
Iris: An optimized I/O stack for low-latency storage devices

Anastasios Papagiannis
∗

Institute of Computer Science,
FORTH (ICS)

Heraklion, Greece
apapag@ics.forth.gr

Giorgos Saloustros
Institute of Computer Science,

FORTH (ICS)
Heraklion, Greece

gesalous@ics.forth.gr

Manolis Marazakis
Institute of Computer Science,

FORTH (ICS)
Heraklion, Greece

maraz@ics.forth.gr

Angelos Bilas
∗

Institute of Computer Science,
FORTH (ICS)

Heraklion, Greece
bilas@ics.forth.gr

ABSTRACT
System software overheads in the I/O path, including VFS
and file system code, become more pronounced with emerg-
ing low-latency storage devices. Currently, these overheads
constitute the main bottleneck in the I/O path and they
limit efficiency of modern storage systems. In this paper we
present a taxonomy of the current state-of-the-art systems
on accelerating accesses to fast storage devices. Further-
more, we present Iris, a new I/O path for applications, that
minimizes overheads from system software in the common
I/O path. The main idea is the separation of the control
and data planes. The control plane consists of an unmodi-
fied Linux kernel and is responsible for handling data plane
initialization and the normal processing path through the
kernel for non-file related operations. The data plane is
a lightweight mechanism to provide direct access to stor-
age devices with minimum overheads and without sacrificing
strong protection semantics. Iris requires neither hardware
support from the storage devices nor changes in user appli-
cations. We evaluate our early prototype and we find that
it achieves on a single core up to 1.7× and 2.2× better read
and write random IOPS, respectively, compared to the XFS
and EXT4 file systems. It also scales with the number of
cores; using 4 cores Iris achieves 1.84× and 1.96× better read
and write random IOPS, respectively. In sequential reads we
provide similar performance and in sequential writes we are
about 20% better compared to other file systems.

Keywords
NVM, I/O, storage systems, low latency, protection

∗Also, with the Department of Computer Science, Univer-
sity of Crete, Greece.

1. INTRODUCTION
Emerging flash-based storage devices provide access la-

tency in the order of a few µs. Existing devices [16] provide
read and write latencies in the order of 68 and 15 µs re-
spectively, and these numbers are projected to become sig-
nificantly lower in next-generation devices. Phase Change
Memories (PCM) [25], STT-RAM [13], and memristors [17]
may provide even lower access latency, at the scale of hun-
dreds or tens of nanoseconds [10].

Given these trends, the software overhead of the host I/O
path in modern servers is becoming the main bottleneck
for achieving µs-level response times application I/O op-
erations. Instead of storage device technology setting the
limit in increasing the number of I/O operations per second
(IOPS), as was the case until recently, we now have to deal
with limitations on the rate of serving I/O operations, per
core, due to software overhead in the I/O path. Therefore,
in this new landscape, it becomes imperative to re-design
the I/O path in a manner that it will be able to keep up
with shrinking storage and network device latencies.

In this paper we explore the design of a storage I/O stack
that is placed in user-space and in the largest part within
the address space of the application itself and we compare
our approach to similar state-of-the-art systems by provid-
ing a taxonomy of them. An important design aspect is
the separation of the control and data planes [24, 6]. This
idea comes from the area of networking and several frame-
works designed in order to take advantage of fast network
devices [14]. The control plane is responsible for taking de-
cisions regarding resource allocation and routing, while the
data plane, also termed as the forwarding plane, forwards
network packets to the correct destination according to con-
trol plane logic. In our storage I/O context, the control
plane should decide if an I/O operation should be acceler-
ated by our framework or it should go through the standard
I/O path in the Linux kernel. In a modern server a vari-
ety of devices exist and there is no need to accelerate I/O
operations to HDDs and slow SSDs. More specifically, our
control plane consists of an unmodified Linux kernel which
is responsible for normal processing for non-file related op-
erations and the configuration of several independent data
planes. Our data plane provides a lightweight mechanism to
enable direct access to the storage devices without sacrificing



strong protection semantics. We use traps in the data plane
for protection rather than using a separate trusted server
process [33] for enforcing protection. Our approach has the
advantage that it does not require any context switches or
network messages in the common I/O path. The premise
behind our design is to allow the application to operate as
close as possible to locally-attached storage devices. The
key features of our design are as follows:

1. We intercept file-related calls from applications at the
runtime level and convert them to key-value store re-
quests.

2. We serve block operations from a key-value store. The
key-value store in our current prototype is build di-
rectly over memory-mapped devices and makes exten-
sive use of copy-on-write for failure atomicity, concur-
rency, and relaxed-update semantics.

3. We rely on virtualization support in modern proces-
sors (Intel’s VT-x [31] and AMD’s SVM [2]) to provide
strong protection between different processes that ac-
cess the same storage devices. These technologies have
already been used to improve the performance of vir-
tual machines. In this paper we use them for providing
protected, shared access to our key-value store from
multiple applications in each server.

4. Finally, we use a kernel-space module for initialization
and coarse-grain file operations that do not affect the
common I/O path.

We present a proof-of-concept prototype, Iris, for Linux
servers and provide preliminary performance results. For
our experiments we use PMBD [18, 10], a custom block de-
vice that emulates PCM latencies. We show that, per-core,
our approach achieves a 1.7× improvement in random read
IOPS, and 2.2× in random write IOPS. We also show that
our design scales well, providing up to 1.84× and 1.96×
improvement for random read and write IOPS respectively
using 4 cores. Furthermore in the case of sequential reads
both our approach and other state-of-the-art file systems
achieve similar throughput. On the other hand, in sequen-
tial writes, our approach is around 20% as we provide a more
lighweight write path. We compare Iris with the state-of-art
Linux kernel file systems, XFS and EXT4.

