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Abstract. Optimization of system architectures can help deal with finding better system architectures 

in a large design space plagued by combinatorial explosion of alternatives. To enable architecture 

optimization, the design space should therefore be formalized into a numerical optimization problem, 

and it should be possible to quantitatively evaluate architecture alternatives. This paper presents a 

methodology for generating and modeling architecture design spaces using the Architecture Design 

Space Graph (ADSG), and using collaborative Multidisciplinary Design Analysis and Optimization 

(MDAO) techniques to evaluate architectures. Collaborative MDAO leverages disciplinary expertise 

while ensuring that analysis tools exchange data consistently and correctly using a central data 

schema. The problem solved in this paper is the missing link between architecture optimization and 

collaborative MDAO: the reflection of generated architectures in the central data schema. It is solved 

by the authors by mapping architecture components and Quantities of Interest (QOIs) to the central 

data schema using Data Schema Operations (DSOs). Such a mapping also assists the user in 

identifying missing or unnecessary disciplinary analysis tools. Three web-based software tools 

implementing the methodology are presented. Finally, the methodology and tools are demonstrated 

using the design of a supersonic business jet as an example. 

Introduction 

The developments presented in this paper are part of the EU-funded AGILE4.0 project1, wherein the 

German Aerospace Center (DLR) is leading the development of a Model-Based Systems Engineering 

(MBSE) framework to enable the design of complex systems all the way from stakeholders and needs 

to detailed design using collaborative MDAO (Ciampa & Nagel, 2021). The MBSE framework 

developed in this context consists of the upstream architecting phase and the downstream product 

design phase, visualized in Figure 1. The upstream architecting phase consists of activities like 

identifying goals, specifying scenarios and requirements, and designing the system architecture. 

                                                 
1 https://www.agile4.eu/ 
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Typically, this phase is executed in a Model Based Systems Engineering (MBSE) context. The 

downstream product design phase consists of the selection of disciplinary tools needed for the design 

stage, the integration of these into a design process, and operation of the design system to design and 

optimize the system. These steps are typically executed in a Multidisciplinary Design Analysis and 

Optimization (MDAO) context. 

 

Figure 1. The MBSE framework developed in the AGILE4.0 project, showing the different phases 

and relation to systems engineering and MDAO. Reproduced from (Ciampa & Nagel, 2021). 

The upstream architecting phase includes the design of the system architecture: a description of which 

components a system consists of, and how they work together to fulfill the system functions 

(Crawley, et al., 2015). The design of system architectures deals with an extremely large design space 

due to a combinatorial explosion of alternatives (Iacobucci, 2012). One way of dealing with this is 

by applying systematic design space exploration of system architectures, in practice meaning that 

optimization techniques are applied to the search for the best system architecture(s). To achieve this, 

the architecture design space should be modeled and formalized, and quantitative evaluation of 

architecture alternatives should be available (Bussemaker, et al., 2021). 

Further downstream in the design process more detailed analysis is performed to size and optimize a 

design according to one or more design objectives. At this stage, the design of complex systems may 

involve several interacting and often conflicting engineering disciplines that all have to be considered 

to achieve at least a feasible design and at best an optimal design. Such disciplinary interactions can 

be automated by using MDAO techniques. Using MDAO, all relevant disciplines are treated 

simultaneously, ensuring that an analyzed design will be feasible between the disciplines (e.g. when 

the results of two analyses depend on the results of the other) and a design with appropriate 

compromises and synergies between the disciplines can be found (Sobieszczanski-Sobieski, et al., 

2015). 

Organizational aspects pose a major challenge to applying MDAO to the design of complex systems, 

especially when heterogeneous teams collaborate across organizational and even national boundaries 

(Ciampa & Nagel, 2020). To achieve integration at this level it is necessary to solve two problems: 

all disciplines should “speak the same language”, and it should be possible to exchange data across 

organizational boundaries while respecting intellectual property rights. These problems are tackled 

by the collaborative MDAO paradigm (see also Figure 2): a central data language (also known as 

central product model) is established that all disciplinary tools use as their input and output formats, 

and techniques are developed to enable data transfer using a central data server and requests for 



 

execution. In aircraft design, the Common Parametric Aircraft Configuration Schema (CPACS) 

represents such a central data language (Alder, et al., 2020). 

