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A.M.R.M. Bruggeman, G. La Rocca, B. van Manen, T. van der Laan, T. van den Berg, ‘An MBSE-Based
Requirement Verification Framework to Support the MDAO Process’, AIAA Aviation Forum, 2022
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Verification methods consists of: Requirement
° : Text = “The wing box shall have a total cost of
Means of compliance loos than &7.000."

» Test cases / \

Means of Compliance Means of Compliance

Text = “During the preliminary design stage,

Text = “During the eptual design, S
X uring conceptu 'en process-based cost estimation methods need

empirical methods may be used”

to be used”
Test case: Test case: Test case:
Wing box Wing box Wing box Wing box Wing box Wing box
geometric model Empirical Cost cost geometric model > Process-based cost geometric model q Process-based cost
R S,
Model Cost Model 1 Cost Model 2
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MBSE & MDAO for requirement compliance

Automatic generation of requirement compliance report

Requirements Textual Requirements Compliance [falue Difference

1 MULTI MODEL GENERATOR (MMG)

R-1001 | total cost The wingbox shall have a total cost of less than $700( 2.51%
X - .
1 R-1002 | total rib cost The wingbox shall have a total rib cost of less than $ 6.88%
X5 $1600
—
: " R-1003 | total mass The wingbox shall have a total mass of less than 50 k kg -15.93%
X, . . ]
The wingbox shall have a root chord of in the range o
0] _ 0
R-2001 | root chord [3000, 3500] mm mm 7.43/6.00%
l l l l l l R-2002 | span ;g%glz%%%)]( rsnt::ll have a span of in the range of mm 18.00/-1.14%
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User assigns MDAO roles to the requirements

o Constraint........n..... .Cost < 7000

o ObjecCtiVe....uueerreeerneeeennen. Mass < 50 kg

» Design variabde................ .In-house production method
» Design variable bound... Span < 4.0 m

* Input parameter................ n=2.5

* Quantity of Interest......
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Design competences from test cases and problem roles determine MDAO system

Test case:
Requirement Means of Compliance Wing box Wing box
Text = “The wing box shall have a total cost of » Text = “During the conceptual design a » __geometric model ~ Cost cost Constraint
less than $7,000.” low fidelity cost tool shall be used” Estimation Tool
Test case:
Requirement Means of Compliance Wing box Wing box
Text = “The wing box shall have a total weight P Text = “AMass estimation tool shall be > __geometric model . mass ObJ ective
of less than 50 kg.” used” Estimation Tool
Test case:
Requirement Means of Compliance Wing box . .
- | geometrical _ DeS]gn variable
Text = “The wing box shall have a span in the Text = “Geometrical inspection of the " parameters Geometric Span b d
range of 3.5 and 4.0m.” model” Modeller oun
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Design competences from test cases and problem roles determine MDAO system
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Design competences from test cases and problem roles determine the MDAO workflow

X1 X
X2 X,
Xln, 0 XV" n ;- _________________ A_ ! : 1: rootChord®
E%“Staﬂ | MULTI MODEL GENERATOR (MMG) : span®
o— 1
H — | Requirements ! : span® 5 B : span
| : e o)
1
INITIATOR . ! .
Initial aircraft sizing : 3: wingBoxGeometry H 3: wingBozGeometry/
G - S ' i R
= v & : : 6: total RibCost O3$:C 4: totalCost
1
{ ! | 5 | Ty
: Disciplinary : MPM 4: totalMass
. !
OPTIMIZE R : i E /6: totalCost™ H 5: totalCost L ,;traint
O‘ : 20 I I , &
1 g : /6: totalM ass™ H 5: totalMass/ el
no : % 1
o ¥ ! L
1S
: 1 ‘. - _l_ [
f, z ] pnalysts Requirements Textual Requirements Unit  Difference
f R-1001 | total cost The wingbox shall have a total cost of less than $700( 14.04%
. The wingb hall h total rib t of | th
R-1002 | total rib cost © wingbox shall have a fotal b cost ot fess than 1538.00 |$ 3.88%
$1600
R-1003 | total mass The wingbox shall have a total mass of less than 50 k kg 3.44%

The wingbox shall have a root chord of in the range of

R-2001 | root chord [3000, 3500] mm

3000.00 |mm 0.00/14.29%

The wingbox shall have a span of in the range of

R-2002 | span [3500, 4000] mm

3500.00 | mm 0.00/12.50%
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