows made by tools belonging to 

different partners can be automatically executed through BRICS, provided by NLR partners [16]. However, before 

proceeding in this direction, it has been decided to execute the workflow step-by-step to test the optimizer, the 

disciplinary tools and to align the exchange of information among them. The execution flow, used to obtain 

preliminary results for both MDO problems, is illustrated in Figure 7.  

 Thus, a Design of Experiments (DOE), corresponding to the full enumeration of solutions, is created and executed 

for a total of 3136 points. In a second step, the database created is used as a black- box in order to apply the 

optimization algorithms. The approach enabled to both obtain the true Pareto front of the problem and to assess the 

capability of the optimizer to find it in a minimal amount of iterations. Preliminary results are reported in the next 

sections.  
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Figure 7 – Execution flow used to test the optimizer, the disciplinary tools and to align the exchange of 

information among them. 

IV. Value-driven model-based MDAO problems application and preliminary results 

The value-driven MDO problems described in the previous sections lead to two optimization strategies. In the first 

case, a four-objective optimization study is executed and then the optimized attributes are aggregated in a value, as 

shown in Figure 4. In the second case study instead, attributes are first aggregated in a value and then a bi-objective 

optimization study is performed, as illustrated in Figure 5. In both cases, the value-cost Pareto-front is investigated. 

Identify the advantages and differences between these two optimization strategies is important to define a guideline 

for the future complex optimization campaign aiming at searching for the global optimum accounting for design, 

manufacturing and supply chain variables. In this section, the preliminary results of the value-driven MDO problems 

are addressed for a specific HTP configuration, whose main characteristics in terms of materials and manufacturing 

processes, are reported in Table 4. In the same table, it is also specified the number of components characterizing the 

HTP. 

Table 4 – Components and manufacturing properties of the HTP configuration analyzed in the value-driven 

MDO problems. 

  
 

 

 

Once frozen the HTP configuration, thus the design and manufacturing domains, the optimization is executed 

considering the design variables of production quantity and assembly site, as widely explained in the previous section.  

Particularly, the production quantity is here changing only for the skins and stringers. Hence, the production of spars 

and ribs is assumed fixed at specific OEM and supplier sites. As shown in Table 5, a different number of production 

sites has been selected for the production of skins and stringers. The motivation is linked to the competences 

characterizing each site. Only the OEM and supplier with the highest competences in performing the selected materials 

and manufacturing processes have been selected. Same applies for the choice of the assembly site. These details are 

HTP components  N° Components Materials & Processes 

Skins 2 Sheet Metal Stretch Formed 

Stringers 30 Metal by Z-Extrusion 

Spars 2 Machined Aluminum 

Ribs 20 Machined Aluminum, Sheet Metal Stretch 

Formed 
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summarized in Table 5. However, these assumptions have been necessary to limit the dimension of the MDO 

problems. In the future MDO activities even more production and assembly sites will be considered.  

 

Table 5 – Value-driven MDO problems application case definition.  

HTP 

Components 

Production 

quantity 

N° Components N° Production sites N° Assembly sites 

Skins  0.5 - 1 0 – 1 – 2 4 
4 

Stringers  0.5 – 1 0 – 15 – 30 7 

Spars Not included Not included Not included 
Not included 

Ribs Not included Not included Not included 

 

Following the implementation process, described in the previous section, some preliminary results have been 

achieved for both optimization strategies. The same weights and the same linear function have been assigned to each 

attribute for the value estimation. As already specified, the value assumptions are the same for both MDO problems. 

However, in one case, optimized attributes are aggregated in the value; while in the other one, the value is itself an 

objective function and thus attributes are first aggregated in a value and then the value is optimized. 

Before applying the optimization, approach presented in Section III, an analysis of the DOE results can be performed. 

As the DOE contains the full enumeration with a total of 3136 points, the true Pareto front can be extracted both for 

4-objective or 2-objective problem.  

First for the 4-objectives, the Pareto front can be highlighted and Figure 8 presents both the database and the Pareto 

front composed of 8 points. Each subfigure of Figure 8 illustrates a couple of two objectives chosen among the four. 

As the Quality has to be maximized, its opposite is minimized and represented in the figure.  

 

 

 

Figure 8: 4-objective Pareto front (8 points in orange) and complete database (3136 points in grey). Different 

objectives are represented: Time versus Cost, Risk versus Risk, Time versus Risk and Cost versus Quality 
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For the 2-objectives, the same process is applied and the Pareto front, of 2 points, can be extracted and is presented 

on Figure 9 (left). Then the optimized attributes of the 4-objective Pareto front are aggregated in a value and plotted 

on the same figure (Figure 9 (right)). 