 

Figure 2. Collaborative MDAO framework, showing distributed competences (both code and 

expertise). Reproduced from (Ciampa & Nagel, 2016). 

The core to enabling the interoperation of the upstream and downstream phases lies in bridging the 

MBSE and MDAO activities. As identified in (Ciampa & Nagel, 2021), specifically two bridges need 

to be established to do this: 

1. MBSE Specification to MDAO: System requirements are related to the MDAO process. 

2. MBSE Architecting to MDAO: Architecture components are related to the MDAO process. 

The main function of both bridges is to verify that the developed MDAO design process sufficiently 

covers the requirements and architectures so that a realistic and useful result can be obtained from it. 

Additionally, these bridges can be used to automatically provide feedback as part of the architecture 

optimization loop and automatically verify requirements for a given design solution, similar to the 

strong coupling approach identified by (Chaudemar & de Saqui-Sannes, 2021). 

The novel methodology presented in this paper focuses on the second bridge: linking MBSE 

architecting to MDAO to enable architecture optimization. It must however be noted that the 

architecting step builds on the requirements specification step, and therefore a large part of the 

requirements validation can also be taken up by the architecting activity through the specification of 

architecture properties and formulation of the architecture design problem. For example, performance 

requirements can be used as optimization constraints. 

The rest of the paper is structured in four sections: first the underlying methodology is discussed, 

then the implemented tools for practically using this methodology are presented. Then, the 

methodology and tools are demonstrated using an optimization of a supersonic business jet as an 

example. Finally, the paper is concluded and an outlook is presented. 

Methodology 

To properly present the MBSE Architecting to MDAO bridging approach, first the architecting and 

MDAO approaches are presented in more details. The architecting approach focuses on modeling the 

function-based architecture design space for architecture optimization. The MDAO approach 

implements the collaborative MDAO principle to leverage disciplinary expertise and implement 

cross-organizational MDAO workflows. 

            

            

            

            

             
  
 
  
  
 
 

                   

             
       

         

            
          

       
            

           

                       



 

Architecture Design Space Modeling 

The first step to enabling architecture optimization is to model and formalize the architecture design 

space. In the developed MBSE framework this is done using the Architecture Design Space Graph 

(ADSG): a graph-based formulation mapping functions to components and in addition representing 

component characterization and connection decisions. See Figure 3 for an example. It offers general 

applicability to and compatibility with MBSE methods, and due to its function-based nature it offers 

a method free of solution-bias for modeling architecture design spaces. Additionally, function-based 

architecting offers a natural connection from system requirements. 

 

Figure 3. Example Architecture Design Space Graph (ADSG). Directed edges indicate derivation, 

decision nodes indicate a selection of mutually-exclusive options. Figure reproduced from 

(Bussemaker, et al., 2020). 

An ADSG is constructed from a database of components that specify which functions they fulfill and 

which functions they need in order to do so (also known as function induction). Additionally, 

concepts, decompositions, and incompatibility constraints can be used as complexity management 

tools. Architectural decision nodes are automatically inserted for predefined patterns, for example if 

multiple components fulfill a function. Components then can represent several characterization 

choices: by number of instances and by attributes. Finally, component connection choices can be 

modeled using ports and permutation decisions. For more information about all the modeling 

elements and behavior of the ADSG, the interested reader is referred to (Bussemaker, et al., 2020). 

An architecture optimization problem can be formulated from the ADSG by mapping decision nodes 

to design variables. Objectives and constraints are defined using Quantities of Interest (QOIs): 

values associated to functions or components that can serve different roles during an optimization 

process. Next to objectives and constraints, QOIs can also be used as design variables (in addition to 

design variables defined from decision nodes), input parameters, and output metrics. QOIs may refer 

to performance requirements, thereby establishing a link between the requirements definition and 

architecting activities. 