The rest of this paper is organized as follows. Section 2
provides background on hardware virtualization support by
modern processors and devices. Section 3 presents a taxon-
omy of the current state-of-the-art systems that try to im-
prove access to fast storage devices. In Section 4 we present
the design of Iris, and in Section 5 a preliminary evaluation.
Section 6 concludes the paper and outlines future work.

2. BACKGROUND ON PROCESSOR AND
I/O DEVICE VIRTUALIZATION

In this section we provide a survey of hardware virtu-
alization features found in modern processors and I/O de-
vices provide to simplify the design and enhance the per-
formance of hypervisors. We focus on the Intel VT-x [31]
extensions that we have used in our prototype implementa-
tion. AMD [2] and ARM [32] also support similar features,
not surveyed in this section.

2.1 Intel VT-x

2.1.1 CPU Virtualization
The baseline design for running virtual machines is to en-

sure that privileged instructions trigger processor traps and
then execute their handlers inside the hypervisor in a pro-
tected manner. The downside of this approach is that traps
incur significant overheads in the execution. VT-x, a set of
hardware features provided by the CPU, proposes a design
that the CPU has two operating modes, the VMX root and
VMX non-root mode. VMX root is similar to the normal
execution of CPUs. The intention is to run the host OS
and the hypervisor on this mode. VMX non-root mode is
designed for running guest operating systems. In this mode,
CPUs have some limitations in order to access hardware re-
sources in a protected manner.

CPUs provide instructions to change their mode. Exe-
cuting VMLAUNCH or VMRESUME from the VMX root
mode, change the mode to VMX non-root, and starts exe-
cuting guest code. This transition is named VM entry. The
opposite transition is needed when a privileged instruction
should be handled from the hypervisor and is named VM
exit. VM exits occur upon events predefined by the hyper-
visor. These events and several other configuration options
are stored in a memory buffer named VM Control Structure
(VMCS) and each CPU has its own VMCS. Except from
the predefined events (privileged instructions) the guest can
generate a VM exit explicitly by issuing a VMCALL instruc-
tion. In both VM entries and VM exits hardware handles
the save and restore of architectural state. This information
is also stored inside the VMCS.

2.1.2 Extended Page Tables
Another responsibility of the hypervisor is to protect host

physical memory, by managing virtual address space transla-
tions. This functionality is a significant source of complexity
and overhead in the execution of virtual machines. Virtual
address space translation is necessary because multiple guest
operating systems have to share the same physical memory.
In older implementations of hypervisors this is done by a
technique named page-table shadowing that is implemented
in software. This technique adds a significant amount of
overheads in the virtualization because of the large number
of VM exits. These exits should be done for page faults,
TLB invalidation and manipulation of the CR3 register. A
hardware mechanism, part of VT-x extensions, named Ex-
tended Page Table (EPT) is designed in order to reduce
these overheads. This is a new page-table structure that
handles translations between guest physical to host physical
addresses and is under the control of the hypervisor. In the
host OS there is the EPT base pointer that works in a sim-
ilar way to the CR3 base pointer in the normal page table.
This mechanism activated on VM entry and can be deacti-
vated on VM exit. Using this the guest OS has full control
over its own page tables and thus VM exits on page faults,
TLB invalidation and manipulation of the CR3 register are
not required and related overheads are removed.

2.2 Intel VT-d
Intel Virtualization Technology for Direct I/O (VT-d) en-

ables direct access to I/O devices for the guest operating
systems. This include three key features. It provides I/O
device assignment for an I/O device to a virtual machines.
It enables DMA remapping, which supports address trans-
lations for device DMA data transfers. This can be achieved



with the help of Input/Output Memory Management Unit
(IOMMU) [20]. It also provides interrupt remapping, which
provides virtual machine routing and isolation of device in-
terrupts. The idea behind this is to dedicate hardware re-
sources to guest OSes, by removing the need to emulate
hardware devices and thus removing associated overheads.
Although originally targeting high-speed network devices,
this direct device-to-VM assignment capability has become
desirable for fast storage devices as well (such as PCIe-based
NVMe drives).

2.3 Intel VT-c
Intel Virtualization Technology for Connectivity (VT-c) is

a combination of three enabling capabilities. First, Intel I/O
Acceleration Technology (I/OAT) is a DMA engine, imple-
mented in the chipset, that offloads memory copies from the
main processor. This is mainly used to optimize networking,
but it supports other data copies as well. Second, Virtual
Machine Device Queues (VMDQ) [1] improve traffic man-
agement within the server by offloading traffic sorting and
routing from the hypervisor’s virtual switch to the Ethernet
Controller. Specifically, a network device provides queues
for software based NIC sharing. Finally, Single Root I/O
Virtualization (SR-IOV) [21] allows partitioning of a single
physical network device into virtual devices. It is defined in
the PCI Express (PCIe) specification and standardized by
PCI-SIG. A SR-IOV network device is presented on PCIe as
a single ”physical function” and allows the creation of mul-
tiple ”virtual functions” dynamically. This can be done if
there is access to the ”physical function” (by the hypervi-
sor in the case of virtualized systems). It also enables the
configuration of filters in the SR-IOV adapter to multiplex
and demultiplex network packets from virtual to physical
functions and the opposite. Each ”virtual function” can be
configured and used as an independent device. The idea be-
hind this is to map each ”virtual function” directly to guest
OSes. This combination of capabilities enables lower CPU
utilization, reduced system latency, and improved network-
ing throughput. The problem here is that these technologies
are designed for network devices and are not applicable in
storage devices. Partitioning of hardware queues in network-
ing is more straightforward than partitioning of storage de-
vices. Storage is inherently shared, requiring orchestration
of accesses from different users. These technologies does not
provide any benefits towards this direction.