 

 

Figure 9: 2-objective Pareto front (2 points in red) (left) and 2-objective (2 points in red) and 4-objective 

Pareto front (8 points in orange) (right) 

The 2-objective Pareto front therefore contained among the 4-objective Pareto front. This point observed 

numerically here could be demonstrated theoretically (see Appendix VII), as the 2-objective problem is deduced from 

linear transformation of the 4-objective problem.  

Once assessed the true Pareto front, the optimization process can be performed. Details on both MDO problems are 

reported in Table 6 and Table 7. Particularly, in the tables, the quantity indicates the number of variables characterizing 

the problem. Each quantity is estimated considering the values that can assume the design variable (reported in Table 

2) and the number of levels, which represents the number of production and assembly sites (see Table 5). Making an 

example for skins, the production quantity can be 0.5 or 1 (therefore 2 values for this design variable) and the skins 

can be produced at 4 different production sites (therefore 4 levels). For both MDO problems 26 design variables are 

defined. The main advantage of the approach is to remove all the constraints in terms of maximum production quantity 

(as always satisfied) but to increase the number of variables. Indeed, each categorical variable needs to be relaxed 

through one-hot encoding approach. It means that a new continuous variable is created for each level taken by the 

categorical variable. Therefore, for the current problem the real dimension of the optimization problem is increased 

from 6 variables up to 26, as each skin variable has 4 levels, each stringer has 7 levels and the assembly variable has 

4 levels (2*4+2*7+1*4= 26).  

 

 

Table 6 – 4-objective optimization problem. 

 

Objective Function/variable Quantity 

minimize 

Cost  

Time  

Risk  

maximize Quality  

   

with respect to  

Skins   2 * 4 levels 

Stringers 2 * 7 levels  

Assembly 1 * 4 levels 

   

 Total design variables 26 
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Table 7 – 2-objective optimization problem 

 

Objective Function/variable Quantity 

minimize Cost  

maximize Value  

   

with respect to  

Skins   2 * 4 levels 

Stringers 2 * 7 levels  

Assembly 1 * 4 levels 

   

 Total design variables 26 

 

 

Defined the MDO features, for each problem, an initial DOE of 40 points is created with a Latin Hypercube 

Sampling (LHS) approach and 160 iterations are run. Figure 10 presents the comparison between the predicted Pareto 

front computed by the optimization algorithm (20 points) and the true Pareto front from the database (8 points) as 

described above. As it is obtained through the predictions of the surrogate models, the points belonging to the predicted 

Pareto front are not exactly located on the True Pareto front.   

 

 

  
 

Figure 10 – 4-objective true Pareto front (8 points in orange) and predicted Pareto front proposed by the 

optimizer (20 points in blue). 
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Therefore, a last step to be performed should be to evaluate the true values of the predicted Pareto front and then 

to filter it by extracting the Pareto optimal points among this evaluated front. From an initial set of 20 points, only 8 

points are kept after the filtering process. 

Figure 11 depicts the new comparison between the filtered Pareto front coming from the optimization and the true 

Pareto front from the database. Now, both Pareto fronts are fully overlapping, thus proving the good performance of 

the algorithm.  

 

 

 
 

Figure 11 – 4-objective true Pareto front (8 points in orange) and evaluated Pareto front proposed by the 

optimizer (8 points in blue). 

 

Regarding the 2-objective approaches, the same process was applied and here again, both optimization Pareto front 

and true Pareto front are overlapping. 

 

  

Figure 12 – 2-objective true Pareto front (2Points in orange) and predicted Pareto front (2points in blue) (left) 

and 2-objective true Pareto front   & evaluated Pareto front (right) 
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These preliminary investigations have demonstrated the efficiency of the optimization approach to find the true 

Pareto front, both for 2-objectives and 4-objectives. Nevertheless, additional investigations need to be performed in 

order to identify the best combination of initial DOE size and number of iterations to perform.  

V. Conclusions and Outlook 

A value-driven model-based three-dimensional approach concurrent coupling manufacturing, design and supply 

chain in the early design phase has been already developed within the European project AGILE4.0 [4]. In the same 

research activity, also the MBSE technologies supporting the modelling of stakeholders, needs and requirements have 

been briefly addressed. The following MBSE step, that is the system architecting, is instead introduced in this paper. 