In this section we have shown how the ADSG might be used to model and formalize function-based 

architecture design spaces, and how an optimization problem can be formulated from it. The 

evaluation of architecture instances needed for enabling architecture optimization is not prescribed 

by the ADSG. In this paper an evaluation approach using collaborative MDAO will be presented, 



 

however it must be noted that any evaluation method might be used (e.g. a set of custom Python 

scripts), as long as it can correctly simulate relevant effects and return some numerical values for the 

requested objectives and constraints given an architecture instance. 

Collaborative MDAO 

Collaborative MDAO encompasses several technologies needed for implementing an MDAO 

workflow in a cross-organizational context. In this section, however, the focus will lie on the use of 

a central data schema as this relates to how a product is parameterized and how disciplinary tools 

exchange data to converge to a solution. In aircraft design an example of an established central data 

schema is CPACS (Alder, et al., 2020). CPACS is XML-based and used by multiple research, 

academic, and commercial organizations (Ciampa & Nagel, 2020). 

The involvement of many different engineering disciplines results in different jargon, product 

parameterizations, and units being used. The advantage of using a central data schema for product 

representation forces everyone to “speak the same language”, thereby greatly reducing this problem. 

Another advantages is the reduction in the number of data interfaces that need to be implemented 

when creating an MDAO workflow (Alder, et al., 2020): from N(N-1) to 2N, where N is the number 

of disciplinary tools (see Figure 4). As a result, the development of an MDAO workflow is made 

truly collaborative as the data exchange at the tool level is managed by the owner of the disciplinary 

tool, whereas the data exchange between tools can then be managed by the workflow integrator (i.e. 

the person defining the workflow). 

 

Figure 4. The use of a central data schema like CPACS reduces the number of implemented data 

interfaces from N(N-1) to 2N. Reproduced from (Alder, et al., 2020). 

Determining which tools needs what data at what time is a challenging task when done manually, 

especially if the data also has to be guaranteed to be consistent in the presence of feedback loops. 

This task can be partly automated by using a graph-based method where information on tool 

interfaces (i.e. which subset of central data schema nodes are needed as input and provided as output) 

is used to represent data flows between disciplinary tools and the nodes of the data schema (van Gent, 

et al., 2017). This graph is used to query properties of the workflow, for example which data nodes 

are inputs, outputs, or collisions. Such information is used to determine data couplings between tools 

and the best order of execution for solving the workflow. Additional properties are specified to finally 

transform it to an MDAO workflow, for example assigning design variables, objectives, and 

constraints, and adding converger and optimizer elements. 

The graph-based workflow model is then used to construct a workflow in a Process Integration and 

Design Optimization (PIDO) environment. This principle has been demonstrated for RCE 2 , 

Optimus3, and OpenMDAO4 (van Gent, 2019). Although such PIDO environments also enable the 

manual definition of MDAO workflows, the great advantage of using the graph-based MDAO 

                                                 
2 https://rcenvironment.de/ 
3 https://www.noesissolutions.com/our-products/optimus 
4 https://openmdao.org/ 
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workflow modeling method is that it is much easier to modify the workflow (e.g. add tools, rearrange 

tools) and to guarantee the correct data exchange at the same time. 

In summary, the collaborative MDAO approach enables the integration of large-scale MDAO 

processes involving many heterogeneous engineering disciplines, by exchanging data using a central 

data schema. This forces all disciplines to speak the same language, results in the implementation of 

less interfaces, and enables disciplinary experts to focus on their tool while the process integrator can 

focus on the definition of the MDAO workflow. Collaborative MDAO can be a powerful method to 

designing and optimizing complex engineering products, however research on how to use it for 

architecture optimization is in its very early stages, see for example (Jeyaraj, et al., 2021). 