3. TAXONOMY OF PROPOSED SYSTEMS

In this work we are aiming to minimize overheads related
to the operating system kernel, when accessing low-latency
storage devices. Inside the kernel there are several layers
that a I/O request should pass before being served by the
actual device. One approach is to optimize or remove some
of these layers [12, 15, 36, 35, 9]. Another approach is to
bypass the kernel and access storage devices directly from
user applications [33, 6, 24]. Accessing hardware resources
directly from the user applications can introduce several is-
sues. The most important is protection, as we cannot assume
that a user’s applications can be trusted to access a shared
storage device without interfering with others. For this pur-
pose all hardware resources can be accessed only via the
operating system kernel. To enable this strict separation
on what the kernel and the user applications can access,

CPUs provide a way to enable the execution of the kernel
in a more privileged domain, via a feature called protection
rings. On mainstream x86 server processors, we have four
different protection rings (0 up to 3) in decreasing levels of
capabilities, where ring 0 is the most privileged and ring 3
the least privileged. Thus, kernel code executes on ring 0
whereas the code of user applications executes on ring 3.
During normal execution, a user application runs on ring 3.
When it needs to access a hardware resource, a system call
must be issued. This moves the execution inside the kernel,
where the first step is to check if the user application has suf-
ficient permissions to access the specified hardware resource.
With the system call, code execution moves from ring 3 to
ring 0, where the kernel runs. This model has worked well
for many years. Hardware devices in general have significant
latencies, thus the software overheads are relatively small in
comparison. With recent hardware devices, this trend starts
to change [8]. In the literature [26, 19], there are already
several works that target network devices. In this work we
focus on storage devices.

With the introduction of emerging low-latency storage de-
vices and more specifically with NVMe connectivity, the la-
tencies of the storage devices have dropped significantly; as
a consequence, system software latency is becoming compa-
rable with the latency of the actual hardware devices, creat-
ing the pressing need for optimizations to address this rad-
ical change in the balance between hardware and software
overheads [8, 9]. In the following paragraphs, we provide a
taxonomy where we analyze the current state-of-the-art and
alternative approaches addressing this problem. Both net-
work and storage have similar characteristics on accessing
them from user space, so we can use previous work from the
networking field; however, the situation is not entirely the
same, as storage and network devices have different char-
acteristics, necessitating a major redesign of the I/O path.
One of the most important differences is the strong require-
ment to share storage. The idea behind user-space network-
ing is to provide a virtual set of send/recv queues for each
process and leave to hardware the multiplexing and demul-
tiplexing of packets. Storage is inherently a shared resource,
making the options to provide virtual devices or static par-
titioning not acceptable.

For networking, apart from the common send/recv API,
alternative event-driven APIs has often been proposed. How-
ever, an event-driven API is not a good fit for storage de-
vices. Most user applications use the widely-accepted POSIX
read/write API. Alternative storage APIs have been pro-
posed, aiming for more relaxed access semantics compared
to POSIX. Alternatives include the key-value API and the
object API, both based on similar ideas. Changing user ap-
plications to work on key-value API can be challenging, re-
quiring a lot of software engineering effort. Therefore, main-
taining the common read/write API seems to be a necessity
at this point in time. Moreover, storage frameworks that
support more that one storage APIs would be a good idea,
as different user applications could use different APIs based
on their needs.

All of the points made above motivate innovations in how
to access storage devices with reduced system overheads.
Ideas from networking can be re-used but also many addi-
tional challenges particular to storage should be addressed.
We have created a taxonomy of current state-of-art storage
systems that target fast storage devices, and we compare



Table 1: Related work on optimizing the I/O path.
Title Citations Key Idea(s) Key Differences(s)

User-space networking [26, 19] Access hardware directly from user-
space and optimize software to mini-
mize overheads.

Iris provides enhanced protection and
sharing to storage devices.

Arrakis [24, 23] Uses SR-IOV to assign a separate
”virtual function” to each process.
Applicable only for network devices.

Iris targets storage devices and
doesn’t require any hardware support
from them.

IX [6] Separation of control and data plane.
Processor virtualization to provide
protected accesses from data plane to
network devices. Also provides an
event-driven API.

Iris targets storage devices and pro-
vides file based API. Optimized for
file sharing that is not applicable on
networking.

Moneta, Moneta-D [8, 9] Enhanced hardware to enforce protec-
tion and modified XFS filesystem.

Iris doesn’t require specialized hard-
ware and it also bypasses VFS and
other layers related to I/O path.

Aerie [33] Move functionality to user-space in
order to accelerate accesses to NVM.

Iris doesn’t use a centralized process
for protection that can limit scalabil-
ity.

Mnemosyne, NV-Heaps [34, 11] Provide transactional semantics over
byte-addressable NVM.

Iris provides a file-based API and does
not require byte-addressable NVM.

BPFS, PMFS, NOVA, and

SCMFS

[12, 15, 36, 35] Optimizing in-kernel file systems to
access fast storage devices.

Iris bypasses VFS and other layers re-
lated to I/O path.

them to our proposed approach. Table 1 summarizes our
findings. In the following paragraphs we present this taxon-
omy in detail.

3.1 Direct and protected device access
Recent papers have addressed the issue of how to optimize

accesses to fast I/O devices. The Arrakis [24] [23] and IX [6]
operating systems are based on the concept of separating the
control and data planes. The control plane is responsible of
managing the hardware resources in a protected and isolated
manner, while the data plane is a low-overhead mechanism
that allows direct but safe access to the hardware resources,
specifically I/O devices.