Defined as the link between the upstream MBSE modelling and the downstream MDO process, it simplifies the set-

up of the MDO process by providing the models of the architectures to optimize in the MDO system. Thus, a 

description of the architecture modelling, addressed in Section II, provides the reader a clear comprehension of the 

optimization studies that can be performed by coupling manufacturing, design and supply chain domains. In fact, the 

new challenge is to address an optimization design campaign aiming at finding the global optimum simultaneously 

accounting for these domains. However, the complexity of this activity relays in the huge number of variables 

characterizing each domain. For this reason, this research activity aims at identifying the optimization strategy to use 

for the next optimization campaign by exploring, first, simple and representative MDO problems only related to the 

supply chain domain. Therefore, two value-driven MDO problems have been here addressed. In both MDO studies, 

the value-cost Pareto-front is investigated, considering the same design variables. The main difference between the 

two optimization strategies relays in the way through witch the value is estimated. In one MDO problem, a 4-objective 

optimization is first executed and then the optimized attributes are aggregated in a value. In the other MDO problem, 

the attributes are first aggregate in a value and then a bi-objective value-cost optimization is executed. More details 

related to MDO problems definition are provided in Section III. In the same section also details on the technologies 

and tools used to achieve some preliminary results are briefly described. For the execution of these first MDO 

problems, a sequential approach has been used to test the optimizer and the disciplinary codes involved in the MDO 

process. However, in the next optimization execution, an automatic process will be tested and utilized. 

The preliminary results are scratched in Section IV. The optimization strategies have been applied to a specific HTP 

configuration, mainly made by aluminum. The results highlight that a 2-objective Pareto front is contained among the 

8-objective Pareto front. Hence, both strategies lead to the same results. However, a 4-objectives MDO problem is 

more expensive, in terms of computation cost, with respect to the 2-objective MDO problem. But, the 4-objective 

strategy allows to execute the optimization process only once and then play around with the weights and utility 

functions needed to estimate the value [17], [18]. Instead, with the 2-objectives strategy the MDO process should be 

run anytime that the weights and utility functions change. Preliminary optimization investigations have instead 

demonstrated the efficiency of the optimization approach to find the true Pareto front, both for 2-objectives and 4-

objectives. Nevertheless, additional investigations need to be performed in order to identify the best combination of 

initial DOE size and number of iterations.  

The same MDO problems will be executed for another HTP configuration. However, it is already planned to add 

new design variables in the future optimization run. The production quantity related to the spars and ribs will be added 

as well as the assembly site responsible for the assembly of the entire HTP. Due to the increasing size of the problem 

and because of the promising results already obtained, this MDO problem will be automatically executed via BRICS 

in RCE. 
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VII. Appendix 

The objective is to prove that a point Pareto stationary for the 2 objectives is also Pareto-stationary for the 4 objectives. 
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The 4-objective Pareto front consists of Pareto-stationary points, called "weakly Pareto-optimal", i.e. points where a 

certain convex combination of the gradients is equal to 0. In the present application case with 4 objectives (𝑓1, 𝑓2, 𝑓3, 

𝑓4) we have: 

∑ 𝛼𝑗∇𝑓𝑗(𝑥)

4

𝑗=1

=  0                  (1) 

 

where the 𝛼𝑗 coefficients define a convex combination: 

0 ≤ 𝛼𝑗     ∀𝑗     ∑ 𝛼𝑗

4

𝑗=1

=  1 

Let us define two aggregate criteria: 

 

𝜑1(𝑥) = ∑ 𝑎𝑗𝑓𝑗
4
𝑗=1 (𝑥)    𝑎𝑗 ≥ 0 ∀𝑗   ∑ 𝑎𝑗

4
𝑗=1 = 1                  and             𝜑2(𝑥) = ∑ 𝑏𝑗𝑓𝑗(𝑥)4

𝑗=1      𝑏𝑗 ≥

0 ∀𝑗   ∑ 𝑏𝑗
4
𝑗=1 = 1 

 

We now consider a point 𝑥̃ Pareto-stationary with respect to 𝜑1 and 𝜑2 satisfying: 

 
(1 − 𝛽)∇𝜑1(𝑥̃) +  𝛽∇𝜑2(𝑥̃) =  0       with        0 ≤ 𝛽 ≤  1 

 

By using Eq. (1), we get  𝛼𝑗 = (1 − 𝛽)𝑎𝑗 +  𝛽𝑏𝑗 where the coefficients 𝛼𝑗 are clearly positive. Moreover, we have: 

 

∑ 𝛼𝑗

4

𝑗=1

= (1 − 𝛽) ∑ 𝑎𝑗

4

𝑗=1

+  𝛽 ∑ 𝑏𝑗

4

𝑗=1

 =  (1 − 𝛽) +  𝛽 = 1  

 

And we can conclude by using Eq. (1) that we have a convex combination and the point 𝑥̃ Pareto-stationary with 

respect to 𝜑1 and 𝜑2 is also Pareto-stationary with respect to 4 objectives (𝑓1, 𝑓2, 𝑓3, 𝑓4). 
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