Connecting Architecting and Collaborative MDAO 

The previous sections have introduced the methodologies for architecture design space modeling and 

optimization and for composing collaborative MDAO workflows. To apply the latter for evaluating 

the performance of generated system architectures, it is needed to establish a two-way connection. 

First of all, the connection from generated architectures to collaborative MDAO, the feed-forward 

connection, should enable the synchronization between the architecture definition and the central 

data schema instance. Then, after the MDAO workflow has analyzed a particular architecture, a 

feedback connection should be established to extract performance data (i.e. optimization objectives 

and constraints) from the central data schema and communicate them to the architecture optimizer. 

Another function of the architecture-to-MDAO bridge is to support the selection of the disciplinary 

tools during the workflow definition process (Ciampa & Nagel, 2021). From the architecture design 

space model, it is known which components and associated Quantities of Interests (QOIs) the 

architecture design space consists of. From the MDAO workflow model, it is known which 

disciplines use which central data schema nodes as their input or provide them as their output. By 

mapping the components and QOIs to the central data schema, it can then be deduced which 

disciplines are associated to which architecture components. This knowledge can assist the system 

integrator in several ways: 

1. Verify that the selected disciplines sufficiently cover the architecture components. 

2. Identify interchangeable (i.e. redundant) disciplinary tools: multiple tools associated to the 

same set of components. 

3. Identify missing disciplinary tools: components not associated to any disciplinary tools. 

4. Identify unnecessary disciplinary tools: tools not associated to any component. 

Together, these knowledge aspects help justify the inclusion of disciplinary tools and ensure that the 

tools selected for evaluating architecture performance sufficiently cover the architecture elements. 

Additionally, it provides a step towards building confidence in the evaluation process providing 

useful and realistic results. 

From the above discussion it can be seen that mapping components and QOIs to the central data 

schema both assists the system integrator with the selection of the engineering disciplines and enables 

the feed-forward connection of synchronizing architecture instances with the central data schema. 

This mapping is established by defining a so-called Data Schema Operation (DSO) for each QOI 

and/or component. An example can be writing (reading) a QOI value to (from) some data node. 



 

 

Figure 5. Optimization loop with architecture evaluation: the design space explorer (i.e. optimizer) 

suggests a design vector (x) that is converted into an architecture description. Generated 

architectures are mapped to a central data schema instance (product_data) using the data schema 

operation database (dso_db), which is then used to execute the collaborative MDAO toolchain. 

Defining these data schema operations also enables integration into the architecture optimization 

loop, as notionally shown in Figure 5. Collaborative MDAO for architecture evaluation is 

implemented using four blocks: 

1. Architecture generator: generates an architecture from the design vector (the vector of all 

design variables, as suggested by the design space explorer), taking design variable hierarchy 

into account (for more information, refer to (Bussemaker, et al., 2020)). 

2. Architecture mapper: takes a generated architecture, an initial product model using the 

central data schema, and the database of Data Schema Operations (DSO database), and 

produces a product model representing the generated architecture. 

3. MDAO toolchain: the actual collaborative MDAO workflow taking the product model as 

input and producing an updated (i.e. analyzed) product model as an output. 

4. Metrics extractor: reads relevant metrics from the product model according to the DSO 

database and updates QOIs of the generated architecture to reflect MDAO output. 

The end result of the architecture optimization loop then consists of an architecture instance with 

correctly updated QOIs and data schema instance representing the same architecture. Due to the 

automated mapping connections these two different system representations are guaranteed to be 

consistent. 

Integration of the architecture mapper and metrics extractor blocks in the MDAO workflow itself is 

also possible, because each DSO knows which data schema node it affects: combining all DSOs 

together then yields a complete view of all nodes affected by the architecture mapper and all nodes 

needed for metrics extraction. 