Arrakis, which is based on Barrefish [4], achieve this by
relying on SR-IOV [21] hardware features. SR-IOV allows
a single physical PCI-Express device to export several vir-
tual devices that are isolated from one another. Although
they present the idea on both network and storage devices,
their evaluation is mainly for network devices. Currently,
SR-IOV support is not available for storage controllers, al-
though it is commonly available in server network adapters.
The current SR-IOV support for storage controllers/devices
has many limitations and is not practical to use yet. In
Arrakis they also do not handle the case of data sharing,
which is a fundamental design issue in storage hierarchies.
In [23] the authors present the key concepts of Arrakis but
with emphasis on the storage path. They claim that the
current storage path suffers from many sources of overheads
because of the very broad-scope requirement to provide a
common set of I/O operations for a wide variety of differ-
ent user applications. They propose a custom specialized
storage path for different kinds of applications, with direct
access to storage devices. Similarly to Arrakis, they require
hardware virtualization support from storage devices (SR-
IOV), which however is not practical today.

Compared to Arrakis, we only require hardware virtual-
ization support from the processor (e.g. Intel’s VT-x in our

prototype), but not from the I/O devices. We also use an
unmodified Linux kernel, thus we still support user applica-
tions that do not require I/O acceleration. The operations
that our custom data plane cannot handle (e.g. network
accesses) still go through the normal path inside the kernel.

IX uses the unmodified Linux kernel as the control plane
and implement a lightweight OS abstraction for the data
plane. It uses Dune [5] to provide privilege separation be-
tween the control plane, the data plane and the normal pro-
cesses, to provide safe access to the hardware devices. They
do not require SR-IOV virtualization support, but they pro-
pose a solution and evaluation only for network devices. Au-
thors provide an event-driven API (libIX) that provides run
to completion with adaptive batching, zero-copy API and
synchronization free processing. These optimizations tar-
geting throughput and the new event-driven API require
changes to the applications.

Our system is based on the idea of IX for protection. But
a radical redesign is needed in order to be suitable for stor-
age. We also use the same notation of the separation of
control and data plane. We use as control plane an unmodi-
fied Linux kernel. The data plane is a way to access storage
devices bypassing the Linux kernel I/O stack. But we can-
not enable direct access from several user applications to
a shared hardware resource. A layer that enables protec-
tion and synchronization of the accesses is required. This
paper presents the design and implementation of this layer
named Iris. In order to run in a different protection domain
compared to the Linux kernel we use hardware virtualization
features. Thus unmodified Linux kernel runs on VMX root
mode and Iris and user applications runs on VMX non-root
mode. More specifically Iris runs on VMX non-root ring 0
and user applications run on VMX non-root ring 3. There is
an analogy here with virtual machines. Iris can be assumed
to be the guest operating system. But there is no need to
be so complex as there is also a full operating system in the
control plane. The primary purpose of Iris is to filter I/O



requests and serve them without interacting with the Linux
kernel. These I/O requests arrive in Iris as system calls.
All the other system calls that are not related to storage
I/O can be forwarded to the Linux kernel and served from
this. For the system calls that are related to I/O we still
require kernel crossing. In [24] authors claim that syscall
and return are about 6% of the total overhead in the I/O
path. The other 94% of overheads comes from the software,
where we provide a lightweight I/O stack compared to what
Linux kernel provides. There are works showing that we
can remove the system call overheads [29] as well, but we
leave this optimizations as a future work. Another impor-
tant issue that Iris should handle is the management of the
virtual addresses translation and the EPT can be used in
order to accelerate this procedure. Finally it has to handle
signal delivery to applications. For the purpose of initializa-
tion and running Iris we use Dune. This provides the ability
to run guest code in VMX non-root mode, initialize EPT
and other important features. More generally, we could also
built our work on top of either the KVM or Xen hypervisors
for Linux.

First of all Iris executes permission checks (i.e. check if
the user can read or modify the specific file). Then in or-
der to serve the I/O requests an indexing data structure is
needed. In this case we use Tucana [22], a persistent, write
optimized key-value store. This means that a translation
from read/write API to get/put API is needed inside Iris.
By providing read/write API we do not require any changes
to user applications nor recompilation of them as we can use
the LD PRELOAD hack in order to add a priority of calling
our functions compared to libc functions.

3.2 Device-level hardware support
Moneta-D [9] uses specialized hardware for fast access to

I/O storage devices with strong protection semantics. All
the metadata operations still go through the normal I/O
path in the Linux kernel. They optimize read/write opera-
tions in a way that does not require crossing the kernel for
permission checks. Moneta-D provides a private, virtualized
interface for each process and moves file system protection
checks into hardware. As a result applications can access
file data without operating system intervention, eliminating
OS and file system costs entirely for most accesses. In our
work, we only require virtualization support in the proces-
sor, rather than in the interface to storage devices.

3.3 Process-level protection
Another approach to access fast storage devices appeared

in Aerie [33]. This work assumes byte-addressable NVM
placed on the memory bus. The key idea in this work is that
the NVM is directly mapped in the user’s address space. Us-
ing this approach, user applications can read/write data and
read metadata directly; however, the metadata updates have
to be performed by a separate trusted process, the Trusted
FS Process. This approach has the disadvantage that meta-
data updates, which are done by a centralized process, can
limit scalability especially in highly multithreaded servers.
Our approach is not subject to this limitation as multiple ap-
plications can update their metadata concurrently in differ-
ent databases (more details in Section 4.1). Furthermore, we
do not assume byte-addressable NVM placed on the mem-
ory bus. Aerie would require a different design to leverage
PCIe based devices. On the other hand, Iris works for both

Flash
Storage
Devices

VMX
root

ring 0

VMX
non-root

ring 0

VMX
non-root

ring 3

Block Layer
File system

syscall API & VFS

Iris
kernel

libc
I/O Interposer

Process

Iris
Key-Value

NVM

Figure 1: Top-level architecture of Iris.

cases without the need for major modifications.