Implementation 

This section presents the implementation as done by DLR in the EU-funded AGILE4.0 project. The 

three elements needed for implementing the presented architecture optimization methodology are 

implemented in three web-based software tools. Their backends are programmed in Python5, their 
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frontends are built using the Vue6 framework. Their web-based nature enables access without the 

need for installing anything locally, and it enables automated synchronization with a central database 

to store all relevant models and data for some design project. 

Architecting Design Space Modeling: ADORE 

The architecture design space modeling method based on the Architecture Design Space Graph 

(ADSG) has been implemented in a tool called ADORE (Architecture Design and Optimization 

Reasoning Environment) by the DLR. ADORE implements the following functionalities: 

1. ADORE project file format for storing the design space definition, design problems, and 

generated architecture instances; 

2. Constructing an ADSG including architectural decisions from the design space definition; 

3. Creating architecture instances from an ADSG by manually assigning an option to each 

decision; 

4. Defining design optimization problems from an ADSG and using this to generate 

architectures from design vectors; 

5. Interfaces to several optimization frameworks, including OpenMDAO and pymoo7; 

6. Application Programming Interface (API) for implementing architecture evaluation. 

This setup means that the user is not directly interacting with the ADSG while using ADORE. Rather, 

the model being manipulated is the same as the ADORE project file format, where a project consists 

of a DesignSpace, zero or more DesignProblem instances, and zero or more Architecture 

instances. The detailed presentation of the ADORE project format is out of scope for this paper. 

The architecture evaluation API enables custom evaluation code on a per-problem basis. The only 

functionality to implement is to provide numerical values for requested QOIs for a given 

Architecture instance. ADORE takes care of correctly generating architectures from the design 

vector and feeding back the provided numerical values to the optimization algorithm as objectives 

and constraints. 

The graphical user interface of ADORE has been developed to enable interactive editing of the 

architecture design space model, as shown in Figure 6. Feedback is provided continuously enabling 

quick recovery of errors and greater insight into model behavior. A list of architectural decisions can 

be viewed to verify that all decisions are implemented correctly. Design space model behavior can 

be verified by manually creating architecture instances: options are selected for each architectural 

decision, taking decision hierarchy into account (i.e. inactive decisions won’t be shown). The user 

can then verify that by taking decisions indeed the expected architecture instances can be generated. 

                                                 
6 https://vuejs.org/ 
7 https://pymoo.org/ 
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Figure 6. ADORE web-based graphical user interface showing the design space editing canvas. 

The user interface also enables the formalized definition of design optimization problems: 

architectural decisions are mapped to design variables, and QOIs are assigned roles including 

additional design variables, objectives, and constraints. Design variables can be fixed to some 

specific value to modify the size of the optimization design space, and the roles of objectives and 

constraints can be modified to change optimization problem behavior. These features are useful to 

for example define a simpler architecture optimization problem for testing the optimization toolchain, 

or to try out different optimization objectives and compare their results. 

Figure 7 shows a part of a design space model for a jet engine architecting problem. Derivation of 

architectures starts at the boundary function “provide propulsive power”. Blue-dashed lines represent 

architecture decisions, for example whether to add a fan or not, and whether to use a mixed nozzle 

or not. Red lines represent incompatibility constraints, meaning that elements on both ends cannot 

exist together in an architecture instance. This specific model has been used to solve a jet engine 

architecting problem: engine performance was evaluated using the framework presented by 

(Bussemaker, et al., 2021), which was connected to ADORE using the architecture evaluation API. 

 

Figure 7. Partial view of a jet engine architecture design space model in ADORE. 



 

MDAO Workflow Modeling: MDAx 

MDAO workflows are modeled using MDAx (MDAO Workflow Design Accelerator), a tool 

developed by the DLR. MDAx implements the previously presented collaborative MDAO workflow 

modeling methodology, and does so using an interactive user interface. This makes it more intuitive 

for users to create workflows, because they can see the immediate effect on data flow that 

manipulations have, and also enables the use of the program in a more exploratory setting, for 

example during workshops or for documentation of processes. For example, Figure 5 has been 

created using MDAx. For more details regarding MDAx and its design philosophy, please refer to 

(Page-Risueño, et al., 2020). 