3.4 Managing byte-addressable NVM
In Mnemosyne [34] and NV-Heaps [11] the authors pro-

pose ideas on how to use NVM for a persistent replacement
to volatile memory that user applications can use, i.e. ap-
plications can rely on in-memory data-structures that can
survive system crashes. Mnemosyne and NV-Heaps provide
an API for NVM allocation and deallocation, with failure
handling provisions. They also implement persistent data
structures and atomic semantics (transactions) to leverage
NVM from user applications. These works are orthogonal to
our approach. In principle, we can apply these techniques
to optimize access to NVM from our key-value store.

3.5 Optimizing kernel-level file-systems
Other works like BPFS [12], PMFS [15], NOVA [36] and

SCMFS [35] try to optimize in-kernel file systems. They
use the standard VFS layer, and try to optimize the file
system data structures to access NVM. We don’t compare
with these approaches as we propose an alternative way to
access NVM, different from the common system call and
VFS layer approach.

4. Iris DESIGN
We implement a custom I/O path over fast persistent de-

vices that removes most of the overheads from the Linux
kernel I/O path. Figure 1 shows the top-level architecture
of our system. Iris consists of three main parts:

• the key-value store, responsible for storing file blocks,
providing atomic semantics, and handling failure sce-
narios (e.g. system crashes),

• the Iris kernel, which handles accesses to the key-value
store and performs permission checks, and

• the I/O interposer which handles I/O processing at the
user-space and generate key-value requests.



4.1 Key-Value Store
Our key-value store is designed primarily for fast stor-

age devices, and is mainly based on Tucana [22]. Its API
provides methods for inserting a <key, value> pair and for
retrieving a <value> based on a <key>. At its core, our
key-value store implements a variant of Bε–tree [7], a write-
optimized indexing data structure. It supports multiple
databases over a single or multiple devices. Since it op-
erates at the device level, it implements its own allocation
mechanism for space management over storage volumes. It
maps the underlying devices in memory, and access them as
memory regions.

Our persistence mechanism is based solely on the Copy-
On-Write (COW) mechanism [27]. Common key-value stores
use journaling for consistency purposes. In this case, for
each update the mutation is first appended in a log and
then updated in-place in the primary storage space. Our
store operates differently: It creates a copy of the new value
and subsequently modifies it. More specifically, each modi-
fication to the tree data structure requires the update of a
set of nodes. Instead of updating them in-place, we create a
copy of the old nodes and updates only the copy. This pro-
cedure begins from a leaf node, where a new <key, value>
inserted, and goes recursively up to the root of the tree. At
any point in time, there are two root nodes: one is read-only,
while the other is where all data updates occur.

Our system is capable of batching a series of updates
which subsequently are written to the device in an atomic
manner, thus reducing actual I/O operations. After a period
of time has elapsed or the application explicitly instructs
to make its changes persistent, the key-value store with an
atomic operation will update the read-only root to be the
new persistent view of the database. Finally, keeping ver-
sions of the database is supported by keeping pointers to
previous versions of the tree-structured index.

We keep both file blocks and file metadata in the key-value
store. To distinguish different files, we use the persistent and
unique inode number provided by VFS for each file. The
key for accessing a file block in the key-value store is formed
by the concatenation of the file’s inode number and the re-
quested block number. This format of keys enable keys for
the same file to be contiguous in the device, and this does not
hurt the performance of sequential accesses. Let’s consider
the case where we want to read the contents of a large file in
its entirety. We need to issue a point query (get()) for every
data block. Using range queries, we can find the first block
of the file and get the subsequent blocks by using the next()
function. This reduces overhead compared to a point query
as we do not need to traverse the tree from the root to a leaf
node. In the current version we haven’t implemented this
optimization, and all read/write requests translate to point
queries. In our current implementation, we use a block size
of 4KB, but this is a parameter configurable by the system
administrator. The value returned by the key-value store is
a block of the actual data of the file. We also keep persistent
metadata for each file that is present in the key-value store.
These include the inode number, the file path and the name
of the file, a struct stat that also contains the size of the file,
and the file ownership and permissions information.

We rely on the key-value store to provide data and meta-
data consistency upon failures. By guaranteeing a series of
update operations to be atomic, we ensure that file data and
metadata will not be in an inconsistent state after a failure.

Current state-of-art file systems use a journaling mechanism
to provide data integrity after a failure. Each write has to
be done first on the journal device and then on the primary
device. When a failure occurs, the file system has to replay
the log. We use a different approach for failure handling. By
using the copy-on-write technique, we remove the overhead
to perform a write on both the journal device and then to the
primary device. After a failure, only the last consistent view
of our key-value store is visible to applications. BTRFS [28]
file system also uses copy-on-write for metadata integrity.

Our key-value store is designed to be mapped to multiple
applications, allowing shared storage. Therefore, it has to
support concurrent get and put requests. Tucana [22] in its
current version supports single writer per database and mul-
tiple concurrent readers. In order to avoid the bottleneck in
the write path we leverage Tucana’s support for multiple
databases and we store different files in different databases
using a hash based distribution. This allows data and meta-
data updates on different files to be concurrent. To maintain
POSIX semantics, for each file the results of the last write
must be returned to any subsequent read operation. Instead
of simple coarse-grain locking, we have implemented a more
sophisticated locking protocol to support concurrent reads
and writes for different files.

Finally, in order to fully bypass the Linux kernel we plan
to map PCIe storage devices directly to Iris using Intel VT-
d virtualization features. In this case we will be able to
access these device using a user-level NVMe driver frame-
work like SPDK [30]. Currently Tucana key-value store re-
quires a block device as an underlying storage device. We
plan to extend Tucana in order to access NVMe devices di-
rectly through SPDK. In Iris we also don’t require special-
ized hardware support as the only hardware support we need
is the virtualization extension, that all modern processors
and motherboards provide.

4.2 Iris Kernel
The Iris kernel is the heart of the system. It maps a

fast storage device to the application process address space.
Therefore, in the common path Iris avoids the overheads of
system call processing, VFS, and in-kernel file system pro-
cessing. The main drawback of moving all I/O processing
into user space is the lack of protection that Linux kernel
provides. To address this concern, we rely on processor vir-
tualization virtualization features. Intel VT-x [31] virtual-
ization technology provides two different privilege domains:
VMX-root and VMX non-root. Each of them supports the
standard privilege rings (0 to 3). The purpose of this separa-
tion is to better support hypervisors. Normally, the hyper-
visor runs on VMX-root, ring 0, while the guest OS of each
virtual machines runs on VMX non-root, ring 0, and guest
processes on VMX non-root, ring 3. In our work, we use
this privilege separation for a different purpose, following
the idea behind the Dune [5] prototype. The Linux ker-
nel runs on VMX-root, ring 0, the protected I/O path code
runs on VMX non-root ring 0, and user processes (issuing
I/O requests) run on VMX non-root ring 3. By using this
privilege separation we provide strong protection semantics
to access shared storage devices, similar to the unmodified
Linux kernel.

The Iris kernel runs on VMX non-root ring 0, thus it is
protected from user processes that run on VMX non-root
ring 3. When I/O interposer issues a get or put request,



EXT4 XFS Iris
read 269 261 445
write 203 199 439

Table 2: Single thread random IOPS (thousands).

it checks if the specified process has sufficient privileges to
access the file with the specific inode number. If not, an
error is returned to the interposer and then to the user.

4.3 I/O Interposer
The purpose of this part is to intercept I/O system calls

to libc. We provide our own dynamically linked library that
replaces these libc calls and ensure that our library gets pri-
ority over libc (via LD PRELOAD). Therefore, applications
run unmodified, while our I/O interposer handles all open
file descriptors and translates I/O requests to key-value re-
quests: get and put. For each open file, we maintain state
related to the file, which allows us to handle ftruncate, fal-
locate, stat, lseek and their variants. For correctness, each
metadata operation to a file stored in Iris should be handled
by our system, because normal Linux kernel does not have
correct information for these files. We also support all calls
needed for normal Linux kernel tools, like reaadir call for ls
application.

In addition to the persistent file metadata stored in the
key-value store, the interposer also maintains in-memory
(not persistent) metadata. These metadata include open
file descriptors and the current read/write offset in each file.
These metadata are also not persistent in the case of the un-
modified Linux kernel. After a failure, applications do not
expect to have the files descriptors that are available before
a failure. We also maintain an in-memory cache of persis-
tent metadata, to accelerate metadata operations without
sacrificing correctness.

5. EVALUATION
In this section we provide a preliminary evaluation of Iris.

Our testbed consists of two Intel Xeon E5620 processors
running at 2.40GHz and 24 GBytes of DDR3/1333 DRAM
organized in 2 NUMA nodes, each of them with 12 GBytes
of DDR3 DRAM. In our experiments we pin the benchmark
threads on a single NUMA node in order to remove NUMA-
related effects. We run experiments with FIO [3] to measure
random-access read and write IOPS, with a block size of 512
bytes, and sequential-access read and write throughput, with
a block size of 4096 bytes. In both case we set the device
queue depth equal to 1, and direct I/O to bypass the page
cache. We vary the number of I/O issuing threads from 1
to 4. Each thread performs I/O on a separate file of size
equals to 128MB. We use the PMBD [18, 10] block device
driver to emulate the access latencies of a PCM memory
device over DRAM. We dedicate 8GBytes of the testbed’s
DRAM for use as PMBD’s storage space. We compare Iris
with the current state-of-art file systems provided by the
Linux kernel, EXT4 and XFS. For both of these file systems,
we also use PMBD as the underlying block device. In all
cases, the results obtained from Iris have very small variance
between runs.

Table 2 shows the number of random IOPS for both reads
and writes using a single thread. Regarding random read

0 1 2 3 4

#threads

0

400

800

1200

1600

re
a
d
 I
O

P
S

 (
th

o
u
s
a
n
d
s
)

XFS

EXT4

Iris

0 1 2 3 4

#threads

0

400

800

1200

1600

w
ri
te

 I
O

P
S

 (
th

o
u
s
a
n
d
s
)

XFS

EXT4

Iris

Figure 2: Random read/write IOPS scaling.

EXT4 XFS Iris
read 927 882 933
write 432 510 584

Table 3: Single thread throughput (MB/s).

IOPS, Iris provides 1.65× and 1.7× higher number of IOPS
compared with EXT4 and XFS, respectively. For random
write IOPS the improvement is 2.16× and 2.2×, respectively.

Figure 2 shows how random IOPS scale while increasing
the number of threads from 1 to 4, compared to EXT4 and
XFS. Using 4 threads, Iris provides 1.84× and 1.82× for
reads and 1.96× and 1.8× for writes higher number of IOPS
respectively. These results show that while we increase the
number of threads the performance improvements remains
almost the same. With Iris, we serve around 400 KIOPS per
thread (i.e. processor core in this evaluation experiment),
almost 2× more than what is achievable with EXT4 and
XFS, without sacrificing protection guarantees and failure
resilience.