Due to brevity, no more details regarding MDAx will be included in this paper. Here it suffices to 

mention that workflows modeled in MDAx can be exported to the CMDOWS format (van Gent, et 

al., 2018) or directly to an executable RCE workflow for execution. 

Linking Architecting to MDAO: MultiLinQ 

As discussed before in the methodology section, it is clear that the two main functions of the tool 

linking architecting to MDAO are to implement Data Schema Operations (DSOs) and to assist in 

the selection and verification of disciplinary tools. These functions are implemented by the authors 

in a tool called MultiLinQ. MultiLinQ enables the definition of components and QOIs and the 

selection of multidisciplinary tools according to their input and output definitions. 

One the one hand, MultiLinQ enables the definition of components and QOIs. QOIs may be 

associated to components or they may be standalone QOIs, for example when directly associated to 

some performance requirement. Components and QOIs may come from various sources; it is for 

example possible to simply import an ADORE project and extract components and QOIs from there. 

This way additionally the link between components and QOIs in the ADORE and MultiLinQ projects 

are established which eases integration in the architecture optimization loop. 

On the other hand, tool input and output definitions can be added to define the data schema and relate 

nodes to disciplinary tools. Here too this data can come from multiple sources, for example from a 

database of input and output definitions exported from MDAx. 

To connect components and QOIs to the data schema, a DSO is configured for each component and 

QOI which defines how it influences the data schema instance. Additionally, in case of the QOI it is 

also specified whether it represents an input value or output value, which determines when it will be 

applied: in the architecture mapper (for input) or in the metrics extractor (for output), see also Figure 

5. Components and QOIs can exist in multiple instances in a generated architecture, which should 

also be possible to be reflected in the central data schema. Table 1 shows possible DSOs for 

components and QOIs and different number of instances. 

Table 1: Possible Data Schema Operations (DSOs). 

Architecture 

Element 

DSO [number of element instances] 

[0] [1] [2 or more] 

QOI (input) 

Write empty value; 

Remove node; 

Do nothing 

Write value to node 
Write list of values; 

Write to copied nodes 

QOI (output) N/A Read value from node 
Read from list; 

Read from copied nodes 

Component 

Remove node; 

Do nothing; 

Write nr of instances 

Create new node; 

Write nr of instances 

Copy (new) node; 

Write nr of instances 



 

The mapping from components and QOIs to disciplinary tools can be visualized in the Component-

Tool (CT) matrix. Figure 8 shows an example CT matrix. It can be seen how components and 

associated QOIs are associated to disciplinary analysis tools, for example the “Reference area” QOI 

of the “Wings” component is associated to the “Aerodynamics” and “Structures” tools. The CT 

matrix also shows unmapped elements. In the presented example, it shows that the “Fuel price” QOI 

of the “Fuel system” component is not mapped to any tool, indicating a missing tool. Also, the “Cost” 

tool is not associated to any component or QOI, indicating an unnecessary tool for the problem at 

hand. 

 

Figure 8. Component-Tool (CT) matrix showing how components and QOIs are associated to 

disciplinary analysis tools. 

The main usage scenario of MultiLinQ is then to first define components, QOIs, tools, and DSOs, 

which in practice will be an iterative process between ADORE, MultiLinQ and MDAx. Once that 

has been completed, the architecture optimization can be started. This can either be done by giving 

ADORE control over the optimization loop, or by integrating ADORE and MultiLinQ as executable 

blocks inside the PIDO environment running the MDAO toolchain. The advantage of ADORE 

control is that state-of-the-art optimization algorithms can be selected, and that the combination of 

optimization algorithm, ADORE, and MultiLinQ can be executed on a different computer than the 

MDAO workflow. This would enable a scenario where ADORE and MultiLinQ are offered as an 

online service, so that users only have to concern themselves with running the MDAO workflow used 

for architecture evaluation and nothing else. 