Table 3 shows the sequential throughput for both reads
and writes using a single thread. Regarding sequential read
throughput, Iris provides 1% and 5% higher MB/s compared
with EXT4 and XFS, respectively. We measure the raw per-
formance of the device using the dd tool. We use block size
4KB and direct accesses to the device. Using one instance of
dd (i.e. 1 I/O issuing thread) we get around 1.8GB/s for se-
quential reads. With Iris, EXT4 and XFS we get about one
half of this throughput, because one additional data copy is
needed compared to direct device access without a file sys-
tem. Current state-of-the-art file systems do a good job in
sequential reads as they try to store large files sequentially
in the device. For sequential write throughput the improve-
ment is 35% and 14%, respectively. Using again the dd tool,
with the same configuration, we get around 1.3GB/s for se-
quential writes, so we achieve about the half of the peak
device throughput. We are about 20% better on average
compared to the other file systems, and this comes from the
more lightweight write path.

Figure 3 shows how sequential throughput scales while
increasing the number of threads from 1 to 4, compared
to EXT4 and XFS. Using 4 threads, Iris provides 5% and
14% for reads and 27% and 7% for writes higher through-
put in terms of MB/s respectively. These results show that
while we increase the number of threads the performance im-
provements remains almost the same. With Iris we achieve



0 1 2 3 4

#threads

0

400

800

1200

1600

2000

2400

2800

3200
re

a
d
 t
h
ro

u
g
h
p
u
t 
(M

B
/s

)
XFS

EXT4

Iris

0 1 2 3 4

#threads

0

400

800

1200

1600

2000

w
ri
te

 t
h
ro

u
g
h
p
u
t 
(M

B
/s

)

XFS

EXT4

Iris

Figure 3: Sequential read/write throughput scaling.

almost the same throughput in sequential reads with the
state-of-the-art file systems as the bottleneck is the device.
In the case of sequential writes, we achieve about 20% better
throughput than what is achievable with EXT4 and XFS,
because we have a more lightweight path for write.

In this work, we have focused the evaluation on small ran-
dom read/write accesses, to better highlight overheads and
the improvements achievable with Iris. In random patterns
the overheads of the software stack are more pronounced
compared to the sequential pattern. Optimizations focusing
on throughput, especially for sequential accesses, are outside
the scope of this paper, but we expect significant improve-
ments for such access patterns as well. These improvements
are a consequence of the design decision to build out key-
value store on top of a Bε–tree, rather than more commonly
used hash-based data structures. As a specific example, to
serve sequential accesses, Iris could issue range queries to its
underlying key-value store, which then returns the requested
blocks in sorted-by-key order. This helps Iris to accelerate
sequential accesses. We leave this optimization and its eval-
uation to future work. Our results for sequential file accesses
shows that our approach already perform up to 20% better
than state-of-the-art file systems. Using range queries in se-
quential file accesses would further improve the performance
in our case.

6. CONCLUSIONS & FUTURE WORK
In this paper we present Iris, a custom storage system for

providing direct access to fast storage devices and minimize
system software overheads without sacrificing strong pro-
tection semantics. We have implemented a key-value store
(Tucana) for storing file data and metadata, and guarantee
both atomicity and recoverability. We use processor virtual-
ization features to provide a fast path for protected accesses
to the key-value store. We are currently extending our key-
value store to support scale-out configurations, so that Iris
can utilize fast storage devices at multiple nodes.

In our preliminary evaluation, we have shown improve-
ments up to 1.7× for random read IOPS and 2.2× for ran-
dom write IOPS as compared with state-of-art Linux kernel
file systems using a single core. Performance scales with
the number of cores, with up to 1.84× and 1.96× improve-
ment for random read and write IOPS, respectively, using
4 cores. In sequential reads we provide similar performance
and in sequential writes we are about 20% better compared
to other file systems but with several optimization oppor-

tunities. Our future work includes the full implementation
of Iris and its extensive evaluation using real applications,
including On-Line Transaction Processing (OLTP) and On-
Line Analytical Processing (OLAP) workloads.

Acknowledgments
We thankfully acknowledge the support of the European
Commission under the Horizon 2020 Framework Programme
for Research and Innovation through the ExaNeSt project
(Grant Agreement 671553).

7. REFERENCES
[1] Intel VMDq Technology: An Overview, 2008.

[2] AMD. Secure Virtual Machine Architecture Reference
Manual.

[3] J. Axboe. Flexible I/O Tester.
https://github.com/axboe, 2005.

[4] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The multikernel: A new os architecture
for scalable multicore systems. In Proceedings of the
ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, SOSP ’09, pages 29–44, New York,
NY, USA, 2009. ACM.

[5] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei,
D. Mazières, and C. Kozyrakis. Dune: Safe user-level
access to privileged cpu features. In Presented as part
of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12), pages
335–348, Hollywood, CA, 2012. USENIX.

[6] A. Belay, G. Prekas, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion. Ix: A protected
dataplane operating system for high throughput and
low latency. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
14), pages 49–65, Broomfield, CO, Oct. 2014.
USENIX Association.

[7] G. S. Brodal and R. Fagerberg. Lower bounds for
external memory dictionaries. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’03, pages 546–554,
Philadelphia, PA, USA, 2003. Society for Industrial
and Applied Mathematics.

[8] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K.
Gupta, and S. Swanson. Moneta: A high-performance
storage array architecture for next-generation,
non-volatile memories. In Proceedings of the 2010 43rd
Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO ’43, pages 385–395,
Washington, DC, USA, 2010. IEEE Computer Society.

[9] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De,
J. Coburn, and S. Swanson. Providing safe, user space
access to fast, solid state disks. In Proceedings of the
Seventeenth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS XVII, pages 387–400, New York,
NY, USA, 2012. ACM.

[10] F. Chen, M. Mesnier, and S. Hahn. A protected block
device for persistent memory. In Mass Storage Systems
and Technologies (MSST), 2014 30th Symposium on,
pages 1–12, June 2014.