Demonstration: Optimization of a Supersonic Business Jet 

The presented methodology for performing architecture optimization using collaborative MDAO is 

demonstrated using the supersonic business jet design problem from (Sobieszczanski-Sobieski, et al., 

1998). The collaborative MDAO implementation is provided here 8 , and includes both tool 

implementations and associated input and output definitions. 

The optimization problem represents a classical multidisciplinary aircraft design problem: a coupled 

design of structures, aerodynamics, propulsion, and performance. The MDAx model is shown in 

Figure 9 on the left: aerodynamics, propulsion, and structures are coupled due to feedback 

connections, whereas the performance calculation is a post-processing tool that does not provide 

                                                 
8 https://github.com/DLR-SL-MDO/mdax-ssbj 
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feedback to any other tool. Design variables include wing planform parameters (aspect ratio, 

reference area, sweep, etc.), mission parameters (cruise altitude, Mach number), and engine rated 

thrust. Calculation outputs include weights (maximum take-off weight, fuel weight, engine weight, 

etc.), cruise lift and drag, structural stresses, and wing twist. The performance tool calculates the 

range and endurance, both calculated using the Breguet equations. The workflow is executed in RCE, 

an open-source PIDO environment developed by the DLR. The right side of Figure 9 shows the 

workflow as exported to RCE, ready for execution. 

 
 

Figure 9. XDSM view (left) and RCE workflow (right) of the collaborative MDAO workflow for 

analyzing one supersonic business jet configuration, modeled in MDAx. 

The architecture design space model of the supersonic business jet consists purely of QOIs 

representing design variables and calculation outputs of the original MDAO problem. It should be 

noted, however, that the methodology presented in this paper also works for architectural choices 

regarding the selection of components. The architecture design space model is shown in Figure 10. 

It is built-up from the boundary function “Transport payload”, as would come from upstream 

requirements. This function is decomposed into “Generate lift” and “Generate thrust”, which are 

fulfilled by their respective components. QOIs are associated to the boundary function, representing 

system-level QOIs, and to the components. For example, the right side of Figure 10 shows QOIs 

associated to the “Engines” component. Not shown in the design space model visualization are QOI 

roles: for example, design variable QOIs have bounds associated, input parameters have a static 

value, and constraints have their reference value and a direction (i.e. greater than or lower than). 

 

 

Figure 10. ADORE architecture design space model of the supersonic business jet, showing the 

system overview on the left, and “Engines” component details view on the right. 

At this point, it is clear that on the one side the MDAx MDAO workflow model enables the 

quantitative evaluation of a supersonic business jet model, and that ADORE represents the system 

               

    

       

 

   

   

     

 

            

   

        

   

 

        

               
   

    
                 

    
               

    
               

  
                

    
     

    
        

    
    

    
            

    
         

    
                 

    
               

    
             

    
            

    
            

     
     

     
       

     
           

     
               

   
   

            

     

            

     

                        

            

                    

    
    

    
   

    
            

    
               

     
       

                 

    

    
              

    
              

    
      

    
                  

    
             

    
   

    
    

 



 

architecture model as would come from upstream MBSE activities. To bridge this gap, MultiLinQ is 

used to assign Data Schema Operations (DSOs) to QOIs. In this demonstration, only the reading and 

writing of QOI values are used as DSO. The resulting CT matrix is shown in Figure 11. It shows that 

all QOIs are mapped to an associated MDAO discipline, and that all disciplines are necessary. Many 

QOIs only associate with one discipline (e.g. all engine-related QOIs), whereas some are associated 

to multiple disciplines, for example because multiple disciplines need their value to do their 

calculations. 

 

Figure 11. MultiLinQ Component-Tool (CT) matrix for the supersonic business jet problem. 

The optimization loop is executed under control of ADORE. In this case, the pymoo interface to 

ADORE is used to connect an optimization algorithm. The control flow representing this 

optimization loop is presented in Figure 12. It shows that ADORE is in charge of generating the 

architecture, MultiLinQ is used for mapping the architecture to/from the input/output files (i.e. 



 

implementing both the “architecture mapper” and “metrics extractor” steps), and RCE is used to 

execute the collaborative MDAO workflow. Files are transferred from ADORE to RCE using a 

custom server implementation by ADORE, here called “remote server”. Note that the optimization 

framework (here: pymoo), workflow execution environment (here: RCE), and file transfer 

mechanisms (here: remote server) are all interchangeable, for example by OpenMDAO, Optimus, 

and Brics (Moerland, et al., 2020) respectively. This setup would also enable an architecture-

optimization-as-a-service setup, where the optimization algorithm, ADORE, and MultiLinQ run on 

a server, sending input files to the user’s computer for evaluation. 

 

Figure 12. Sequence diagram showing what happens when a design vector (x) is evaluated in the 

optimization loop. The remote server implements the mechanism for sending the input file from 

ADORE to RCE, where the collaborative MDAO workflow is executed. 

The optimization problem is executed using a Surrogate-Based Optimization algorithm with a 

Kriging surrogate model (Bussemaker, et al., 2021). A bi-objective formulation is used: both range 

and L/D are attempted to be maximized. Figure 13 displays the resulting Pareto front, showing that 

the presented framework can be used to solve a realistic architecting and collaborative MDAO 

problem. 

 

Figure 13. Pareto front of the multi-objective supersonic business jet optimization problem. 

             

           

     

             
    

                  

            

                   

                   

              

         

                  

         

          

    
                      

                       

         

                    
          

         

          

                         

          

                                    



 

Conclusion and Outlook 

A methodology for modeling and executing architecture optimization problems using collaborative 

MDAO for architecture evaluation is presented. The methodology uses the Architecture Design 

Space Graph (ADSG) for function-based modeling of the architecture design space and formulating 

the associated hierarchical, mixed-discrete, multi-objective optimization problem. Collaborative 

MDAO uses a central data schema to communicate data between disciplinary analysis tools, thereby 

enabling the implementation of MDAO workflows leveraging diverse engineering expertise across 

organizational boundaries. The architecture optimization method and collaborative MDAO are then 

linked by mapping Quantities of Interest (QOIs) to the central data schema using Data Schema 

Operations (DSOs). From this mapping a Component-Tool (CT) matrix can be generated, which 

supports the user in justifying and selection of disciplinary tools for solving the architecture 

optimization problem at hand. 

The three elements of the methodology are implemented in three web-based tools: ADORE for 

architecting, MDAx for collaborative MDAO workflow modeling, and MultiLinQ for linking 

architecting and collaborative MDAO. MDAx is used to create workflows in RCE where it can be 

guaranteed that data exchange happens exactly as specified in the workflow model. ADORE and 

MultiLinQ are used to create an optimization problem and connect it to an optimization framework 

of choice. 

A supersonic business jet optimization problem is used to demonstrate the methodology. The 

optimization loop is structured such that the chosen optimization framework has control over 

execution, and the generated input file is sent to RCE using the remote server implementation of 

ADORE. It is shown that the presented methodology and tools combine into a feasible and usable 

methodology to create architecture optimization problems using collaborative MDAO for 

architecture evaluation. 

Next developments will mainly focus on further development of MultiLinQ and the underlying 

methodology. It will be investigated whether the DSOs suggested in this publication will be sufficient 

for enabling architecture optimization that also includes function fulfillment choices (i.e. whether 

components will be included in the architecture or not), and component characterization and 

connection choices. 

The methodology will be applied to several industry-provided aircraft design application cases in the 

context of the AGILE4.0 project, which includes application cases focusing on supply chain 

management, electrification of an existing aircraft, retrofitting, and maintenance system design. 

Design problems include MDO systems with up to ten coupled tools and tens of architectural 

decisions (leading to millions of possible architectures). 
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