[11] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp,
R. K. Gupta, R. Jhala, and S. Swanson. Nv-heaps:
Making persistent objects fast and safe with
next-generation, non-volatile memories. In Proceedings
of the Sixteenth International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS XVI, pages 105–118,
New York, NY, USA, 2011. ACM.

[12] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better i/o through
byte-addressable, persistent memory. In Proceedings of
the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, SOSP ’09, pages 133–146, New
York, NY, USA, 2009. ACM.

[13] B. Dieny, R. Sousa, G. Prenat, and U. Ebels.
Spin-dependent phenomena and their implementation
in spintronic devices. In VLSI Technology, Systems
and Applications, 2008. VLSI-TSA 2008.
International Symposium on, pages 70–71, April 2008.

[14] DPDK. Data plane development kit.
http://dpdk.org/, 2016.

[15] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz,
D. Reddy, R. Sankaran, and J. Jackson. System
software for persistent memory. In Proceedings of the
Ninth European Conference on Computer Systems,
EuroSys ’14, pages 15:1–15:15, New York, NY, USA,
2014. ACM.

[16] FusioIO. ioDrive2/ioDrive2 Duo Datasheet.
http://www.fusionio.com/load/-media-/2rezss/
docsLibrary/FIO DS ioDrive2.pdf, 2014.

[17] Y. Ho, G. Huang, and P. Li. Nonvolatile memristor
memory: Device characteristics and design
implications. In Computer-Aided Design - Digest of
Technical Papers, 2009. ICCAD 2009. IEEE/ACM
International Conference on, pages 485–490, Nov 2009.

[18] Intel. Persistent memory block driver (pmbd) v0.9.
https://github.com/linux-pmbd/pmbd, 2013.

[19] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm,
D. Han, and K. Park. mtcp: a highly scalable
user-level tcp stack for multicore systems. In 11th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14), pages 489–502,
Seattle, WA, Apr. 2014. USENIX Association.

[20] A. Kegel, P. Blinzer, A. Basu, and M. Chan. IOMMU:
Virtualizing IO through IO Memory Management
Unit (IOMMU). AMD Tutorial on ASPLOS 2016.

[21] P. Kutch. PCI-SIG SR-IOV primer: An introduction
to SR-IOV technology, 2011. Intel application note,
321211-002.

[22] A. Papagiannis, G. Saloustros, P. González-Férez, and
A. Bilas. Tucana: Design and implementation of a fast
and efficient scale-up key-value store. In 2016
USENIX Annual Technical Conference (USENIX ATC
16), Denver, CO, June 2016. USENIX Association.

[23] S. Peter, J. Li, I. Zhang, D. R. K. Ports, T. Anderson,
A. Krishnamurthy, M. Zbikowski, and D. Woos.
Towards high-performance application-level storage
management. In 6th USENIX Workshop on Hot
Topics in Storage and File Systems (HotStorage 14),
Philadelphia, PA, June 2014. USENIX Association.

[24] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe.

Arrakis: The operating system is the control plane. In
11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages 1–16,
Broomfield, CO, Oct. 2014. USENIX Association.

[25] S. Raoux, G. Burr, M. Breitwisch, C. Rettner,
Y. Chen, R. Shelby, M. Salinga, D. Krebs, S.-H. Chen,
H. Lung, and C. Lam. Phase-change random access
memory: A scalable technology. IBM Journal of
Research and Development, 52(4.5):465–479, July
2008.

[26] L. Rizzo. netmap: A novel framework for fast packet
i/o. In 2012 USENIX Annual Technical Conference
(USENIX ATC 12), pages 101–112, Boston, MA, June
2012. USENIX Association.

[27] O. Rodeh. B-trees, shadowing, and clones. ACM
Trans. Storage, 3(4):2:1–2:27, Feb. 2008.

[28] O. Rodeh, J. Bacik, and C. Mason. Btrfs: The linux
b-tree filesystem. ACM Trans. Storage, 9(3):9:1–9:32,
Aug. 2013.

[29] L. Soares and M. Stumm. Flexsc: Flexible system call
scheduling with exception-less system calls. In
Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation,
OSDI’10, pages 33–46, Berkeley, CA, USA, 2010.
USENIX Association.

[30] SPDK. Storage performance development kit.
http://www.spdk.io/, 2016.

[31] R. Uhlig, G. Neiger, D. Rodgers, A. Santoni,
F. Martins, A. Anderson, S. Bennett, A. Kagi,
F. Leung, and L. Smith. Intel virtualization
technology. Computer, 38(5):48–56, May 2005.

[32] P. Varanasi and G. Heiser. Hardware-supported
virtualization on arm. In Proceedings of the Second
Asia-Pacific Workshop on Systems, APSys ’11, pages
11:1–11:5, New York, NY, USA, 2011. ACM.

[33] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan,
P. Saxena, and M. M. Swift. Aerie: Flexible
file-system interfaces to storage-class memory. In
Proceedings of the Ninth European Conference on
Computer Systems, EuroSys ’14, pages 14:1–14:14,
New York, NY, USA, 2014. ACM.

[34] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
Lightweight persistent memory. In Proceedings of the
Sixteenth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS XVI, pages 91–104, New York, NY,
USA, 2011. ACM.

[35] X. Wu and A. L. N. Reddy. Scmfs: A file system for
storage class memory. In Proceedings of 2011
International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11,
pages 39:1–39:11, New York, NY, USA, 2011. ACM.

[36] J. Xu and S. Swanson. Nova: A log-structured file
system for hybrid volatile/non-volatile main memories.
In 14th USENIX Conference on File and Storage
Technologies (FAST 16), pages 323–338, Santa Clara,
CA, Feb. 2016. USENIX Association.


